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ABSTRACT  
Design problems involve issues of stylistic preference and 
flexible standards of success; human designers often 
proceed by intuition and are unaware of following any strict 
rule-based procedures. These features make design tasks 
especially difficult to automate. Adaptation is proposed as a 
means to overcome these challenges. We describe a system 
that applies an adaptive algorithm to automated user 
interface design within the framework of the MOBI-D 
(Model-Based Interface Designer) interface development 
environment. Preliminary experiments indicate that 
adaptation improves the performance of the automated user 
interface design system.  

Keywords 
Model-based interface development, machine learning, 
decision trees, theory refinement, user interface 
development tools, interface models, theory refinement 

INTRODUCTION 
Design is a human ability that eludes formalization. Human 
designers are often not aware of following strict rule-based 
procedures when they make design decisions. Moreover, 
design decisions often cannot be evaluated on any kind of 
objective scale of utility. Two qualified human experts may 
make strikingly different decisions, and still there may be 
no way to identify one expert's decision as unambiguously 
"correct." Even though it is clear that in such a case neither 
expert is wrong, it is also clear that not just any decision 
would do. Although there may be more than one right 
answer to a design problem, there are still wrong answers. It 
is this condition that makes design a creative task, and this 
is why design proves so challenging for computer 
automation. 

We are specifically interested in automating particular 
features of user interface design. Previous work in the 
automation of user interface design has had mixed success. 

Researchers have developed systems that are effective for 
narrowly focused domains including, for example, 
automatic generation of forms, or automatic generation of 
dialog boxes for database access [9, 3]. However, no 
technique has been shown to be applicable at a general 
level. We claim that adaptive, automated systems that 
solicit and respond to user feedback may be able to succeed 
where previous efforts have failed. 

An adaptive system for automated user interface design will 
benefit both designers and interface-design researchers. 
Designers will benefit in at least three ways: 

1. User-interface design software will adapt to 
accommodate their stylistic preferences. In the 
case of individual idiosyncrasies, designers can 
trust that the software will take their preferences 
into account. Where there are whole schools of 
thought on design—e.g., within a single software 
company—adapted versions of the interface 
design software can be distributed.  

2. Designers will find it easier to explain their 
stylistic preferences to others, since the adaptive 
algorithm will extract a formal description of that 
style.  

3. Technological developments in user-interface 
design can be accommodated by existing design 
software without the need for updates or patches. 
If, for example, a new user-interface widget is 
introduced, the automatic design algorithm can 
learn to handle it by observing the designer's 
behavior.  

Adaptation will also benefit researchers, who can discover 
new information about the way designers make decisions, 
by observing the results of using the adaptive algorithm. 
Errors in the automatic design formalism will be easily 
identified and corrected. Differences between schools of 
design will be made explicit. Researchers will discover 
what design knowledge is consensus and what is a matter of 
preference. In sum, adaptation will serve as a formal 

 

 

 

 



methodology that will help researchers to develop and 
refine general aspects of a theory of user interface design. 

SURF – OUR GUIDING PHILOSOPHY 
Our work is guided by four main principles which 
distinguish it from other forays into automatic user-
interface design. These principles are represented by the 
acronym "SURF." 

1. SENSITIVITY. It is important that the interface 
designer is aware that the adaptive algorithm is 
sensitive to what the designer is doing. The 
adaptive algorithm ought to respond to a minimum 
of feedback from the designer. This will make it 
easier for the designer to become familiar with the 
adaptive algorithm, and the designer will be more 
likely to trust the interface-design environment as 
a whole. If the adaptive algorithm is not 
sufficiently sensitive to user feedback, the designer 
will have a difficult time predicting the behavior of 
the adaptive algorithm, and may find it more 
cumbersome and confusing than useful. In terms of 
the learning algorithm we will employ, this 
consideration leads us to favor local learning 
methods over large-scale batch learning.  

2. UNDERSTANDABILITY. In any automated 
system where a symbiotic, cooperative relationship 
with the user is desired, it is important that the user 
of the system understands how and why automatic 
decisions are made. The automation algorithm that 
generates the user interface must be 
comprehensible to the interface designer, and the 
designer must be able to alter it explicitly and 
directly, if so desired. Symbolic methods are 
therefore favored over less user-comprehensible 
strategies, such as neural networks.  

3. REFINEMENT. In developing the adaptive 
algorithm, we favor theory refinement, rather than 
learning from scratch. There is no need for our 
adaptive algorithm to automatically build a 
knowledge base of automatic user interface design 
rules from the ground up. There already exists a 
large body of work on the automation of user 
interface design decisions. We have designed our 
adaptive algorithm to take full advantage of this 
body of work. This principle supports the principle 
of sensitivity because it is easier to build an 
adaptive system that is sensitive when given a head 
start in the form of an existing base of knowledge.  

4. FOCUS. We do not believe that at the present 
time it is reasonable to expect to move directly 
from an abstract description of a user interface to 
the automatic creation of the complete user 
interface. Rather, we want to apply automation 

only to those features of the design process where 
we think automation has something to offer. We 
have focused our work on the selection of 
interactors—visual elements, such as buttons or 
sliders, that allow the user to view or manipulate 
data. Our automation algorithm returns an ordered 
list of interactors; the interface designer then 
chooses from this list while performing layout. It is 
hoped that the number of design decisions that can 
be automated will increase with further research. 
For the present, the only way to build a system that 
is usable in real-world design projects is to focus 
on those areas of design that are particularly 
amenable to automation and leave other areas of 
design in human hands.  

In summary, we will describe an adaptive, automated 
system for user interface design that adheres to the 
principles of SURF. This system is part of a larger 
framework, which we will now describe. 

FRAMEWORK 
MOBI-D 
The adaptive algorithm described in this paper supplements 
MOBI-D, an existing model-based interface development 
environment [6]. Model-based systems for user interface 
development require the specification of a declarative 
interface model that explicitly describes all relevant aspects 
of the user interface in a formal language. MOBI-D then 
provides a comprehensive suite of tools to aid in the 
development and refinement of the interface model. 

A range of tools is provided in order to handle each stage in 
the interface development cycle. First, a knowledge 
elicitation system called U-TEL helps the user of the 
interface develop models of the interface's data and task 
structures [11]. Next, the interface designer uses model 
editors to create relations between the more abstract 
elements in the data and task structures and the more 
concrete elements that describe the actual look and feel of 
the interface. For the final stage of development, we 
provide MOBILE, a layout tool that can be configured to 
reflect the decisions made at previous stages in the design 
process. [7] 

Interface design is viewed theoretically as a process of 
creating mappings between various formal elements at 
different levels of abstraction. For example, an abstract task 
object may map on to abstract domain object that is 
manipulated when the user executes that task. But that same 
domain object may map on to a concrete interactor, such as 
a checkbox, through which the user actually performs the 
manipulation. TIMM, The Interface Model Mapper, is a 
tool within MOBI-D that assists designers in the generation 
of these mappings [8]. Some of these mappings—the 
principle of Focus forbids us from saying that “all”—can be 
made automatically. In this paper, we describe how TIMM 
automatically generates mappings between domain objects 



and concrete interactors, and how this automatic generation 
of mappings benefits from adaptation.   

Decision Trees 
In order to perform the automatic mappings, a decision tree 
is used. A decision tree defines a procedure for classifying 
cases into groups based on discriminants. Discriminants are 
features of the cases that may be relevant to how they are 
sorted. The decision tree specifies which discriminants to 
consider and in what order. Figure 1 gives a simplified 
example of a decision tree for interactor selection. 

Consider the following example. Suppose a hi-tech movie 
theater wanted to develop a system to recommend current 
films to prospective moviegoers. The first discriminant is 
the viewer's age; movies that have been rated 'R' are 
restricted to adults, and should not be recommended if the 
viewer is under 18. Likewise, children's movies are 
generally not to be recommended to viewers over the age of 
13. Now consider the group that falls between the two 
boundaries: viewers between the ages of 13 and 18. For this 
group, another discriminant is applied to determine whether 
or not the viewer is on a date (with a boyfriend or 
girlfriend). If so, then the selection is narrowed down to 
films that might be appropriate for a date, and then a third 
and final discriminant can be applied to determine the 
viewer's favorite actor or actress. By this method, the 
prospective moviegoer is classified into a viewer group 
with similar interests, and a short, customized list of 
recommendations is generated. 

A decision tree offers two significant advantages as a 
method for automation. First, decision trees are extremely 
readable: more so than knowledge-bases of rules, and 
certainly more so than other methods such as neural or 
Bayesian networks [14]. Rule-based systems are difficult to 
read because they are sensitive to the order in which the 
rules are applied. Often, one must analyze a whole series of 
rules in order to be able to predict the effect. Bayesian 
methods require the user to consider a large number of 
relevance values; again, it is difficult to predict the effect of 
changes to a large-scale Bayesian network. Neural networks 
offer little in the way of comprehensible justification for the 
effects they produce. By contrast, the structure of a decision 
tree makes it easy to predict its effects. The second 
advantage offered by decision trees is that there is already a 
body of work on applying decision trees to the automatic 
selection of interactors. Vanderdonckt has created a 
comprehensive decision tree based on interface-design 
guidelines given by a wide variety of sources [13]. By using 
decision trees, we are able to take advantage of this work. 

The decision tree in our movie example used certain 
discriminants, such as age and favorite actor, to classify 
moviegoers into consumer groups. In this application, 
domain elements—objects that the user of the interface will 
modify or view—are classified, and are assigned a set of 
possible interactors based on this classification. In essence, 
mappings are created between domain objects and 

interactors. We use the following discriminants for user 
interface design: 

1. Type. e.g. Boolean, integer, float.  Assigning an 
edit field to a domain element whose type is 
Boolean makes little sense, as it would require the 
user to manually type in "true" or "false." A 
Boolean element is best mapped to a check box or 
radio button.  

2. Number of Allowed Values. When there are only 
a few allowed values, an interactor such as a set of 
radio buttons may suffice. But when there are 
many allowed values, a list box is better. When 
there so many allowed values that even a list box 
cannot fit in the dialog window, a drop-list is used.  

3. Number of Sibling Domain Elements. This is a 
measure of how many other pieces of the domain 
model are likely to be modified on the same 
screen. When screen crowdedness may become an 
issue, the more space-efficient interactors are 
favored.  

4. Range. Information about whether a domain 
object is a range of continuous data or a set of 
discrete allowed values affects interactor selection. 
For example, a domain element that consists of a 
deep range of integers will be better handled by an 
edit field and spinner than by a list box of allowed 
values.  

5. Similarity of Near Values. If near values in the 
range are similar, then a slider might be helpful. 
But if near values bear no similarity—as is the 

 

Figure 1: A Simple Decision Tree for Interactor Selection 



Figure 2: The Adaptation Algorithm 

case in most strings, for example—then a text box 
would be the only reasonable choice.  

We claim that this set of discriminants, while clearly not 
exhaustive, is broad enough to support automation. 

THE ADAPTATION ALGORITHM 
TIMM is the tool in the MOBI-D suite that assists the 
interface designer in the selection of interactors [8]. The 
goal of automation is to produce an ordered list of 
recommendations for the interface designer. But the 
interface designer always has the option of correcting the 
automatic interactor recommendations made by TIMM. 
Whenever the interface designer corrects one of the 
suggestions made by TIMM, the interaction is recorded as 
an error. Otherwise, the recommendation is considered 
successful. After a session is finished, TIMM applies an 
adaptive algorithm to correct its decision tree, based on the 
entire history of cases. 

The adaptive algorithm has three operators for altering the 
decision tree. Whichever operator can reduce the number of 
errors by the greatest amount is selected. Operators are 
applied sequentially until no operator can reduce the total 
number of errors in the history of cases. The operators are 
as follows: 

1. Change the recommended interactors for a given 
leaf of the tree.  

2. Alter the boundary conditions for a branch.  

3. Add a branch, and then set the output of the new 
leaves.  

Changing the recommendations for a given leaf is the 
simplest operation. Suppose that the decision tree dictates 
that Boolean domain elements are best treated by a 
checkbox, but the designer selects radio buttons instead. 
This stylistic preference can be handled by changing the 
recommendation of the leaf for Boolean domain variables 
to radio buttons. 

An alteration of the boundary conditions is more complex. 
In our movie recommendation example, the age 13 is a 
boundary condition, because it draws a line between two 
groups of moviegoers: children and teens. Now imagine 
that market research discovers that young adolescents have 
become more sophisticated (or perhaps jaded), and that the 
age 11 would be a better cutoff. This would be an alteration 
of boundary conditions. The same sort of thing can occur 
with interactor selection. Suppose that the decision tree 
initially uses a boundary of seven interactors per dialog in 
order to determine whether the screen is crowded. If there 
are more than seven interactors, then the interactor 
recommendations will reflect the need to conserve screen 
space; otherwise, screen space conservation is not 
considered. But if the interface designer favors unusually 
small dialog windows, this boundary might not be 
appropriate. It might be necessary to conserve space if there 
are more than five interactors in a single dialog. This is the 

kind of situation that would necessitate a shift in boundary 
conditions. 

The addition of a branch to the decision tree is necessary 
when there is a relevant piece of information that the 
decision tree did not consider. For example, suppose that 
the original decision tree recommends edit fields for all 
domain elements whose type is "string," irrespective of the 
number of allowed values. However, the user interface 
designer might take the number of allowed values into 
account, favoring list boxes when the number of allowed 
values is finite. The only way to correct the decision tree so 
that it will accommodate the designer's preference is to add 
a branch to take this discriminant into account. 

ADAPTATION IN ACTION 
Experiment 1 
The adaptation algorithm was first applied to a small-scale 
application interface for a hypothetical program: "The 
Multi-User Banking Information Console." This is a small-
scale interface, with 22 interactors. It is designed to allow a 
variety of users to view and control the money in a bank. 
Users range from clients to tellers to the CEO. In this 
experiment, an interface designer modified the 
automatically generated suggestions. The designer was 
constrained by certain features specific to the application, 
and had stylistic preferences that were different from the 
those reflected in the decision tree. The designer reviewed 
the automated suggestions, and then modified them while 
listing reasons for the modification. The adaptation 
algorithm was then applied to alter the decision tree so as to 
better conform to the designer's preferences. 

The automation algorithm returns an ordered list of 
recommended interactors, as shown on the screen shot in 
figure 3. Errors are weighted: failure to recommend an 
interactor that the designer felt was necessary was the 
greatest error, recommending an interactor that the designer 
considered unnecessary was of secondary importance, and 
an incorrect ordering of recommendations was the least 
important error. Based on these weights, an overall error 

make_initial_recommendations(); 
record_user_selections(); 
loop { 

make_recommendations(); 
count_errors(); 
if (errors = 0) break; 
find_best_operation(); 
if (error_gain > min_threshold){ 
 apply_operation(); 
 next; 
} 
else break; 

} 
 

 



Figure 3: Screenshot of TIMM with ordered list of interactors 

metric was developed that took into account the number of 
errors and their severity.  On this scale, the adaptation 
algorithm was able to correct for 98.8% of the errors 
originally indicated by the designer. Had the designer not 
deliberately been slightly inconsistent, the algorithm would 
have been able to correct for all of the error. 

Of all of the errors committed by the original decision tree, 
63% represent differences of opinion on matters of style. A 
few stylistic questions came up many times, yielding the 
high count. 24% of the errors were caused by the 
incompleteness of the decision tree. Thus, we can expect 
87% of the error correction in this case to be applicable and 
useful for future projects by this interface designer. The 
remaining 13% of the error correction involved 
compensating for certain specific features of this particular 
interface. 

The experiment was deliberately designed to include 
constraints that could not be accounted for by TIMM's 
current set of discriminants. It was specified that the 
customer user-type would have to access the interface 
through an ATM, and therefore would not have be able to 
use a mouse. Interactors that rely on mouse manipulation 
were never chosen if the customer would have to utilize 
them. TIMM had no way to account for this information 
with its current set of discriminants. Nonetheless, the 
algorithm was able to exploit accidental regularities in the 
discriminants that it did have access to in order to account 
for this feature. This is overfitting, and it would probably 

diminish the algorithm’s performance on future design 
projects. Solutions to the problem of overfitting will be 
discussed in a later section. 

Experiment 2 

The second experiment is based on a portion of a real-world 
user-interface designed for a medical application for one of  
our clients. It is slightly larger, with 31 interactors. The 
automatic suggestions made by TIMM were modified as 
before, but the modifications were intended to reflect the 
interface as it was actually designed. 

Our first concern was to determine whether the adaptation 
that took place in the banking example would be of use in 
this experiment. In fact, even with the problem of 
overfitting, the refined decision tree performed 16% better 

 Experiment 1 Experiment 2 

Number of interactors 22 31 
Total error correction 98.8% 100% 
Transferable error correction 
(The percentage reduction of the 
initial number of errors for the 
opposite example when using an 
initial decision tree trained on this 
example)  

16% 36% 

Preventative error 
correction with adjustment 
for overfitting 

23% 36% 

 

Table 1: Adaptation performance on two experiments 



than the original hand-crafted decision tree. When some of 
the overfitting is corrected, as described below, the decision 
tree performs 23% better than the original hand-crafted 
decision tree. Regardless of whether the system was 
"primed" with a refined decision tree, the adaptive 
algorithm was able to correct 100% of the errors. 77% of 
the error was due to an incomplete decision tree, and 23% 
was due to designer preferences. 

This example shows that refining the decision tree will 
yield benefits for the user interface designer. When the 
banking application was provided with an initial decision 
tree trained on the data from the medical application, the 
gains were even more marked: the refined decision tree 
performed 36% better than the hand-crafted tree, and there 
was no overfitting. The banking example was deliberately 
designed in such a way as to bring about overfitting, but in 
the real-world example, overfitting was not a problem. 

ALGORITHM ISSUES 
Complexity 
The adaptive algorithm as described searches the entire 
space of possible changes for the alteration to the decision 
tree that would be most advantageous. One might question 
whether such an exhaustive-search algorithm imposes too 
high of a cost in terms of search time. In fact, the time 
complexity of the algorithm only grows with the square of 
the total number of cases. Given the present rate of growth 
of available computing power, we do not foresee any 
problems with the complexity of the algorithm. 

Local Minima 
The adaptive algorithm performs a greedy hill-climbing 
search for the most immediately rewarding modification to 
the decision tree. In other words, the algorithm does not 
look for sequences of operations that might be beneficial; 
rather, it looks ahead only one step, and then applies the 
single operation that is most beneficial in the short term.  In 
theory, this could lead to problems of local minima. In this 
case, a local minima would mean that the adaptive 
algorithm had arrived at a state where no single adaptive 
move would permit further improvement, but where a series 
of adaptive moves might find the globally optimal solution. 
Then the adaptive algorithm would fail to make the correct 
modifications to the decision tree, leaving it in an imperfect 
state. We acknowledge that this is a possible danger. But in 
practice, local minima have never appeared in any of our 
tests. The algorithm was able to correct 98.8% of the error 
in the first example in this paper and 100% of the error in 
the second example. 

Overfitting 
The most serious problem is the danger of overfitting to the 
training data. As mentioned above, this occurred in one of 
our test cases, resulting in somewhat diminished generality 
of the adaptive changes.  We propose three possible 
solutions for this problem. 

1. More discriminants. The more information we 
can take into account, the less likely overfitting 
will become. Further testing should point us 
towards additional discriminants to be taken into 
account.  However, it should be noted that adding 
discriminants can actually lead to more overfitting, 
if they are not well-chosen.  If a discriminant bears 
no relation to the problem at hand, then it can 
create the kind of accidental regularity that is often 
responsible for overfitting.  Moreover, additional 
discriminants increase the size of the tree, making 
it harder for the user to browse and increasing the 
runtime of the adaptive algorithm.  Therefore, new 
discriminants should not be added haphazardly; 
only discriminants that are likely to be useful much 
of the time should be added.   

2. A sensitivity threshold. This is to prevent the 
adaptive algorithm from making any changes 
unless a benefit greater than some threshold can be 
achieved. The idea is that the adaptations that 
result in overfitting are likely responses to one-
time idiosyncrasies, whereas adaptations that 
correct several errors at once indicate general 
features that are likely to be applicable in the 
future. As mentioned above, our first attempts to 
apply this approach met with some success. The 
generality of the changes increased from 16% to 
23%. There is a cost involved: the adaptive 
algorithm no longer achieves anything near the 
98.8% success it had on the training case. 
Performance on the training example declines to 
51%. The sensitivity threshold causes the 
algorithm to pass over some useful adaptations as 
well as the dangerous ones that the threshold was 
meant to filter out. However, if the cases that lead 
to these useful adaptations recur in later examples, 
eventually the threshold will be overcome and the 
necessary adaptations will be made.  

3. User advice. Another approach would be to 
simply ask the interface designer for input as to 
whether and how the tree ought to be changed. The 
algorithm would then describe the cases involved 
and ask for advice. The interface designer could 
recommend paying attention to a particular 
discriminant, or the designer could simply advise 
ignoring these cases altogether.  

RELATED WORK 
Several systems have attempted to automatically generate 
user interfaces in a model-based environment. UIDE [1] is 
one of the first model-based user interface design systems, 
and it automatically selects interactors on the basis of data 
type—one of the discriminants we consider here. 
MECANO [5] generates form-based interfaces 
automatically, and performs interactor selection by 



considering several discriminants, including type, 
cardinality, and the number of allowed values. TRIDENT 
[12] introduces a comprehensive decision tree that takes 
into account a broad set of discriminants. These systems 
represent progress towards automated user interface design, 
but they do not incorporate adaptation.  

Quinlan has developed ID3 [10], an algorithm for decision 
tree induction. ID3 is based on information theory, and it is 
intended for batch learning problems that start from scratch 
with a large number of examples. Our approach favors 
theory-refinement and sensitivity, so ID3 was not an 
acceptable choice as an induction algorithm. Maclin and 
Shavlik present a theory-refinement algorithm that utilizes 
user advice to minimize the amount of training time 
necessary [4], but their algorithm is for connectionist 
learning systems, which we have ruled out because of their 
poor human-comprehensibility. We were unable to locate a 
sensitive theory-refinement algorithm for decision tree 
induction in the literature; ours may be one of the first.  

Inference Bear [2] is a programming-by-demonstration 
application that infers design specifics from user-generated 
snapshots. Inference Bear uses adaptation to generate a 
custom user interface by observing the behavior of the 
interface designer. But whereas Inference Bear is designed 
to infer application-specific design knowledge, our 
approach seeks to induce and refine general principles of 
user interface design. Every time a designer begins to 
design an interface with Inference Bear, it starts afresh. In 
contrast, the adaptive version of MOBI-D is smarter every 
time it runs.  

FUTURE WORK 
The problem of overfitting merits further research. Of 
particularly interest is the prospect of incorporating user 
advice to improve the applicability of the adaptation 
algorithm. Human designers learn better when taught, and 
there is ample reason to believe that machine learning 
would also benefit from perspicuous advice. We envision a 
situation where the interface designer can set a flag in the 
"preferences" indicating how often they wish to give 
advice: never, sometimes, or always. 

We also hope to apply the methodology described in this 
paper to other aspects of model-based user-interface design: 
dialog layout and application structure, for example. 
MOBI-D provides a formal language to describe both of 
these phases of design and we believe that adaptive 
automation could be successful in these domains as well. 
We also believe that the methodology described in the 
paper could be applied to a variety of design problems 
outside of user interface design, and we feel that future 
research along these lines would be productive. 

CONCLUSIONS 
We believe that adaptation will be a necessary component 
of any system that attempts to solve real-world design 
problems. In this paper, we have presented an automated 

system that incorporates adaptation to perform interactor 
selection in user-interface design. Our system is 
distinguished by the four features that make up the acronym 
SURF: Sensitivity to a small number of examples, 
Understandability to the interface designer, Refinement 
instead of learning from scratch, and Focus on those aspects 
of design that are particularly amenable to automation. 
Preliminary experiments indicate that our adaptation 
algorithm does provide significant gains in performance. 
We believe that this methodology can be applied 
successfully to other areas of user interface design in the 
future. 
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