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Abstract. Without a concrete measure of the “complicatedness” of tasks
that artificial agents can reliably perform, assessing progress in Al is dif-
ficult. Only by providing evidence of progress towards more complicated
tasks can developers aiming for general machine intelligence (GMI) ascer-
tain their progress towards that goal. No such measure for this exists at
present. In this work we propose a new measure of the intricacy of tasks,
especially designed to describe their physical composition and makeup.
Our intricacy is a multi-dimensional measurement that depends purely
on objective physical properties of tasks and the environment in which
they are to be performed. From this task intricacy measure, a relation
to the knowledge of learners can allow calculation of the difficulty of a
particular task for a particular learner. The method is intended for both
narrow-Al and GMI-aspiring systems. Here we discuss some of the im-
plications of our intricacy measure and suggest ways in which it may be
used in AT research and system evaluation.
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1 Introduction

To better understand tasks and their role in research in general machine intel-
ligence (GMI), we have been deepening our understanding of tasks and envi-
ronments in the past few years, with an aim of developing a theory of tasks
(cf. [15,5]). This research has highlighted the requirement for proper analysis of
tasks, including an objective measurement of a task’s “complicatedness” or con-
volutedness. By this — and only by this — the difficulty of a particular task for a
particular learning controller could be calculated, assuming that the difficulty of
a task is a function of the task-environment (TE) and the controller performing
the task. In this paper we introduce such an objective measure, called the intri-
cacy of tasks, place it in the context of a causality-based task theory, and show
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the implications that such an intricacy measurement may have for progress in
Al and in particular, towards GMI.

Assuming there exist regularities in an agent’s task-environment — which is a
necessary requirement for any learning to be possible — these regularities can be
expressed in the form of causal mechanisms. From these we may derive different
measures of complexity? which can be used to calculate the level of intricacy
of the task-environment. In past work we have described different complexity
dimensions of tasks [14] and introduced an evaluation platform where these di-
mensions can be tuned by the analyst [7]. Our new approach to task intricacy is
based on — and compatible with — this prior work.

The paper is structured as follows: In the first section we will show related
work which indicates why such a measure of intricacy is of importance for Al
research. Then we continue with causal principles of tasks as used to determine
the level of intricacy of tasks. In the third section we place the intricacy measure
in the context of agents and learning, describing its impact on the difficulty of
tasks. Lastly we discuss the implications of this intricacy measure for Al, and
conclude by listing some future work to be done using intricacy as a guide for
better evaluation and Al system design.

2 Related Work

There exist different milestones in the history of artificial intelligence (AI) which
were thought to have a decisive role in the research towards human-like, general
machine intelligence (GMI). As the past has shown, most of these milestones did
not necessarily lead towards more general Al systems. Solutions to the problems
were rather more efficient and effective narrow Al systems. This discrepancy
between expectations and actual results points towards the conclusion that the
choosing of tasks for milestones might be flawed. The problem of choosing ap-
propriate tasks for progress evaluation has been described before [1,5,7,9, 14].
Each newly suggested milestone towards GMI systems can be argued against
due to, for example, restricted context (Lovelace Test 2.0 [12]), human-centered
approaches (e.g. Turing Test [17]), or too domain specific knowledge necessary
for it (e.g. General Game Playing; cf. [13]).

One of the major evaluation platforms used nowadays — the Arcade Learning
Environment (ALE) [4] — has been shown to have issues regarding the evalua-
tion of progress of AI. Martinez-Plumed and Hernandez-Orallo [10], for example,
showed that some of the games of ALE do not indicate any progress towards
better Al systems. This claim is supported by the findings of the developers
of ALE: a brute-force tree search algorithm outperformed state of the art re-
inforcement learning algorithms in some of the games [4]. We argue here that
the main reason for these problems is an insufficient understanding of the tasks
themselves to fully understand the implications of agents solving different tasks.
This coincides with the argument that tasks must be analyzed more thoroughly

4 With complexity we mean the intuitive concept as used in every-day language, not
the concept as used in computer science.
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to support progress in the field of AI [8,9,15]. The SAGE (Simulator for Au-
tonomy and Generality Evaluation) platform was developed particularly for this
purpose and has shown the advantages a deeper insight into the task’s complex-
ity dimensions can have for the evaluator [7]. But again, there currently does not
exist a measure of difficulty of the tasks presented to the agents and no measure
of change in difficulty, if complexity dimensions are adjusted.

3 Causal Principles of Tasks

The aim of general machine intelligence (GMI) research is to create systems
which are able to cope with highly complex worlds, like the physical world, and
to be able to do a multitude of (unrelated) tasks in these highly complex en-
vironments. For this regularities of the world must be learned and knowledge
about the environment accumulated. These regularities can be seen as ‘mecha-
nisms’, representing functions which determine the value of effect-variables by
using the values of cause variables. This knowledge of any learner is the result of
a composition process, pieced together incrementally from experience with the
world over time, accumulating in a semi-systematic way. This kind of learning is
a constraint on any autonomous learner that doesn’t have complete information
at birth. If an agent is to learn independently, without help from teachers or
some other source, its knowledge acquisition processes must be self-guided—it
must have a capacity for cumulative autonomous learning. Achieving goals in the
context of any phenomenon necessarily requires knowledge of causal relations,
in particular of the causal relations that relate manipulatable and observable
variables of the phenomenon to the goals of an assigned task. The existence of
any causal relations between relevant variables must either be known by a per-
forming agent or discovered by it in the process of performing a task.® These
causal-relational models therefore are at the center of any task description. The
intricacy measure introduced here relies specifically on these models using their
interconnections as a measure of the “complicatedness”.

Aside from the internal cause-effect-structures of the environment, the body
of the agent, including sensors and actuators, must be taken into account. The
noise that can take place when measuring/observing variables and interacting
on them needs to be modeled in the causal structure of the tasks. Therefore,
manipulatables and observables are treated differently to other internal vari-
ables of the environment. Variables which are theoretically measureable are the
causal parents to the actually observed variable, which is used as input to the
controller, and includes observation noise. Manipulatable variables of the envi-
ronment, on the other hand, are causal children of the controller’s chosen action
(again, including the noise of actuators).

5 For a more detailed description of our understanding of causal knowledge and its
implications see [3].
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From the causal connections between causes and effects — as in “A leads
to B” — causal relational models can be derived.® In the following sections we
adapt the notion of such causal relational models for the purpose of obtaining
an objective measure of a task’s “complicatedness” (complication) based on this
kind of models. This is the most fundamental assumption that we can make
about any task-environment in which learning is possible: The assumption of
the existence of causal relations—AFECR: Only then, prediction, planning, and
directed interventions are possible, and only then tasks can be executed at all.

3.1 Causal-Relational Models

Causal-relational models (CRMs) are representational construct for general learn-
ing. CRMs encode actionable information, in the sense that they can be used to
get things done (taking action with foreseeable results), predicting future states,
derive the causes of observed events, explain observed phenomena, and act as re-
creation of the causal relation [16]. The kind of models that we are talking about
are causal-relational bi-directional models, where by bi-directional is meant that
they can be used in forward-chaining to produce predictions of future states
and in backward-chaining to produce paths towards goals. By causal-relational
is meant that they encode procedural (causal) knowledge, where the left-hand
side (LHS) is a pattern representing the cause and the right-hand side (RHS)
is a pattern representing the effect. The CRMs represent a relation between
the two patterns such that we can forward- and backwardchain from causes to
effects and vice versa. Additionally there exists a separate set of the required
conditions under which the relation between LHS and RHS holds, thereby spec-
ifying in which situations a certain CRM is relevant. The RHS represents the
post-conditions of the LHS pattern. In forward-chaining, when the LHS pattern
is observed, a prediction based on the RHS can be generated by a process of
deduction. In backward-chaining, when the RHS pattern is observed and it is a
goal, a sub-goal based on the LHS can be generated. Sub-goals can be further
backward-chained until a manipulatable variable is reached. This way models
can be used to produce effective plans to achieve goals and help to analyze tasks
for their inner causal structures including manipulatables, observables, goals,
and sub-goals. Causal relational models are therefore ideal to be used as the
underlying principles of intricacy. They describe the task fully, and give insight
into what needs to be known by an agent to perform well in the task (i.e. observe
the environment, do correct planning, and take actions to achieve a goal).

3.2 Causal diagrams

A task can be described, from its designer’s perspective,” as weakly-connected
causal chains. When this is done, a task is reduced to a deterministic form

% While we take the non-axiomatic approach we still assume that the underlying en-
vironment follows certain rules, i.e. causal structures.

7 We assume that the “designer’s perspective” includes a complete access and overview
to a task’s full set of variables.
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Fig. 1. Three examples of different levels of intricacy for similar tasks. Goals are to
reach a certain X/Y position on a grid. The learning/performing agent can execute
actions of moving left /right or up/down. Colors in all tasks: Red: actions as executed by
the controller; Green: Observables as inputted to the controller (including observation
noise, if applicable); Blue: Goal variables; Grey: Other variables. Task 1.1: Task of
moving to a certain position in an open space; Task 1.2: Task of moving to a certain
position with walls which can be seen; Task 1.3: Task of moving to a certain position
with invisible walls. The level of intricacy rises from left to right. Colored arrows
indicate transitions of data between controller and environment

Fig. 2. Task 2: A more complex ex-
ample of a task represented using
causal-relational models. The goal
. —~ P _ is to reach a certain X/ Y posi-
(o fJ—> w J—> 8 —> x | x tion. The environment is contin-
— ~ N uous rather than a grid and the
agent has the control to either turn

VA T 1) on the spot or move forward,/ back-

(v )——————( v —{ v } ¥ . .

Ny N \__/ ward. Same color coding as in fig-
ure 1.

that can be represented by the bi-directional models, capturing the whole task’s
dynamics. Additionally, inaccuracy of actions and measurements must be taken
into account. Therefore, in this description of tasks, variables are not directly
observable or manipulatable but instead a noisy causal child or parent acts as
an observable or manipulatable, respectively. In figure 1 three similar tasks are
shown. The task is to move to a certain goal position inside a grid-world. Figure
2 shows the same goal in a continuous world where a learning/performing agent
can rotate on the spot or drive forward. Intuitively speaking, it is easy to describe
the “complicatedness” of these four tasks. With larger causal relational model-
networks this becomes a much harder problem. It is for this reason that we
propose our measurement, of intricacy.

4 Intricacy

We define the intricacy of a task as the measure of a task’s “complexity” based
purely on objective parameters. This way we can rank tasks by their intricacy
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and have an objective way to assess the progress of Al systems. Additionally,
our notion of intricacy gives other implications for the design of GMI-aspiring
systems. The definition and implications are presented in the following section.

4.1 Definition

Intricacy is an objective multi-dimensional measure consisting of the following
physically-based, measurable properties of a task (ordered by their weight on
the intricacy value):

1. The minimal number of causal-relational models needed to repre-
sent the relations of the causal structure related to the goal(s).
This minimal number of models is an objective measure which depends solely
on the particular specification of the task (inclusive of the controller’s body),
and captures all the relevant parts of the task proper, leaving out possibly un-
necessary details and relations that are superfluous for the task. This means
that, for example, tasks which contain superfluous variables and relations
have the same intricacy of the same task abridged of all superfluities. The
steps to obtain this minimal number of models entail the identification of
all the relevant causal chains, turning them into relational models and then
quantify them. This additionally means that a task’s intricacy is dependent
on the level of detail in which the task is performed.®

2. The number, length and type of mechanisms of causal chains that
affect observable variables on a causal path to at least one goal.
The three parameters of concern to this definition are (a) how many dis-
tinct causal chains there are, (b) how long are they in terms of number of
variables involved and, (c) the complexity of the functions that define the
mechanisms on these causal chains. As a measure for this dimension we sug-
gest the Vapnik-Chervonenkis dimensions [6] or the Rademacher complexity
[2], which includes the Vapnik-Chervonenkis dimension bound. (In the con-
text of statistical learning, the class of functions with a lower Rademacher
Complexity can be understood to be easier to learn.)

3. The number of hidden confounders influencing causal structures

related to the goal.
Other things being equal, hidden confounders should make the learning of
previously described relational models of causal structures much harder.
Therefore we include the number of unobservable variables influencing goal-
related causal structures and chains in our intricacy measurement.

Intuitively, the intricacy of a task is a measure of what physical mechanisms are in
place that need to be known by any intelligent being, whatever is its architecture,
knowledge or capabilities, to perform the task in the given environment (inclusive
of the controller’s body). The task’s intricacy is invariant on the initial values

& For further information on the level of detail see [3]. How knowledge representation
of the agent affects the intricacy by changing the level of detail is a problem that
still needs to be addressed.
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Task Relational Mdl. | Causal Mech. Confounders
1.1 2 2, linear 0
1.2 4 4, linear & non-linear 0
1.3 4 4, linear & non-linear 2
2 5 5, linear & non-linear 0

Table 1. The four different properties describing the intricacy of tasks for the given
task examples from figures 1 and 2. As expected the results show, that the task in
continuous space (Task 2) is the most, and the grid-task in an open space (Task 1.1)
is the least intricate.

of the task’s variables. From the definition of intricacy it follows that the higher
the intricacy, the lower the size of the solution space® and vice versa.

Coming back to figures 1 and 2 we can now argue the different levels of
intricacy of the four tasks (see table 1). For simple tasks as shown in the two
figures the level of intricacy is easy to determine intuitively. For more complex
tasks such a measure, however, becomes more important due to its implications
for the evaluation of Al systems.

To use this measure of intricacy for Al evaluation, or as a support in Al sys-
tem design, it needs to be connected to the learning agent. For this we introduce
the effective intricacy, which not only takes task features into account but also
connects the task to the experience of the learner.

4.2 Effective Intricacy

The effective intricacy of a task is an agent-dependent version of intricacy, as
defined above, where an agent’s previously acquired knowledge that it brings
to the task is taken into account. Effective intricacy is thus a measure of in-
tricacy minus any intricacy that is known by the agent, and thus made irrele-
vant to the computation of difficulty. It uses almost the same properties of the
task-environment as the intricacy measure. However, the effective intricacy only
depends on unknown (to the agent) properties.

1. The minimal number of unknown causal-relational models needed to
represent the causal relations related to the goal(s).

2. The number, length and type of unknown mechanisms of causal chains
that affect observable variables on a causal path to at least one goal.

3. The number of unknown, neither directly, nor indirectly (through causal
children) observable variables directly influencing the causal chain(s)
between manipulatables and goal variables.

4.3 Difficulty

While effective intricacy represents the physical aspects of a task that are rel-
evant to how difficult it may be for a particular agent, the difficulty of a task

9 For a more detailed view on the solution space of tasks see [15, 3].
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includes the agent’s ability to learn relational models. Additionally, the precision
of the agent’s transducers and available resources — including time and energy
— must be taken into account (especially if assuming the assumption of insuf-
ficient knowledge and resources (AIKR; [18])). Additive noise, for instance on
observations and actions, can make a task more difficult. When actuators do
not generate reliable interventions, or sensors reliable observations, the usage
of causal models becomes more unreliable, making accidental mistakes possible.
The difficulty D can therefore be expressed as the cross product of controller C
and task-environment TE: D = (C' x TE). Or more precisely the task’s intricacy
I, resources R, and transducer noise Ny: D = (C x I x R X Nr).

5 Learning & Performing

Aside from the possibilities an intricacy measure opens for Al evaluation, it also
brings strong implications for other areas of Al research including the learning
and doing of tasks, and the design of Al systems.

Learning a task. The process of learning a task can be thought of as the search
for relational models that can bring about a satisficing solution to the task.
This search for models is driven by looking for associations in observable vari-
ables, finding which of these associations is of causal nature and growing the
understanding of how each of these variables map onto the goal variables.

— By learning the causal structure of a task, a learner decreases the effective
intricacy, since that knowledge allows it to find effective ways of controlling
and achieving the goals. The more spurious associations are removed, the
more useful the causal-relational models and thus, the lower the effective
intricacy becomes.

— The importance of variables is revealed when the causal relations are dis-
covered. Reciprocally, detecting the important variables enables the learner
to find causal relations that are useful for performing a task and therefore
reduces the effective intricacy.

— If a learner discovers all causal relations in the state space (without taking
the importance of variables into account), changing the goals does not affect
the effective intricacy, since the learner is already aware of how to conduct
a new task within the same environment.

— When the learner is aware of the complete causal structure of a task, the
deadline of the task and the energy required to perform it become the decisive
measures for difficulty.

— When the learner knows all causal structures of the task-environment and
has sufficient available resources, the only remaining part of the computed
difficulty is the noise in the transducers.

Performing a task. A good controller of a system (performer of a task) is one
that already knows how to achieve the task under a range of environmental
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conditions. The agent’s performance on the task allows us to draw conclusions
on the effective intricacy, and the difficulty of the task.

— To a controller that performs a task perfectly repeatedly, the effective intri-
cacy is zero.

— The higher the effective intricacy of a task — or the lower the amount of
experience related to the task — the more difficult a task becomes to do,
other things being equal.

— If the effective intricacy is equal to the task’s intricacy an agent must rely
on random interactions until it has learned enough, reducing the effective
intricacy.

6 Conclusion

In this paper we introduced a new measurement to describe the “complicated-
ness” of tasks [3]. With our intricacy measure we are able to describe the effective
intricacy, producing a concrete definition of task difficulty in relation to GMI-
aspiring agents. We believe that through this measure, a more sophisticated
choice for tasks to evaluate and compare Al systems is possible.

While we have provided evidence for the usage of this intricacy measure there
still is work to be done to automatically calculate the intricacy of a wide variety
of different tasks to evaluate the scalability and applicability of our approach.
For this, the GMI aspiring system AERA (Autocatalytic Endogenous Reflective
Architecture) [11] could be adapted, as it already provides the ability to extract
causal relational models by interacting with the world. It could therefore be a
good starting point for automatic intricacy calculation of more complex tasks.
Another future idea would be to calculate the intricacy values of different tasks
of the Arcade Learning Environment (ALE) and compare the results with the
conclusions drawn by [10] using Item Response Theory (IRT) to determine the
usefulness of different ALE tasks for progress evaluation.

From there we hope to be able to draw a connection between the intricacy of
tasks, which an agent is able to solve, and the system’s generality. This would
provide researchers an additional measure of generality independent of the task-
environments used for evaluation.
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