
User Studies of an Interdependency-Based Interface
for Acquiring Problem-Solving Knowledge

Jihie Kim and Yolanda Gil
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

 {jihie,gil}@isi.edu

ABSTRACT
This paper describes a series of experiments with a range of
users to evaluate an intelligent interface for acquiring
problem-solving knowledge to describe how to accomplish
a task. The tool derives the interdependencies between
different pieces of knowledge in the system and uses them
to guide the user in completing the acquisition task. The
paper describes results obtained when the tool was tested
with a wide range of users, including end users. The studies
show that our acquisition interface saves users an average
of 32% of the time it takes to add new knowledge, and
highlight some interesting differences across user groups.
The paper also describes what are the areas that need to be
addressed in future research in order to make these tools
usable by end users.

INTRODUCTION
End user programming is an active area of research that
poses many challenges for intelligent user interfaces. There
have been a wide range of approaches, including
programming by demonstration [Cypher 1993], case-based
reasoning [Bareiss et al 1989], and learning apprentices
[Mitchell et al. 1985]. These systems observe users perform
a task and use various induction techniques to generalize
from the observed examples and create a representation of
the task that can be used to automate it for the user in the
future. These approaches work well for relatively simple
tasks. However, for complex problem solving activities
example-based acquisition of procedural knowledge may be
tedious and ultimately impractical, since a very large
amount of examples may be required in order to provide
enough information to draw adequate generalizations.

We are investigating an alternative and complementary
approach to develop acquisition interfaces for problem-
solving knowledge that enables users to specify new
knowledge directly by using a knowledge editor and
associated tools. This paper reports our work on EMeD
[Kim and Gil 1999], an acquisition interface that supports
users in adding problem-solving knowledge to a
knowledge-based system. The tool helps users understand
the relationships among the individual elements in the
knowledge base, keep track of missing knowledge that still
needs to be added, suggest potential uses of newly defined
elements, and detect and resolve errors early on.

Since our ultimate goal is to create an acquisition interface
for end users (i.e., without formal training in computer
science, artificial intelligence, or knowledge bases), we
decided to perform some experiments to gather data
regarding the usability of our interface for end users. This
kind of study would let us learn more about the needs of
end users. Would they understand how to express
procedural knowledge into methods and sub-methods?
Could they do this without the context of examples? Would
they be able to manipulate our formal language, or would
they require a completely different kind of interface such as
an English-based editor? Would they need a radically
different interaction (perhaps with much stronger guidance)
to be able to perform the same kinds of tasks? Would they
need additional functionality that users with formal
computer science background do not need? We did not
know what to expect from this group of users, and were
prepared to see that they are unable to perform the tasks
using our current version of the acquisition interface. We
conducted experiments with a wide range of users:
experienced knowledge engineers, users familiar with
knowledge based systems, users with formal computer
science training but little background in knowledge bases,
and finally end users with no formal training in any of the
above areas.

This paper describes the results of these experiments and
summarizes some of the insights that we obtained about
interfaces for editing procedural knowledge. The results
should be relevant to researchers of end user programming,
knowledge-based systems environments, and intelligent
interfaces at large.

EMeD: A METHOD ACQUISITION INTERFACE FOR THE
EXPECT ARCHITECTURE
EMeD (EXPECT Method Developer) [Kim and Gil 1999]
is a knowledge acquisition interface that allows users to
specify problem-solving knowledge within the EXPECT
framework [Gil 1994; Swartout and Gil 1995; Gil and
Melz 1997]. This section provides a short overview of
EMeD, more details can be found in [Kim and Gil 1999].

When users add new knowledge to a system, an intelligent
acquisition interface should help them understand 1) how
the new knowledge fits given the knowledge that is already
there, and 2) what additional knowledge is still missing and
needs to be provided by the user. EXPECT addresses these

issues by analyzing the knowledge in the system and
automatically deriving the interdependencies between all
the elements of the knowledge base. The key to knowledge
acquisition is then to guide the user in understanding these
interdependencies and in providing enough information to
make all the individual pieces work together as intended.
EMeD was developed to support users in different
knowledge acquisition activities, from making small
changes to significantly extending an existing knowledge
base or creating new knowledge base. We analyzed the
user’s tasks during knowledge base development and found
several areas where an acquisition interface could help: (1)
pointing out missing pieces at a given time; (2) predicting
what pieces are related and how; (3) detecting
inconsistencies among the definitions of the various
elements in the knowledge base. We then developed a set
of techniques and principles that could guide users in both
knowledge base creation and modification.

Figure 1: A screenshot of EMeD’s interface

Figure 1 shows snapshots from the EMeD interface. Users
can use the method seeker to find existing methods related
with particular terms or functionality. The method
organizer allows users to define classes and groups of
methods. When a new method is defined, the method is
checked for local errors. If there is no error, the method
sub-method analyzer creates links between the new method
and existing methods and shows the user the dependencies
among them in terms of which super-method can call which
sub-method. Whenever there is any missing knowledge
detected, it is highlighted with a red diamond. The
undefined method proposer generates an initial sketch of
the missing knowledge based on an analysis of what is
expected to be added. The global error detector analyzes
the knowledge base further and detects more subtle errors
in the context of problem solving.

EXPERIMENTAL DESIGN AND SETUP
An overview of the methodology that we are developing to
evaluate acquisition interfaces is described in [Tallis et al.
1999].

 The hypotheses that we wanted to test were:

1. Users will be able to complete tasks in less time using
the EMeD acquisition interface.

2. The reduction in completion time will be more
noticeable for less experienced users.

The subjects were divided into four groups:

1. users familiar with the knowledge base environment
(Group 1), i.e., who had previous experience in developing
knowledge-based systems in EXPECT.

2. users familiar with related AI technology (Group 2), i.e.,
who were familiar with ontologies and knowledge-based
systems, but who had never developed systems with
EXPECT.

3. users trained in CS (Group 3) who were not familiar with
either knowledge-based systems or EXPECT.

4. users with no formal CS background (Group 4), who are
familiar with software tools such as spreadsheets and HTML
editors (our project assistants).

Notice that end users were in Group 4. We tested four
subjects in Group 1, two subjects in Group 2, four subjects
in Group 3, and two subjects in Group 4. None of the
subjects had used or seen EMeD before the experiment.
Each subject was tested under two conditions: using EMeD
and using an ablated version of EMeD that only allowed
them to edit methods and did not have any other
functionality from EMeD. In order to prevent a transfer
effect, each subject used a different scenario for each
condition. Different subjects were given the scenarios and
tools in different orders to reduce the influences from
familiarity with tools or fatigue. The two scenarios were
comparable in order to make the results of the experiment
meaningful, and involved adding a different set of methods
to the same initial knowledge base. This knowledge base is
of considerable complexity, and was developed by our
group to participate in the evaluation of the DARPA High-
Performance Knowledge Bases program that investigates
the development of large-scale knowledge based systems
[Cohen et al 1998]. The problem that we addressed was
analyzing enemy workarounds to a damaged target.

Each subject was given a tutorial of the tools with simpler
scenarios and was allowed a period of practice with both
tools. During the practice, each subject was asked to
perform a simple acquisition task with both tools. We
instrumented the tools to record the actions performed by
the subjects. We took detailed transcripts of their activities
and the comments they voiced out loud as they were
performing the tasks.

RESULTS
Before we report on the results concerning the performance
during the experiment, it is worth describing the differences
across subject groups during the training and practice
periods. The training time we measured includes the time
spent on the tutorial and the practice with the tools. Group
1 users were not given the tutorial because they were
already familiar with the language, and it took them an

Show
method/sub-method

relations

Proposed initial sketch
of new method

Point out missing
knowledge

Local errors

Organize/Group
methods

average of two hours to practice with EMeD. Group 2
needed some time to learn the representation language (3.5
hrs), and Group 3 needed more time for both phases (4 hrs).
The training time for Group 4 was almost twice the time
(7.7 hrs) for Group 3 and almost 4 times of what Group 1
had.

A few observations about training the subjects in Group 4
are worth mentioning. First, teaching the representation
language was not easy although this was hardly a surprise
for us. Because of their lack of background on organizing
and structuring algorithms, we decided that these subjects
would need support in breaking down the statements of the
new knowledge that they were given and organizing them
into methods. We suggested that they write on paper first
what they intended to put in each method. (We are now
developing an interface to support this.)

Figure 2: Average time to complete KA tasks

Figure 3: Average time per axiom

Figure 2 shows that EMeD reduced the time to complete the
tasks by an average of 32%. Because the subjects
performed the task in different ways, they ended up adding
a different number of methods with different numbers of
axioms and of different kinds. The subjects added 10 to 14
methods for the two tasks, building 102 to 133 axioms for
them. We decided to measure the average amount of
knowledge added in terms of new axioms in the knowledge
base, following common practice in knowledge base

research. Figure 3 shows the average time to add an axiom.
The overall time and the overall time savings increase when
the subjects have less experience in knowledge-based
systems and computer science. The time savings provided
by the tool is more acute for users with no CS background.

For some subjects in Group 1, the time per axiom was not
very different in both conditions. Our hypothesis is that
since they were proficient in the language and the KB
environment and were given relatively small sized tasks,
they were able to keep track of the interdependencies in
their minds without needing the help that the tool provides.
We expect that the time difference will be larger when
tested with more realistic scenarios, where the users would
need to add more knowledge and keep track of many more
interdependencies.

Figure 4: Average number of interventions

We allowed some interventions of the experimenter so that
the users would not go way off track and take more time to
finish the task than they had patience and inclination to
spend. There were various types of interventions that we
divided into two major classes. Class A interventions were
simple hints on language and syntax, and were considered
less grave. For example, the experimenter would indicate
where to put parentheses in a goal description. It is worth
noting that had the experimenter not intervened, the tool
would have indicated a syntax error and the users would
have had to look up the syntax and fix the error, something
we believe they would be capable of doing. Detecting and
fixing these errors is not a major goal of the tool, and we
have developed form-based interfaces for this purpose that
have not yet been integrated in EMeD. Class B
interventions were of more serious nature and were done
when the user was not making any progress during the
experiment. For example, Group 4 users often asked for
help to compose sub-goal descriptions to represent a goal.
We predict that, if we had not given the help, the times in
Figure 2 for this user group would have grown to a very
large number. These interventions point to new
functionality that future versions of our interface should
provide to users.

Figure 4 shows the number of interventions of Class A and
Class B during the experiment. Overall, subjects not using

0

0.5

1

1.5

2

2.5

3

Familiar with KB
environment

Familiar with related
AI technology

Trained in CS No formal CS
background

us er types

m
in

/#
ax

io
m

s

with EMeD

ablated vers ion

0

20

40

60

80

100

120

140

160

Familiar with KB
environment

Familiar with
related AI
technology

Trained in CS No formal CS
background

us er types

ti
m

e
 (

m
in

)

with EMeD

ablated vers ion

0

2

4

6

8

10

12

14

16

18

Familiar with KB
environment

Familiar with related
AI technology

Trained in CS No formal CS
background

us er types

co
u

nt

with EMeD clas s A

with EMeD clas s B

Ablated vers ion clas s A

Ablated vers ion clas s B

EMeD required a larger number of Class B interventions.
As shown in Figure 4, the increase from Group 1 to Group
2 and Group 3 was moderate, but Group 4 needed a
significantly larger amount when not using EMeD (about
four times more than Group 3.)

We also analyzed the use of each of the components of
EMeD throughout the experiments. Figure 5 shows the
average number of times that each component was used for
each user group. The local error detector was the
component most used, mostly for errors within a method. It
effectively displayed errors within a method definition, and
subjects in all groups used it whenever they introduced an
error in creating or modifying a method. The undefined
method proposer was the second most used in the
experiment. Subjects used it to see what methods remained
to be built and to create new methods called by already
defined methods. This component seems more useful when
the users build methods in top-down fashion, and was used
more often for users with some AI background. It is
interesting to notice that some users in Group 4 took what
seemed like a bottom-up approach to develop the methods.

Figure 5: Average use of EMeD features

The method seeker was found useful to find system-defined
methods, such as arithmetic and logic operations, but the
search capability was not used very often. We believe that
this is because of the small number of methods involved in
the experiments. We expect that this functionality will be
more useful in practice when larger numbers of methods are
added.

The method sub-method analyzer was used, but not as many
times as we expected. The subjects felt that it was hard to
understand the way these relationships are displayed. With
more exposure to the interface, we hope it can become
easier to understand. Perhaps a more graphical view, or a
more summarized view would be more adequate.

The method organizer was only provided to Group 1,
because we thought others would not really use it and
because we thought that providing too many features would
divert their attention and possibly cause confusion.
However, subjects in the other groups ended up asking for
ways to do this, because they thought it would help them to

collect related methods in one place and look at methods in
groups without being distracted by other methods.

CONCLUSIONS
Perhaps he most remarkable result of these experiments is
that end users were able to complete the complex tasks they
were given. The interventions of the experimenters were a
crucial factor for this, but they were punctual and concerned
with very specific steps during the process and that we hope
to be able to support in future versions of our acquisition
interfaces. The fact that these subjects were able to take
charge of the task and execute it to completion is in itself a
very encouraging result.

The results reported here provided us with very important
feedback about how to build our acquisition interfaces.
Based on these results, we have already developed a new
version of EMeD and have successfully tested it with
domain experts (Army officers) extending a knowledge
base as part of the DARPA High Performance Knowledge
Bases Knowledge Acquisition Critical Component
Experiment. The kinds of user evaluations that we are
conducting and that we report here are crucial to understand
how intelligent interfaces can help end users in the complex
task of extending a system’s knowledge.

ACKNOWLEDGMENTS
We would like to thank Marcelo Tallis for his tremendous help
during the experiment. Also, we are indebted to the many subjects
that have participated in our experiments for their time and their
patience. We gratefully acknowledge the support of DARPA with
grant F30602-97-1-0195 as part of the DARPA High Performance
Knowledge Bases Program and with contract DABT63-95-C-
0059 as part of the DARPA/Rome Laboratory Planning Initiative.

REFERENCES
Bareiss, R., Porter, B., and Murray, K. (1989). Supporting start-
to-finish development of knowledge bases. Machine Learning,
4:259-283.

Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr, B.,
Gunning, D., and Burke, M. (1998). The DARPA High-
Performance Knowledge Bases project. AI Magazine, 19(4).

Cypher, A. (1993) Watch what I do: Programming by
demonstration. Allen Cypher, Ed. MIT Press.

Gil, Y. and Melz, E. (1996) Explicit representations of problem-
solving strategies to support knowledge acquisition. In
Proceedings of AAAI-96.

Gil, Y. (1994) Knowledge refinement in a reflective architecture.
In Proceedings of AAAI-94.

Kim, J. and Gil, Y. (1999) Deriving expectations to guide
knowledge base creation. In Proceedings of AAAI-99.

Mitchell, T., Mahadevan, S. and Steinberg, L. (1982) LEAP: A
learning apprentice for VLSI design. In Proceedings of IJCAI-85.

Tallis, M., Kim, J. and Gil, Y. (1999) User studies of knowledge
acquisition tools: Methodology and lessons learned. In
Proceedings of KAW-99.

Swartout B. and Gil, Y. (1995) EXPECT: Explicit representations
for flexible acquisition. In Proceedings of KAW-95.

0

2

4

6

8

10

12

method s ub-
method

analyzer

undefined
method

propos er

method
s eeker

error
dis player

(local)

error
dis player
(others)

method
organizer (*)

Familiar with KB environment

Familiar with related AI technology

T rained in CS

No formal CS background

