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Abstract. Any machine targeted for human-level intelligence must be
able to autonomously use its prior experience in novel situations, un-
foreseen by its designers. Such knowledge transfer capabilities are usu-
ally investigated under an assumption that a learner receives training
in a source task and is subsequently tested on another similar target
task. However, most current AI approaches rely heavily on human pro-
grammers, who choose these tasks based on their intuition. Another
largely unaddressed approach is to provide an artificial agent with meth-
ods for transferring relevant knowledge autonomously. One step towards
effective autonomous generalization capabilities builds on (autonomous)
causal modeling and inference processes, using task-independent knowl-
edge representations. We describe a controller that enables an agent to
intervene on a dynamical task to discover and learn its causal relations
cumulatively from experience. Our controller bootstraps its learning from
knowledge of correlation, then removes non-direct-cause correlations –
correlations that are due to a common (external) cause, be spurious, or
invert cause and effect – through strategic causal interventions, while
learning the functions relating a task’s causal variables. The effective-
ness of knowledge transfer by the proposed controller is tested through
simulation experiments.

Keywords: Generalization · Learning · Cumulative Learning · Knowl-
edge Transfer · Control · Causality · Autonomy

1 Introduction

Any agent with general intelligence must be able to deal with novel situations
[17]. Since novelty is always relative to a learner’s knowledge, one way a controller
may handle it is to use priorly-experienced situations for guidance. This calls for
models that are generalizable to a variety of scenarios. Conventional machine
learning methods typically learn many spurious correlations, which may cause
unpredictable performance – possibly catastrophic – when facing new tasks. Also,
current ‘transfer learning’ methods heavily depend on human programmers to
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choose the tasks between which the knowledge transfer must occur. The auton-
omy of artificial intelligence (AI) systems, in knowledge acquisition and transfer,
allowing effective and efficient handling of a variety of scenarios, remains largely
unaddressed. No general solution to causal model learning exist, as of yet.3

Here we introduce an autonomous controller that cumulatively [19] learns
and uses causal models of tasks that are transferable to novel scenarios. The
design is based on three major principles of constructivist AI [16], which are
knowledge transparency, temporal grounding, and feedback loops. Given this ap-
proach, an autonomous agent can autonomously learn causal models that are
invariant across variations of tasks. Causal modeling and inference go beyond
the limitations of current machine learning (ML) methods via their testability
and task-independence [19, 7], allowing an agent to use it in scenarios it has never
encountered before. Our approach is compatible with Pearl’s structural causal
models and directed acyclic graphs [6]. We adapt the principles of causation
such that they meet the aforementioned principles of a constructivist methodol-
ogy [16]. Our causal models of a task are formed by considering the assumption of
insufficient knowledge and resources (AIKR) [20], according to which the agent
must rely only on a limited set of sampled data and resources. An important
factor to limit the scope of learning, and prevent incorrect generalizations, is to
consider time explicitly in knowledge representation.

The approach builds on – and is compatible with – prior work on cumulative
learning [19, 17]. The controller starts its causal discovery process by learning
an initial correlational model. Then, it removes non-direct-cause correlations
through causal interventions until it identifies the causal structure. It continu-
ally updates its model as it collects more data. In short, we introduce an online
autonomous controller that initially learns a correlational model through ran-
dom search (worst case), discovers task-independent invariant relations between
variables of a dynamical task, learns the functions relating the variables, and
tests the model in transfer scenarios every time it learns the model.

2 Related Work

Generalization has made an appearance in various machine learning (ML) para-
digms to date, usually under the heading of ‘transfer learning’ (TL), invariably
with the shared goal of increasing learning rate and improving flexibility. In su-
pervised learning, deep transfer learning (DTL) has been applied to overcome
the problem of insufficient training data in the target task. The approaches to
DTL differ between domain-based and feature-space-based methods [14], but
they lack properties necessary for a general, autonomous AI system, since 1)
DTL methods rely on human programmers to choose source and target domains
based on their intuition, and 2) an agent that interacts with the environment
changes the data distribution in an unknown way. Reinforcement learning (RL),

3 By ‘general solution’ we mean that the learning is largely independent of the task-
environment and can be used to transfer learned skills between different task types.
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however, is an instance of algorithms by which the agent learns via taking ac-
tions, changing the world’s states, and receiving rewards. TL methods in RL
(reinforcement transfer learning, RTL) are based on an agent that receives train-
ing in a task and reuses the learned knowledge in another, similar task, and the
transferred knowledge is usually in the form of policies, reward functions, and/or
value functions [15]. However, not only human intuition is part of many RTL
methods, the aforementioned forms of knowledge are goal-entangled and thus,
task-dependent. The same TL limitation holds for deep reinforcement learning
(DRL) approaches when the target tasks change in an unpredictable way [4, 13].

The ‘covariate shift’ concept results from the assumption that conditionals
between variables are invariant between domains [2] and occurs due to the dis-
tributions’ change after intervention. Recently, Rojas-Carulla et al. [11] proved
that a subset of conditionals that is limited to the causal parents of a variable
can be used to build an optimal predictor of that in the transfer domain, prov-
ing Pearl’s statement about causal relations being invariant physical mechanisms
[6]. In general, explicit representation of causation goes beyond the limitations of
current ML due to its transparency, testability, intervention reasoning (predict-
ing the outcomes of actions), and capability of dealing with missing data [18,
7]. However, since the approach has attracted researchers’ attention recently,
causal discovery and generalization have still been limited to observation-based
methods, which are not proper for an agent that learns by doing [12, 11]. A re-
cent paper introduced a causal discovery algorithm based on intervention [1],
however, the algorithm does not learn a causal model in an online manner and
is limited to obtaining a causal structure. Our learning controller is an improved
version of [1], relying on principles of cumulative learning [18] and AERA system
[5], in which a model is learned and gets updated while the agent collects data.

3 Problem Formulation

We start by formulating knowledge representation and intervention. In a deter-
ministic world, the initial condition acts as a ‘cause’ of the particular unfolding
world dynamics when there is no autonomous agent affecting its physical pro-
cesses. Although a dynamical mechanism that moves a task from one state to
another is independent of the initial state4 [9], different initial conditions lead
to different outcomes. Thus, we stick to a discrete-time representation of a dy-
namical task that has a special focus on initial state, as follows 5

X(t) := f(X(0), NX(0), ..., NX(t))), (1)

4 This is a special case of the ‘Independence of Cause and Mechanism’ principle, which
states that the mechanism that connects the cause to the effect is independent of
the cause itself; i.e. X causes Y if and only if P (Y | X) is independent of P (X) [12].

5 Our physical formalization is compatible with event-based causality, where an event
causes another event to happen. An event can be defined as a set of manipulable
variables with changing values in a time interval that apply forces and causes changes
in values of another set of variables in a subsequent time interval.
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with augmented state vector X ∈ Rn+m, where n and m are the dimensions of
the world’s observables and manipulables, respectively. Also, X(0) represents the
initial state, and NX ∈ Rn+m is the noise on both observables and manipulables.
The terms NX(0), ..., NX(t)) show the applied noise in different time steps.

By assuming there is an autonomous agent that can manipulate (intervene
on) some observables at any time t, we can break up the vector X into two parts,
where U ∈ Rm is the control input vector (vector of manipulables) and X ∈ Rn

is the vector of observables. Then, equation (1) can be written in the form of

X(t) := g(X(0), U(0), ..., U(t− 1), NX(0), ..., NX(t)) (2)

Equation (2) can also be written as a difference equation as follows

X(t) := g̃(X(t− 1), U(t− 1), NX(t)) and X(0) := β0 (3)

where β0 indicates the vector of initial values of equation (3). Now we can for-
mulate intervention in dynamical tasks as follows

– Input interventions: This set of interventions does not change the causal
structure of the task. It has two forms:
• Changing the initial conditions of equation (1), and
• Setting the value of manipulables in eq. (2).

– Structural interventions: Replacing equation (1) with another function,
which is equivalent to having a different ordinary difference equation and
may change the causal structure.

3.1 Causal generalization

To formulate generalization, we assume that the controller is trained during
D tests, having D different probability distributions. We also assume that the
control input trajectory U is identical over all D tests. Every Pk represents a
distribution in kth test (k ∈ 1, ..., D), generating U and Xk given initial condi-
tions Xk(0). Over these tests, it learns a function h that maps X(0) and U to
X. Then, the prediction of h is tested in a novel test D + 1th, which the agent
has not experienced before. In other words, the test D + 1th is the transfer test
with distribution PD+1, in which the generalizability of the function h is tested.
The controller wishes to learn the function h with small L2 loss, that is

εPD+1(h) = E(XD+1,U |XD+1(0))∼PD+1(XD+1 − h(U |XD+1(0)))2 (4)

This statement also holds for identical initial conditions X(0) over D tests with
different input trajectories Uk. Then, every P̃k represents a distribution in kth

test, generating the input trajectory Uk and Xk given initial conditions X(0).
Over these tests, the agent must learn a function h̃ that maps X(0) and U to X.
Then, the prediction of h̃ is tested in a novel test D + 1th (transfer test), which
the agent has not experienced before. In fact, the controller wishes to learn the
function h̃ with small L2 loss, that is

εPD+1(h̃) = E(XD+1,UD+1|X(0))∼P̃D+1(XD+1 − h̃(UD+1|X(0)))2 (5)
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The difference between the two aforementioned equations is that in equation
(4) the predictability of function h is tested for a new initial condition XD+1(0),
while the predictability of function h̃ in equation (5) is tested for a new control
input trajectory UD+1. We will see that h and h̃ are identical after learning the
causal structure. In other words, we need to learn a model that is generalizable
to scenarios where there may exist new control input trajectories and/or new
initial conditions.

4 Causal Discovery & Learning

This work is done within the methodological frameworks of neo-constructivism
([16]; see also [10, 3]) and causation (cf. [6, 9, 11]). Via the constructivist ap-
proach an AI system can autonomously acquire knowledge and use it in multiple
different but similar situations/tasks. To that end, feedback loops are used that
enable the controller to perform causal interventions (interventions with the pur-
pose of causal discovery).
Learning a correlational model: In the first phase of learning, a random
search in the observation space occurs, which makes the agent learn correlations
between the variables. This correlational modeling is not generalizable but it
enables the agent to gain prior knowledge about tasks. Our method removes
non-direct-cause correlations and updates the model over training.
Causal structure identification: The agent discovers the causal relations by
intervening on some variables and inspecting the distribution changes in other
variables. By adapting the definitions provided by [1], we can write the following
definition that allows an agent detect the causal relations between observables.
Assume ∀j xj 6⊥ xi, then xj → xi if

∀ l 6= j xkl (0) = xk
′

l (0) xkj (0) 6= xk
′

j (0), ∀ l, t ukl(t) = uk
′

l(t)

⇒ P(xki (t)) 6= P(xk
′

i(t))
(6)

In other words, given there is a correlation between xj and xi, xj causes xi
if the following statement holds: If the agent generates the same control input
trajectory for two different initial conditions of observable xj and then it finds
distribution changes in observable xi, it concludes that xj causes xi.

The agent can also find the causal relations between manipulables and ob-
servables. Assume ∀j uj 6⊥ xi, then uj → xi if

∀ l xkl(0) = xk
′

l(0), ∀ l 6= j, t ukj(t) 6= uk
′

j(t) ∀ t ukl(t) = uk
′

l(t)

⇒ P(xki (t)) 6= P(xk
′

i(t))
(7)

In other words, given there exists a correlation between uj and xi, then uj causes
xi, if the following statement holds: If the agent generates two different input
control trajectories uj(t) for identical initial conditions and then it finds distri-
bution changes in observable xi, it concludes that uj causes xi.
Causal model learning: Equations (6) and (7) only allow obtaining the causal
structure. However in our method, the initial function (model) that was learned
through correlational modeling is constantly updated by removing non-direct-
cause correlations after every intervention. Also, the function is updated accord-
ingly (after every intervention) through a grey-box modeling method.
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4.1 Using invariant functions for generalization

According to [11], causal generalization is only possible through an invariant
function that is learned over a set of training tests {1, ..., D} with various control
inputs and initial conditions. Via the following assumptions, we will conclude
that the invariant function is the causal model of a task, for which we will
introduce a discrete linear state-space equation.

Assumption 1: There exists a function of observable and manipulable variables
that predicts the observables in the next time step, by assuming the same control
input trajectory U for all D tests, such that

h(U |Xk(0)) = h(U |Xk′
(0)) ∀k, k′ ∈ {1, ..., D} (8)

and, by assuming the same initial conditions for all D tests, such that

h̃(Uk|X(0)) = h̃(Uk′
|X(0)) ∀k, k′ ∈ {1, ..., D} (9)

Since the function h and h̃ are invariant in all tests, according to the fact that in-
put interventions do not change the causal structure (as mentioned in subsection
3.1), we can conclude that

h(U |Xk(0)) = h̃(Uk|X(0)) ∀k, k′ ∈ {1, ..., D} (10)

Assumption 2: The invariance of function h also holds in transfer test D + 1.

Assumption 3: Let us assume that h is a linear function so that for all D tests
and for any initial condition X(0) and/or any input trajectory U , we have

h(t) := X(t) = AX(t− 1) +BU(t− 1) +N(t), X(0) := β (11)

Assumptions 2 and 3 imply that the function h is also linear in transfer test.
We will see if h is not causal, new initial conditions and/or new input trajectories
lead to covariate shift problem. Thus, learning an invariant function (i.e. a causal
model) solves the problem. In other words, for prediction error minimization in
D + 1th test, the following L2 error should be minimal, for any X(0) and any
input trajectory U ,

εPD+1(A,B) =

E(XD+1,UD+1)∼PD+1(XD+1(t)−AXD+1(t− 1)−BUD+1(t− 1))2.
(12)

where εPD+1(A,B) shows the squared error over predictions in transfer test. Now
we propose the following optimal prediction model, which can be obtained from
minimizing equation (12):

[A∗, B∗] := arg min
A,B

εPD+1(A,B). (13)

The left side of equation (13) is a matrix specifying the causal structure of a
dynamical task (causal relations between observables and manipulables), which
provides minimal squared error in transfer test. Here is the introduced model;

(X(0), U(0), ..., U(t− 1)) −→ X(t) (14)

such that

X(t) = A∗X(t− 1) +B∗U(t− 1). (15)
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Algorithm 1: Pseudocode of learning the invariant causal model

Input: sample (Uk, Xk|Xk(0))
Output: Estimated model (A and B matrices)
Initial correlational model calculation;
Move the task to arbitrary initial conditions;
while True do

for i = 1:n do
Do intervention 1 on xi;
Remove non-direct-cause correlations;
Update the model, while moving to new initial conditions;

end
for j = 1:m do

Do intervention 2 on uj ;
Remove non-direct-cause correlations;
Update the model, while testing new control input trajectories;

end
if averaged squared prediction error in a new test ≤ ε then

Break;
end

end

Based on sufficient conditions for causal discovery in the linear Gaussian
settings given by [8], A∗ and B∗ provide a function h∗ that consists only
of causal relations. In other words, the function h∗ satisfies assumptions (1)
and (2), which lead to invariant predictions in the transfer test.

4.2 Learning invariant causal model

The proposed algorithm for causal discovery (Algorithm 1) identifies the causal
structure through D different tests until it computes a model that is invariant.
In other words, the algorithm converges to the optimal A∗ and B∗ matrices for
causal generalization. The controller continues the training process until it is
successful in controlling the task with new initial conditions and new control
input trajectories it has never seen over training process.

5 Experimental Evaluation

For evaluation of the proposed method, two dynamical tasks were created in the
same simulated environment: the Rendezvous task including four mobile robots
on a two dimensional plane and a path following task. The causal structure of the
environment is thereby independent of the task. We will show in this section that
the same holds for the learned causal model. In the first test (Rendezvous task)
the robots (R1, ..., R4) have to meet at the same location in the x-y plane, using
the learned causal model. In the second test, we evaluate the same causal model’s
prediction ability by assigning a single robot to follow a predefined circular path.
In both experiments, the robots are given novel control input trajectories and
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initial locations to test the model’s capability in dealing with covariate shift
problem. Each robot’s movement follows discrete linear equations of

x(t) := x(t− 1) + Tsu
x(t− 1) (16)

y(t) := y(t− 1) + Tsu
y(t− 1) (17)

where Ts is the sampling time. There exists 8 observables: x1...4 and y1...4 (lo-
cation of R1...4) There also exists 8 manipulables: u1...4

x and u1...4
y (velocity

of R1...4). Thus, we can augment all the equations into a single state-space
equation (in the form of equation 15) that shows the causal structure of the
task-environment as follows

X(t) := IX(t− 1) + ITSU(t− 1). (18)

where I is an 8*8 identity matrix, U = [u1
x, u1

y, ..., u4
x, u4

y] is the control
input vector, and X = [x1, y1, ..., x4, y4] is the state vector. Equation (18) simply
means that the current position of a robot is only caused by previous position
and previous velocity (applied control input) of that robot. In other words, the
movement of a robot has no causal influence on the movement of other robots. We
expect our algorithm to learn this invariant causal model while it intervenes on
variables. Before the controller starts its learning process, it estimates an initial
correlational model. The estimated model is A and B matrices of equation (11),
in which all matrix elements are correlated (e.g. x1 is correlated with x2, which
must not be the case, due to the fact that the movement of R1 is independent of
the movement of R2). Thus, the controller must perform causal interventions to
remove those non-direct-cause correlations from A and B matrices by replacing
zeros with relevant non-zero values, and eventually converge to causal A and B,
which both are identity matrices in this example.

5.1 Results

Using algorithm 1, the robots perform intervention 1 (equation 6) and interven-
tion 2 (equation 7) to discover the aforementioned causal structure. Detecting a
causal influence of an intervened variable - which could be either an observable or
a manipulable - on other observable variables is done by inspecting the distribu-
tion changes of trajectory of observables, through maximum mean discrepancy
(MMD) method proposed by [1]. If after an intervention, MMD of an observ-
able becomes zero, then there is no causal influence from intervened variable on
the observable, which makes the algorithm remove the related non-direct-cause
correlation from A and B matrices and update the matrices via grey-box mod-
eling method. The utilized grey box modeling is nonlinear least squares with
automatically chosen line search method. Eventually, when all non-direct-cause
correlations are removed and matrices are updated accordingly, the controller
ends up having an invariant causal model of the task that is generalizable to
different scenario/tasks. In other words, the learned causal model is successful
when it is tested not only by novel initial conditions and input trajectories, but
also by different tasks in the same environment. Figure (2, left) shows the Ren-
dezvous task, in which the robots move from novel locations (initial conditions)
to (x, y) = (0, 0), by a feedback controller that uses the obtained causal model.
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Fig. 1. Left: Performance of the four robots in performing the Rendezvous task, using
a learned causal model. The robots start from novel locations in the observation space
and reach (x, y) = (0, 0), showing successful transfer. Right: A comparison between
predictions of causal and correlational models for a single robot, showing the former’s
superiority; the robot uses both to trace a circular path.

As can be seen, the causal model enables the robots to achieve the goal of the
task in a scenario that was not experienced over training. Figure 1 (right) shows
a circular path followed by one of the robots via the same causal model that
was learned in experiment 1 and a correlational model that was learned in the
beginning of the training. The path requires a novel input trajectory and thus,
correlational model is considerably less capable of making correct predictions
compared to the causal one. The figure in the bottom shows squared prediction
errors of both models. To sum up, the experimental results show that the causal
model is a task-independent knowledge representation that is more transferable
to novel situations/tasks and can also solve the covariate shift problem.

6 Conclusions

We have proposed a causal learning and generalization method for dynamical
tasks. The algorithm performs causal interventions on observable and manip-
ulable variables, based on which it removes non-direct-cause correlations and
updates the controller’s model after every intervention. The results in different
dynamical tasks show that the algorithm enables the controller to learn a task-
independent causal model, which can be generalized to novel scenarios.
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