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Implementation 
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8.

 

The Ymir architecture described in the last chapter has been imple-
mented in Common Lisp [Steele 1990] and its object-oriented exten-
sion, CLOS (Common Lisp Object System) [Lawless & Miller 1991,
Steele 1990, Keene 1989].  It allows for the desing of rules, modules
and control structures to create a character that can interact face-to-face
with a human.  This chapter details the implementation of the Òbare-
bonesÓ foundation for such character design: object classes, methods,
and other software constructs, as well as the hardware setup.  

 

8.1 Overview of Implementation

 

First we will give a short overview of the implementation and then go
into further detail, showing particular algorithms and examples of soft-
ware.

 

8.1.1 Simplifications

 

In this implementation of Ymir, which we will refer to as ÒAlphaÓ, sev-
eral simplifications have been made from the general model presented
in the last two chapters.  The main ones are:

 

1.

 

Dialogue automatically takes precedence over any other task the 
agent may be involved with.  

 

2.

 

Only two conversing parties are assumed (computer character 
and person).

 

3.

 

The dialogue is centered around a task where the computer 
character is the expert; the interaction is driven solely by the 
human.

Other smaller simplifications of the Ymir architecture will become
apparent as we get into the details of the implementation.

Thi  d   d i h F M k  4 0 2



 

Communicative Humanoids

 

112

 

Chapter 8.

 

8.1.2 Hardware Overview

 

Two computers are used for implementation Alpha: 

 

1.

 

A Digital Equipment Corporation 3000/300 runs most of Ymir: 
Reactive Layer, Process Control Layer and Knowledge Base).

 

2.

 

A Digital Equipment Corporation 5000/240 runs the Action 
Scheduler.

In addition, six peripheral computers are used for data collection and
graphics; these are presented in the next chapter.  (More detail on the
hardware and software used can be found in Appendix A2 on page 213.)

 

8.1.3 Software Overview

 

The main elements of Ymir are implemented in Lisp [Steele 1990].
Supporting software, such as graphics [Th�risson 1996, see Appendix
A1] and body tracking [Bers 1996], is implemented in C [Kernigan &
Ritchie 1988] and C++ [Stroustrup 1991].  

Perceptual and decision modules have been implemented as object
classes, using the features of CLOS.  Blackboards are simply lists of
sublistsÑeach sublist being a posting containing information on the
form 

 

[MSGS STATE TIMESTAMP]

 

, where 

 

STATE

 

 is either 

 

TRUE

 

 or

 

FALSE

 

, 

 

MSGS

 

 is the name of a message from the perceptual modules and

 

TIMESTAMP

 

 comes from a global clock, timed in centiseconds.  

Several types of decision modules in the RL and PCL have been imple-
mented (Figure 8-1).  Modules inherit characteristics from their super-
class and add some of their own.  Basic operators such as 

 

POST

 

 and

 

UPDATE

 

 are implemented as CLOS methods and specialized for each
object type.

Basic-
Dec-Mod

External- PCL-Ext-Dec-Mod

Internal-
RL-Ext-Dec-Mod
RL-Int-Dec-Mod

PCL-Spatial-

RL-Spatial-

FIGURE 8-1.  Types of behavior modules used in Ymir.  Each level of 
behavior module inherits characteristics from the ones above and adds 
some of its own.  (Dec-Mod = decision module.)  See text for details on each
type.

State-

PCL-Int-Dec-Mod

Dec-Mod

Dec-Mod

Dec-Mod
RL-Ext-Dec-Mod

CL-Dec-Mod

RL-State-Dec-Mod Dec-Mod

Dec-Mod

   Periodic RL-Ext-Per-Dec-Mod
RL-Int-Dec-Mod

PCL-State-Dec-Mod
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The Action Scheduler in Ymir Alpha runs on its own UNIX machine
with a socket connection to the PCL.  A prioritizing scheduler on the
PCL side is used to ship out actions to the Action Scheduler.  The AS
uses an identical prioritizing scheme to send motor commands to the
animation system (animation system is described in Appendix A1 on
page 203).  The AS also has a scheme for selecting between behavior
morphologies and an interrupt feature which will allow it to provide out-
put even if it hasnÕt looked at all the possible morphologies for a partic-
ular behavior.  This happens if the expected lifetime of a behavior has
been reached (see ÒA Notation System for Face-to-Face Dialogue
EventsÓ on page 108).  

 

8.1.4 Top-Level Loop

 

Although Ymir is intended for a distributed implementation, the current
version runs the RL, PCL and the CL on the same processor.  Pseudo-
code for the top-level loop on this machine is shown in Algorithm 8-1,
along with processes next-level down.  LetÕs now take a closer look at
each of the layers.

 

8.2 Reactive Layer

 

The RL contains perceptual modules (Virtual Sensors and Multimodal
Descriptors) and Decision Modules.

 

8.2.1 Perceptual Modules

 

Perceptual modules have been implemented as a collection of Virtual
Sensors and Multimodal Descriptors, also refered to as a Logic Net,
because of their use of logic gates and Boolean output.  

 

Operators for Multimodal Descriptors 
and Virtual Sensors

 

Two operators are defined for Virtual Sensors, 

 

UPDATE

 

 and 

 

POST

 

.
The 

 

UPDATE

 

 operator simply feeds the module with the required data.
Each perceptual module has a destination for posting its state, 

 

msgs-
dest

 

.  Multimodal Descriptors have four operators: 

 

UPDATE

 

, 

 

POST

 

,

 

ACTIVATE

 

 and 

 

DEACTIVATE

 

.  If a module is 

 

ACTIVE

 

 and all condi-
tions in its pre-conditions are 

 

TRUE

 

 (these are 

 

AND

 

ed), then it is

 

POST

 

ed as 

 

TRUE

 

 to 

 

msgs-dest

 

.  When it becomes 

 

FALSE

 

 (one or more
of its conditions are 

 

FALSE

 

), it is 

 

POST

 

ed as 

 

FALSE

 

.  Decision Modules
in the Proces Control Layer determine when descriptors are 

 

ACTI-
VATE

 

d and 

 

DEACTIVATE

 

d.
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Virtual Sensors

 

Virtual Sensors consist of two elements: {1} a custom-made function
that pre-digests the data needed for the sensor, and {2} the module
itself, a CLOS object, with pointers to where to find the necessary data,
a pointer to the custom-made function which takes that data as argu-
ments, its own state (

 

TRUE

 

 or 

 

FALSE

 

), as well as a time stamp for when
the module was last 

 

POST

 

ed (Figure 8-2).    

The sensor classes implemented are:

 

1.

 

Body-sensor-with-fixed-reference

 

2.

 

Body-sensor-with-variable-reference

 

3.

 

Prosody-sensor

 

4.

 

Speech-sensor

TOP-LEVEL-LOOP
UPDATE {ALL SENSORS}
UPDATE {ALL ACTIVE DESCRIPTORS}
UPDATE {ALL ACTIVE RL DECISION MODULES}
UPDATE {ALL ACTIVE PCL DECISION MODULES}
SEND {ALL ACTION-REQUESTS IN *BEHAVIOR-REQUESTS*} 

TO ACTION SCHEDULER

UPDATE [SENSOR]
Evaluate-Raw-Input {SENSOR}
If {different (CURRENT-STATE {SENSOR})(LAST-STATE {SENSOR})}

then POST {SENSOR} TO FUNCTIONAL SKETCHBOARD

UPDATE [DESCRIPTOR]
Evaluate-Conditions {DESCRIPTOR}
If {different (CURRENT-STATE {DESCRIPTOR})(LAST-STATE {DESCRIPTOR})}

then POST {DESCRIPTOR} TO FUNCTIONAL SKETCHBOARD

UPDATE [RL-EXTERNAL-DECISION-MODULE]
Evaluate-Conditions {RL-EXT-DEC-MOD}
If {different (CURRENT-STATE {RL-EXT-DEC-MOD})(LAST-STATE {RL-EXT-DEC-MOD})}

then POST {EXT-RL-DEC-MOD} TO   *BEHAVIOR-REQUESTS*

UPDATE [PCL-EXTERNAL-DECISION-MODULE]
Evaluate-Conditions {PCL-EXT-DEC-MOD}
If {different (CURRENT-STATE {PCL-EXT-DEC-MOD})(LAST-STATE {PCL-EXT-DEC-MOD})}

then POST {DEC-MOD} TO   *BEHAVIOR-REQUESTS*

UPDATE [RL-INTERNAL-DECISION-MODULE]
Evaluate-Conditions {RL-INT-DEC-MOD}
If (different (CURRENT-STATE {RL-INT-DEC-MOD})(LAST-STATE {RL-INT-DEC-MOD}))

then EXECUTE {INTERNAL-ACTION {RL-INT-DEC-MOD}}

UPDATE [PCL-INTERNAL-DECISION-MODULE]
Evaluate-Conditions {PCL-INT-DEC-MOD}
If {different (CURRENT-STATE {PCL-INT-DEC-MOD})(LAST-STATE {PCL-INT-DEC-MOD})}

then EXECUTE {INTERNAL-ACTION {PCL-INT-DEC-MOD}}

ALGORITHM 8-1.  Top-level loop that handles all events in the 
Reactive, Process Control and Content layers.  Notice that this loop is a 
serial implementation of a largely parallel system.  *BEHAVIOR-
REQUESTS* contains all actions that should be sent to the Action 
Scheduler.  

(defclass body-sensor (var-ref)
((msgs :initform nil)
(func :initform nil)
(data1 :initform (vector 1 1 1))
(data2 :initform (vector 1 1 1))
(state :initform nil)))

FIGURE 8-2.  A body-sensor class.  
The content of its data slots will be 
refreshed in each call to UPDATE.



 

Ymir: An Implementation in LISP

 

115

 

A Computational Model of Psychosocial Dialogue Skills

 

Body sensors with a fixed reference track an object relative to a station-
ary object, such as the userÕs left hand in relation to the monitor.  Those
with variable reference track the relative spatial aspects of two objects
in relation to each other, e.g. the position of the left hand in relation to
the trunk.  As explained in the last chapter, prosody sensors track some
aspect of speech that has nothing to do with its propositional content,
such as speech-on-off, intonation, etc.; speech sensors are related to the
pragmatic and semantic aspects of speech.  We will see example  imple-
mentations of these sensor classes in the next chapter.

 

Multimodal Descriptors

 

Multimodal integration is handled by what can be thought of as a net of
first-order, Boolean logic gates (see ÒAppendix: Logic NetÓ on
page 126), which I will simply refer to as a logic net (LN, see last sec-
tion in this chapter).  The system uses a special syntax developed for
easy construction and modification (by the agent designer as well as the
run-time environment).  The basic element of this net is the Multimodal
Descriptor.

Only static descriptors have been implemented in Ymir Alpha.  The
descriptors have a set of positive and negative pre-conditions (Figure 8-
4).  Each condition has a value associated with it (Figure 8-5).  When
the descriptor is updated, each of the values for those conditions that are

 

TRUE

 

 are added up; if they add up to more than the descriptorÕs pre-set
threshold, the descriptor is set to 

 

TRUE

 

; otherwise it is 

 

FALSE

 

.    There
are two functionally distinct groups of descriptors, 

 

static

 

 and 

 

dynamic

 

.
Static descriptors simply respond to a static situation, whereas dynamic

FIGURE 8-3.  Virtual Sensors (circles) post their status on the 
Sketchboard, while Multimodal Descriptors read the Sketchboard to 
compute their own states, subsequently to be posted on the Sketchboard 
as well.  A large collection of sensors and descriptors makes up a Logic 
Net (LN).

(defclass mm-descriptor ()
((msgs :initform nil)
(pos-conds :initform Ô())
(neg-conds :initform Ô())
(state :initform nil)
(stamp :initform 0)
(active :initform T)
(thresh :initform 1)))

FIGURE 8-4.  The multimodal 
descriptor class.  The thresh slot 
contains a value that determines 
how many of the conditions in neg-
conds and pos-conds are needed to 
make the descriptor POST as TRUE 
to the blackboard.

FIGURE 8-5.  Examples of POS-
CONDS lists of two multimodal 
descriptors.  The first is a simple 
aggregator of two virtual sensors; 
the second is a heuristic for 
determining if the userÕs utterance is 
meant for the agent.  The 
conditionÕs score is added up and 
compared to the moduleÕs threshold 
to determine if the module is posted 
as true.

(looking-at-hands (pos-conds
(looking-at-r-hand 0.5)
(looking-at-l-hand 0.5))

(addressing-me (pos-conds
(turned-to-me 1.0)
(facing-me 1.0)
(facing-domain 1.0)))
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descriptors detect patterns over time intervals, such as a specific gaze
pattern or a combination of arm and eye movements for a given interval.
The operators 

 

UPDATE

 

, 

 

POST

 

, 

 

ACTIVATE

 

, 

 

DEACTIVATE

 

 are imple-
mented as CLOS methods.  To check a blackboard for a specific state
being 

 

TRUE

 

 or 

 

FALSE

 

, the operator 

 

Call-BB

 

 is used.  It takes a single
condition and returns 

 

TRUE

 

 if that condition was last posted as 

 

TRUE

 

,
and 

 

FALSE

 

 otherwise.

 

Communication via the Sketchboard 

 

The sensors and descriptors communicate with each other via the Func-
tional Sketchboard, where their states are 

 

POST

 

ed with a time stamp
every time they change.  The messages, contained in the 

 

MSGS

 

 slot of
the sensor or descriptor, its state (

 

TRUE

 

 or 

 

FALSE

 

) and a time stamp are
included (e.g. 

 

[ADDRESSING-ME T 35415]

 

).  The Sketchboard thus
accumulates a history of node states, which can be related to other time
stamped events in the system, such as turn state or words spoken.

 

8.2.2 Decision Modules

 

The general model of Decision Modules is this: Each Decision Module
has an associated intention and a condition list.  If the conditions
become true, the intention ÒfiresÓ.  In terms of Ymir, this means that it
either results in some internal process running or some outward behav-
ior being executed.  A module can be 

 

ACTIVE

 

 or 

 

INACTIVE

 

.  If it is

 

ACTIVE

 

, it will fire when the conditions are met; if it is 

 

INACTIVE

 

 it can-
not fire.

 

Operators for Decision Modules

 

Four decision module operators are defined: 

 

UPDATE

 

, 

 

POST

 

, 

 

ACTI-
VATE

 

, and 

 

DEACTIVATE

 

.  

 

UPDATE

 

 supplies a module with access to
all data it needs to make its decision.  If a module is 

 

ACTIVE

 

 and its state
is 

 

TRUE

 

 (i.e. all conditions in its 

 

FIRE-CONDS

 

 lists are metÑthese are

 

AND

 

ed), then its messages is 

 

POST

 

ed to 

 

msgs-dest

 

 and the module
subsequently 

 

DEACTIVATE

 

d, and its 

 

STATE

 

 reset to 

 

FALSE

 

.  If the mod-
ule is

 

 

 

INACTIVE

 

, the conditions in its reset lists (

 

POS-RESTR-CONDS

 

 and

 

NEG-RESTR-CONDS

 

) are checked, and, if all of them are met (these are
also 

 

AND

 

ed), the module is 

 

ACTIVATE

 

d.

 

Decision Module Structure

 

Decision Modules have been implemented as CLOS classes.  Special-
izations for decision modules are (Figure 8-1): 

 

1.

 

Internal Decision Modules

 

2.

 

External Decision Modules

 

3.

 

State Decision Modules

(defclass basic-dec-mod ()
((msgs :initform nil)
(state :initform nil)
(active :initform nil)
(el :initform 100)
(stamp :initform 0)
(pos-conds :initform Ô())
(neg-conds :intiform Ô())
(pos-restr-conds :initform Ô())
(neg-restr-conds :initform Ô())
))

FIGURE 8-6.  The decision-module 
class.  (See also  Figure 8-1.)  
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4.

 

Periodic Decision Modules

Each decision module is associated with one intention (

 

I

 

), whose name
is kept in the 

 

MSGS

 

 slot (Figure 8-6).  A module has a 

 

STATE

 

 slot that
shows whether it has been fired or not, i.e. whether all the conditions in
the 

 

POS-CONDS

 

 and 

 

NEG-CONDS

 

 lists have been met simultaneously.  If
they have, the moduleÕs 

 

STATE

 

 is set to 

 

TRUE

 

.  In this state, the module
is not executableÑthe conditions in 

 

POS-RESTR-CONDS

 

 and 

 

NEG-
RESTR-CONDS LISTS

 

 determine whether we restore the moduleÕs state
to executable (Figure 8-6).

The following general model captures the design philosophy of the deci-
sion modules:  A module can have four boolean states: 

 

ACTIVE

 

 or 

 

INAC-
TIVE

 

 (mutually exclusive), and 

 

TRUE

 

 or 

 

FALSE

 

 (also mutually
exclusive).  It has seven slots: [1] 

 

POS-FIRE-CONDS

 

 and [2] 

 

NEG-FIRE-
CONDS

 

, two lists of conditions that, when all conditions in the first are

 

TRUE

 

 and those in the second 

 

FALSE

 

, will make the module fire (turn its
own state to 

 

TRUE

 

), [3] 

 

POS-RESET-CONDS

 

 and [4] 

 

NEG-RESET-CONDS

 

,
two lists of conditions that, when all conditions in [3] are 

 

TRUE

 

 and all
in [4] are 

 

FALSE

 

 will make the module active, [5] 

 

STATE

 

, containing the
state of the module (either 

 

TRUE

 

 or 

 

FALSE

 

), [6] 

 

MSGS

 

, containing the
message that is posted when the module changes state, and [7] 

 

MSGS-
DEST

 

, containing a pointer to 

 

msgs-dest

 

, the destination for its mes-
sages (either a blackboard or the Action Scheduler).  

To deal with unpredictable time delays from the time when a decision is
made to execute an act until it reaches its final stage of being sent to the
ÒmusclesÓ, the Action Scheduler uses an actionÕs expected lifetime
(

 

A

 

el

 

).  This time-out specifies the total time the behavior can stay in the
system before reaching the motors (or muscles).  

Time stamping is performed whenever a moduleÕs action is 

 

POST

 

ed,
and can be used by any of the other decision modules for activating
behaviors based on the age of messages reported on the blackboard.
The operator 

 

Call-BB-Time

 

 gives the last posting time for a given
module, and can be put in any of a decision moduleÕs condition lists.

 

Periodic Decision Modules

 

Periodic modules simply 

 

POST

 

 their 

 

MSGS

 

 at a fixed frequency when-
ever their conditions are met.  This is useful for recurring behaviors
such as blinking.

 

1

 

  One could, for example, define conditions that
Òmake the character sleepyÓ, and during these conditions it blinks at a
slower frequency than when engaged in conversation.
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Internal and External Decision Modules

 

External behaviors 

 

POST

 

 messages to a buffer, subsequently to be
shipped to the Action Scheduler; internal behaviors execute various
internal-acting procedures that are run inside the top-level loop (see
above).  Behaviors on the action request list are therefore visible
actions; internal ones are invisible to the user.  

External modules contain the name of a behavior in their 

 

MSGS

 

 slot,
which gets put on a 

 

*BEHAVIOR-REQUESTS*

 

 cue list and sent to the
Action Scheduler.  The fact that these are all of type reactive makes
their priority in the Action Scheduler (and on the cue list for getting
shipped to the AS) the highest.

Internal modules contain a 

 

function

 

 name in their 

 

MSGS

 

 slot; when the
module is

 

 POST

 

ed this function is 

 

Funcall

 

ed.  This is implemented by
using two separate methods for the 

 

UPDATE

 

 operator, which take each
kind of module.  

 

State Decision Modules

 

A problem with the above modules is that they canÕt cause internal con-
ditions as a function of being in a particular state.  This would be useful
for conditions that are mutually exclusive, such as 

 

Dialogue-On

 

/

 

Dia-
logue-Off

 

, yet come with different requirements for perceptual activi-
ties and sub-processes.  To solve this, state decision modules are made
for keeping track of things such as dialogue state, turn state, etc., and
switching on and off the right kinds of perceptual processing.  They can
be thought of the transition rules in an ATN (augmented transition net-
work) with the difference that they can lead to more than one new state
(Figure 8-6).  To take an example, the module 

 

Dialogue-Off

 

 can be
made to transition to two states, 

 

Dialogue-On 

 

and 

 

User-Has-Turn

 

.
State modules switch multimodal descriptors between being 

 

ACTIVE

 

and 

 

 INACTIVE

 

 (the ones that are to be active during the state are stored
in a list in the 

 

ACTIVE-MM-DESCR

 

 slot).  Since not all descriptors should
be 

 

ACTIVE

 

 during all states, this provides a mechanism for a sort of
Ònarrowing of attentionÓ for the agent, as well as freeing up processor
cycle time. 

 

1. A more intelligent solution to controlling blinking  is representing the mois-
ture of its eyes with an evaporation constant and a decision module that reads 
this simulated moisture and decides to blink when it goes below a certain 
threshold.  This would also be more in keeping with the philosophy of the 
whole system, the Òevent-drivenÓ model of control, but is not necessary for 
the purposes of communicative dialogue.

(defclass state-dec-mod 
(basic-dec-mod)

((next :initform Ô())
(active-mm-descrs :initform Ô())
))

FIGURE 8-7.  The state 
specialization of the basic decision 
module.  
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8.3 Process Control Layer

 

The PCL is for the most part identical to the Reactive Layer, except that
no special perceptual processes are implemented at this level.  Interest-
ing future candidates for advanced perceptual processes would be ones
that monitor the performance of groups of decision modules and, in con-
junction with other decision modules, can modify the ones that donÕt
perform well.  Such systems have been called B-Brains [Minsky 1985].

 

8.3.1 Decision Modules

 

Decision modules in the PCL are the same types as those in the Reactive
Layer.  The only difference is that these can look for conditions in both
the Functional Sketchboard and the Content Blackboard.  

 

8.3.2 Communication via the Content Blackboard

 

In the current implementation, messages from the PCL to the CL and
from the CL to the PCL are posted to the Content Blackboard.  Cur-
rently the Content Layer posts more messages to the PCL than vice
versa (Figure 8-8).  As we established in the last chapter, the PCL posts
messages to the Content Layer about the status of the interaction. These
are messages about the turn status, for example: A short utterance would
be more likely to be a back channel if the agent was speakingÑthis
knowledge could be used in real-time by the CL by weighting the
vocabulary toward back channel feedback utterances, thus increasing
the probability of correct recognition.  Such a setup has not been tested
yet in Ymir, but is being investigated.  

 

8.4 Content Layer

 

The Content Layer contains what can be thought of as a combined DKB
and TKB.  No experiments have yet been done with multiple knowledge
bases or multiple topics.  The Content Blackboard, which is used by the
CL and the PCL, was discussed above.

 

8.4.1 Dialogue Knowledge Base

 

A very minimal knowledge for interaction has been implemented.  It
only contains knowledge about greetings and good-byes.  Its small size
made it simplest to integrate directly with a topic knowledge base in the
case of Gandalf.  GandalfÕs topic knowledge (section 9.1, page 105),

FROM KB TO PCL
Rcv-Speech

Speech-Data-Avail
KB-Succ-Parse
KB-Exec-Act
CL-Act-Avail
KB-Exec-Act

TKB-Act-Avail
TKB-Exec-Speech-Act
TKB-Exec-World-Act

DKB-Exec-Act
Exec-Done

FIGURE 8-8.  A basic set of 
communication primitives between 
the Process Control Layer and a 
Topic Knowledge Base.  

Rcv = received, Act =  action; Exec 
=executing; succ = succsessful.
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revolves around simple facts about the solar system, such as how big
planets are, how many moons they have, etc.  It will be described in the
next chapter.

 

8.4.2 The Topic Knowledge Base

 

The outcome of any interpretation-response generated by a TBK is sent
directly to the virtual world (initiated by decision modules in the PCL),
without going through the agentÕs motor mechanisms.  This makes it
very easy to accommodate multiple knowledge bases for diverse virtual
environments (e-mail, graphics, audio, movie clips, etc.) without having
to encode these skills in terms of complex end-effector actions such as
would be the case if we wanted an all-purpose physical robot

Communication between the TKB and the PCL is handled with a set of
pre-determined communication primitives (Figure 8-8) as mentioned
above.

 

8.5 Action Scheduler

 

The AS keeps track of the facial state and uses knowledge about which
layer initiated the action request, as well as the age of the action request,
to compose a viable motor scheme for satisfying it.  The process of
going from a high-level ÒintentionÓ to an actual motor act is called
ÒmorphingÓ for lack of a better term.  Because there is no feedback
mechanism between the AS and the decision making layers in the cur-
rent implementation, feedback about the decisionÕs success has to be
gotten by sensing the state of the user.  This scheme seems to work well
with very simple knowledge bases, but will probably break down for
more complex characters.

 

8.5.1 Behaviors 

 

  

 

 

 

Behaviors are implemented as CLOS objects (Figure 8-9).  When
designed, a list of these is created in a general format (Figure 8-10 on
page 123), and a make function then called on the list.  We refer to the

(defclass behavior ()
  ((name   :accessor name   :initarg :name   :initform nil)
   (acts   :accessor acts   :initarg :acts   :initform nil)
   (delay  :accessor delay  :initarg :delay  :initform 0)
   (execution-time :accessor exec-time  :initform nil)))

FIGURE 8-9.  The generic behavior class.
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collection of behaviors generated as CLOS objects as the agentÕs 

 

Behav-
ior Lexicon 

 

(Figure 8-10).  

Behaviors in Ymir Alpha are of two kinds:

 

1.

 

act

 

 behaviors and 

 

2.

 

 

 

mot-lev

 

 behaviors.

The former contain leaf nodes, i.e. motors, to be moved for generating a
particular behavior.  These have a direct mapping to a particular motor
configuration (dynamic or static), e.g. a facial expression.  The latter are
abstractions of behaviors that generally have more than one way to be
realized.  Together, these form a tree.  A behavior that subsumes a 

 

mot-

lev

 

 behavior is always one level above the leaves of the tree.

Behavior modules above the motor-level (i.e. 

 

act

 

) have a [1] 

 

NAME

 

,
and [2] 

 

OPTIONS

 

Ña list of behaviors that can be used in morphing the
behavior; each option is a list of behaviors, which is a list of the form
[

 

NAME, EXEC-TIME, DEALY], 

 

where

 

 NAME

 

 is the behaviorÕs name,

 

EXEC-TIME

 

 is the execution time for that behavior, and 

 

DELAY

 

 is a time-
delay that offsets this behaviorÕs execution from the execution of the
behavior that subsumes it.    

Each 

 

mot-lev

 

 action has a [1] 

 

NAME

 

Ñthe behaviorÕs unique name, [2]

 

MOTOR-LIST

 

Ña list of the motors involved.  Each motor in this list
contains [1] 

 

MOTOR-NAME

 

Ñthe motorÕs unique name, [2] 

 

EXEC-
TIME

 

Ñits default execution time, and [3] 

 

REL-POS

 

Ñthe motorÕs goal
position, relative to its range of motion.  

 

act

 

 behaviors can contain replacement execution times for the behav-
iors they subsume.  Thus, when the behavior 

 

eyes-neutral

 

 is executed
as part of the higher-up behavior 

 

face-neutral

 

, it takes 400 ms for the
motors to get to their final position, but when 

 

eyes-neutral

 

 is called
directly it takes 100 ms.  When the execution times differ for each
motor, the longest motor would take the 

 

max

 

 execution time (400 ms in
the example above), while the others would be a percentage of that.
Using this scheme, a behaviorÕs 

 

EXEC-TIME

 

 could be recalculated when
composing a final action, e.g. in light of time-constraints, but this fea-
ture has not been implemented.

 

8.5.2 Behavior Requests

 

In Ymir Alpha, behavior requests are received in the Action Scheduler
over a socket connection.  They are put on a buffer, 

 

*PENDING*

 

2

 

, where

 

2. This buffer has the corresponding 

 

*BEHAVIOR-REQUESTS*

 

 output  buffer 
on the PCL side.
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they  are serviced based on whoÑRL, PCL or CLÑcreated the request
(Algorithm 8-2).  The algorithm simply services all RL requests until
there are none left, then it executes one PCL request, if there is one.  If
there are no RL or PCL requests to execute, it executes a content-related
(CL) request.

Requests are received in the form  

 

[ACTION-NAME TIME-STAMP
EXPECTED-LIFETIME WHO]

 

, where 

 

WHO

 

 is one of RL, PCL or CL.  If
the expected lifetime has been reached, and no 

 

mot-lev

 

 behavior has
been found for it yet, the action is cancelled: 

 

Cancel

 

 {A} IF (TIME-NOW > TIME-STAMP

 

A

 

 + EL

 

A

 

).

 

{8.1}

 

No feedback is sent back to the originator of the action whether this
action was executed or not.  This information is expected to flow back
through the virtual sensors as a particular reaction of the user to the lack
of behavior.  Since there is a tight loop of functional analysis going in to
the agent, any problem in the global aspects of dialogue should show up
there instantaneously and a new action would be triggered.

 

3

 

  Thus, the
need for complex book-keeping protocols 

 

within

 

 the systemÑas
opposed to through the 

 

outer

 

 feedback loop by way of the effect the
agentÕs behavior has on the userÕs behaviorÑshould be diminished, if
not eliminated.

 

8.5.3 Generating Behavior Morphologies

 

 

 

When a behavior request is selected to be executed, its name is looked
up in the Behavior Lexicon (Figure 8-10).  The AS will look at the
options available for an action and select one that interferes the least
with the ongoing actions of the agentÕs communicative features such as
brows, gaze, hands, mouth, etc.  This recursive algorithm works as fol-
lows:  First it checks in the lexicon if the behavior to be morphed has
more than one option.  If it has, it takes the first option and goes down
one level, again checking for options.  Once it reaches the leaves, it pops
back up and finds the leaves (motors) for the next option.  When it has
found motor actions for two options, it selects.  If there are more options
for the current level, it repeats this until the best one is left.  Then it pops
up one more level and continues.

This process can only be terminated after at least one option has been
traced down to the leaves.  It terminates under two conditions: {1} if
there are no more options to select between, and {2} if the expected life-
time of the action has been exceeded.  The latter is checked every time a

 

3. By designing cascaded decision modules for reactive behaviors, failures in 
the interaction are met with Òpre-compiledÓ reactions.  See ÒCreating Behav-
ior Classes with Cascaded Decision ModulesÓ on page 104.

(defun prioritize-incoming (PEND)
 (let* ((return nil)

(RL        1)
(layer    RL)
(satisfied nil))

  (loop while (not satisfied) do
  (dolist (act PEND)

  (if (eq (second act) layer)
      (setf satisfied t

    return act)))
  (setf layer (1+ layer)))
  (setf PEND 

(remove return PEND))
  return))

ALGORITHM 8-2.  Lisp-code for 
scheduling actions in the Action 
Scheduler.   The procedure 
prioritise-incoming  receives 
the  *PENDING* list,  returns an act 
to work on,   prioritized by the 
system that initiated it.
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selection between two options has been performed.  Upon termination,
the leaves (motors commands) get sent to the animation unit, and the
character behaves. 

 

8.5.4 Motor Control in the Action Scheduler 

 

The animation unit can be thought of as the characterÕs muscles: it
makes sure that the behavior takes the time it is supposed to take, as
defined in the 

 

EXEC-TIME

 

.  Normally all motor specifications of a
behavior get sent to the animation unit at the same time.  An example of
such a behavior is the behavior 

 

Smile

 

: corners of the mouth are moved
upward and outward, while the lower eyelids are moved slightly up
from their resting position, all at once.  For sequential actions, certain
motor commands may have to wait for others to finish.  The 

 

DELAY

 

 of a

(setf *Behavior-Lexicon*
  ;ACT TEMPLATE:  

;(name class (((act-name-of-option-1 delay exec-time)
; (act-name delay exec-time) etc*) 

  ;              (etc*)))
  ;MOTOR TEMPLATE:  

;(motor-name class delay exec-time pos/data)
   '(
     ; MORPHOLOGICAL DEFINITIONS
   ;Features
  ;neutral

(face-neutral act 
(((mouth-neutral 100 400)

    (eyes-neutral 0 300)
    (brows-neutral 0 500))))

     (brows-neutral act 
(((left-brow-neutral 0 400)

(right-brow-neutral 0 400))))
(left-brow-neutral mot-lev 

(((Bll 0 400 30)
     (Blc 0 400 30)    ;Brow, left, central
     (Blm 0 400 30)))) ;Brow, left, medial

(right-brow-neutral mot-lev 
(((Brm 0 400 30)

     (Brc 0 400 30)
     (Brl 0 400 30))))

(eyes-neutral act 
(((upper-lids-neutral 0 100)

     (lower-lids-neutral 0 100))))
. . . . 

FIGURE 8-10.  A short segment of the behavior lexicon for Gandalf (see 
next chapter).  Behaviors that are above the leafs are marked as ÒactÓ; 
behaviors that contain only motor commands are marked Òmot-levÓ.  
(Figure 8-11 shows the names of the facial motors.)  A  list like *Behavior-
Lexicon* is given as an argument to a function that automatically creates 
CLOS behavior objects.   (A full listing of GandalfÕs behavior modules is 
given on page 153.)

FIGURE 8-11.  Movable control 
pointsÑor motorsÑare coded as 
shown: Bll = brow, left, lateral; Blc = 
brow, left, central; Blm = brow, left, 
medial; Elu = eye, left, upper; Ell = 
eye, left, lower; Pl = pupil, left; Ml = 
mouth, left; Mr = mouth, right; Mb 
= mouth, bottom.  Brow, pupil and 
eye are mirrored on the right side of 
the face.  Head motion is coded as 
H.  All motors are referenced with 
an absolute position from 0 to 100.  
Motors with two degrees of 
freedom are addressed by either h 
or v, for horizontal and vertical 
motion, respectively.  All motors 
can be addressed and run in 
parallel.  (See ÒCharacter 
AnimationÓ on page 203.)

Brl Brc Brm Blm Blc Bll

Eru Elu

Erl Ell

Pr Pl

MlMr

Mb
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motor determines how long after the whole action started it should begin
execution.  An example of a behavior that uses this feature is the behav-
ior 

 

Blink

 

:  first the eye is closed, then opened.  

 

Speech

 

Just as motor commands are ballistic once they leave the AS, speech
leaving the AS is also ballistic.  It is therefore important that the speech
is segmented correctly to allow for cancellations in case the user inter-
rupts the agent.  Currently, this is done at natural boundaries larger than
the word but shorter than the sentence.  Noun phrases, verb phrases and
fillers are all sub-components that give useful (albeit not 

 

always

 

 appro-
priate) boundaries.  How the AS controls the incremental execution of
long actions, and what its communication with the Topic Knowledge
Bases would be remains an issue of further research.

 

8.5.5 Motor Programs: Animation Unit

 

The animation unit provides the agent with muscles.  It receives com-
mands from Action Scheduler in the form

 

 [MOTOR, POSITION, TIME]

 

,
where motor is the motor to move, position is the new (absolute) posi-
tion it should move to and time is the absolute time it should take to get
there.  The commands received by this unit are ballistic (except for man-
ual gestureÑsee below).

 

Manual Gesture Control

 

The ideal way to animate a hand would make use of a representation of
the hand that incorporated motors in all finger joints, as well as those of
the arm.  This is in fact a serious research area in the robotics industry,
gesture recognition and gesture generation [Cassell et al. 1994, Wexelb-
latt 1994, Sparrell 1993, Cutkosky 1992] and will not be dealt with here
in any depth.  The problem is simplified in Ymir Alpha by representing
separately the handÕs 

 

position

 

 and 

 

shape

 

, and by giving the hand two
states, 

 

at-rest

 

 and 

 

active

 

.  Whenever the animation module receives a
command for a manual gesture it will execute the given type of gesture
for the requested time period, after which it moves it back to its 

 

at-rest

 

position.

 

4

 

  

The gestures also have some controllable parameters, such as a 

 

pitch

 

and 

 

yaw

 

 for deictic gestures, and 

 

duration

 

 for beat gestures.  Gestural
interruptability has been implemented: If a gesture is executing when a
new hand gesture command arrives, the current action will be cancelled,
and the new command will take over.  The shape of the hand is interpo-

 

4. Thanks to Hannes Vilhj�lmsson for his contributions to and implementation 
of the hand and the gesturing mechanism.
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lated from its current state to the shape associated with the first position
in the new gesture, while the hand is moved linearly from its current
position to the first position of the new command.  This scheme works
surprisingly well considering its simplicity.  (See also  ÒCharacter Ani-
mationÓ on page 203.)
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8.6 Appendix: Logic Net

 

8.6.1 Syntax

 

As mentioned above, the logic of the virtual sensors and multimodal
descriptors are implemented in a custom-designed syntax.  Figure 8-1
shows how common logic gates can be built from this syntax.  The
advantages to this syntax, as opposed to for example using the logical
operands of Lisp, are mainly related to ease of manipulation, by the
developer and the run-time system itself.  Possible future enhancements
that are facilitated by the approach are: 

 

1.

 

Weights could be used to change thresholds of both condition 
lists and nodes at run-time.

TABLE 8-1.  Common logic gates and their 
equivalents in Logic Net Syntax.  Values of the 
conditions are added; threshold is assumed to be 1.0.

LOGIC
GATE

TRUTH
TABLE

LOGIC NET 
SYNTAX

AND

A B |OUT
L L | L
L H | L
H L | L
H H | H

POS[A 0.5][B 0.5]

NEG[]

NAND

A B |OUT
L L | H
L H | H
H L | H
H H | L

POS[]

NEG[A 1.0][B 1.0]

OR

A B |OUT
L L | L
L H | H
H L | H
H H | H

POS[A 1.0][B 1.0]

NEG[]

NOR

A B |OUT
L L | H
L H | L
H L | L
H H | L

POS[]

NEG[A 0.5][B 0.5]

XOR

A B |OUT
L L | L
L H | H
H L | H
H H | L

POS[A 0.6][B 0.6]

NEG[A 0.4][B 0.4]

POS[D1 0.4]

NEG[A 0.6][B 0.6]

XNOR

A B |OUT
L L | H
L H | L
H L | L
H H | H

POS[A 0.6][B 0.6]

NEG[A 0.4][B 0.4]

POS[A 0.6][B 0.6]

NEG[D1 0.4]

} D1

} D1
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2. Continuous-value sensors and descriptors could be integrated 
more easily, while the Boolean nature of the network could 
still be preserved at the highest descriptor level.

3. It is easier to implement a learning mechanism for number-
based logic gates.

4. Time-based descriptors can more easily be added.

8.6.2 Logic Net: Any Alternatives? 

A choice was made to use a custom-designed logic net (LN) as the
backbone of the perceptual system.  Other contenders for the task of the
logic net include fuzzy logic [Kacprzyk 1992] and Fuzzy Cognitive
Maps (FCMs) [Dickerson & Kosko 1994].  LNs do not make use of
membership functions like fuzzy logic, or graded feature vectors like
FCMs, and are therefore simpler to develop and modify.  Whether LNs
are a sufficiently powerful mechanism for extracting functional aspects
of dialogue is an empirical question beyond the scope of this thesis, and
will hopefully be settled in future psychological research.  One impor-
tant advantage of using Boolean nodes at the sensory stage is that we
can use the states of the modules to track the history of the functional
interpretive process: Each time a sensor or descriptor node changes, its
state is posted to a blackboard where the other nodes can subsequently
read its current state.  This allows us to track the progress  and path of a
particular interaction sequence, as well as to summarize and store the
history for future reference.  These are key elements in allowing the sys-
tem to learn over time and to allow the user or the agent to reference
past dialogue events.  With a continuous (non-Boolean) system, where
features are detected to a certain degree and cannot be treated as crisp
events that either happen or not happen, post-analysis of internal history
becomes problematic, or at least much more complex.5

Another advantage of this approach is the possibility of a parallel imple-
mentation.  Since the nodes are modeled as objects that communicate
asynchronously via a common blackboard, parallel implementation
could speed up the execution of the system and increase reliability of
overall system performance, as well as make more complex sensors and
descriptors a viable option, all without slowing computation.

A third advantage is the ease with which new sensors and descriptors
can be developed and added without disrupting the ones that are already
in place.  But first and foremost, it is fast.

5. An interesting question here is how we remember events to have either 
occurred or not occurredÑis a vague memory of an event an indication that 
continuous-scale memory indices are at work?
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