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ABSTRACT 
This paper describes a series of experiments with a range of 
users to evaluate an intelligent interface for acquiring 
problem-solving knowledge to describe how to accomplish 
a task.  The tool derives the interdependencies between 
different pieces of knowledge in the system and uses them 
to guide the user in completing the acquisition task.  The 
paper describes results obtained when the tool was tested 
with a wide range of users, including end users.  The studies 
show that our acquisition interface saves users an average 
of 32% of the time it takes to add new knowledge, and 
highlight some interesting differences across user groups.  
The paper also describes what are the areas that need to be 
addressed in future research  in order to make these tools 
usable by end users. 

INTRODUCTION 
End user programming is an active area of research that 
poses many challenges for intelligent user interfaces.  There 
have been a wide range of approaches, including 
programming by demonstration [Cypher 1993], case-based 
reasoning [Bareiss et al 1989], and learning apprentices 
[Mitchell et al. 1985]. These systems observe users perform 
a task and use various induction techniques to generalize 
from the observed examples and create a representation of 
the task that can be used to automate it for the user in the 
future. These approaches work well for relatively simple 
tasks.  However, for complex problem solving activities 
example-based acquisition of procedural knowledge may be 
tedious and ultimately impractical, since a very large 
amount of examples may be required in order to provide 
enough information to draw adequate generalizations.   

We are investigating an alternative and complementary 
approach to develop acquisition interfaces for problem-
solving knowledge that enables users to specify new 
knowledge directly by using a knowledge editor and 
associated tools.  This paper reports our work on EMeD 
[Kim and Gil 1999], an acquisition interface that supports 
users in adding problem-solving knowledge to a 
knowledge-based system.  The tool helps users understand 
the relationships among the individual elements in the 
knowledge base, keep track of missing knowledge that still 
needs to be added, suggest potential uses of newly defined 
elements, and detect and resolve errors early on. 

Since our ultimate goal is to create an acquisition interface 
for end users (i.e., without formal training in computer 
science, artificial intelligence, or knowledge bases), we 
decided to perform some experiments to gather data 
regarding the usability of our interface for end users. This 
kind of study would let us learn more about the needs of 
end users.  Would they understand how to express 
procedural knowledge into methods and sub-methods?  
Could they do this without the context of examples?  Would 
they be able to manipulate our formal language, or would 
they require a completely different kind of interface such as 
an English-based editor?  Would they need a radically 
different interaction (perhaps with much stronger guidance) 
to be able to perform the same kinds of tasks?  Would they 
need additional functionality that users with formal 
computer science background do not need?  We did not 
know what to expect from this group of users, and were 
prepared to see that they are unable to perform the tasks 
using our current version of the acquisition interface.  We 
conducted experiments with a wide range of users: 
experienced knowledge engineers, users familiar with 
knowledge based systems, users with formal computer 
science training but little background in knowledge bases, 
and finally end users with no formal training in any of the 
above areas.   

This paper describes the results of these experiments and 
summarizes some of the insights that we obtained about 
interfaces for editing procedural knowledge. The results 
should be relevant to researchers of end user programming, 
knowledge-based systems environments, and intelligent 
interfaces at large. 

EMeD: A METHOD ACQUISITION INTERFACE FOR THE 
EXPECT ARCHITECTURE  
EMeD (EXPECT Method Developer) [Kim and Gil 1999] 
is a knowledge  acquisition interface that allows users to 
specify problem-solving knowledge within the EXPECT 
framework  [Gil 1994; Swartout and Gil 1995; Gil and 
Melz 1997]. This section provides a short overview of 
EMeD, more details can be found in [Kim and Gil 1999]. 

When users add new knowledge to a system, an intelligent 
acquisition interface should help them understand 1) how 
the new knowledge fits given the knowledge that is already 
there, and 2) what additional knowledge is still missing and 
needs to be provided by the user. EXPECT addresses these 



issues by analyzing the knowledge in the system and 
automatically deriving the interdependencies between all 
the elements of the knowledge base.  The key to knowledge 
acquisition is then to guide the user in understanding these 
interdependencies and in providing enough information to 
make all the individual pieces work together as intended. 
EMeD was developed to support users in different 
knowledge acquisition activities, from making small 
changes to significantly extending an existing knowledge 
base or creating new knowledge base.  We analyzed the 
user’s tasks during knowledge base development and found 
several areas where an acquisition interface could help: (1) 
pointing out missing pieces at a given time; (2) predicting 
what pieces are related and how; (3) detecting 
inconsistencies among the definitions of the various  
elements in the knowledge base.  We then developed a set 
of techniques and principles that could guide users in both  
knowledge base creation and modification. 

 

 

 

 

 

 

 

 

 

Figure 1: A screenshot of EMeD’s  interface 

Figure 1 shows snapshots from the EMeD interface. Users 
can use the method seeker to find existing methods related 
with particular terms or functionality.  The method 
organizer allows users to define classes and groups of 
methods.  When a new method is defined, the method is 
checked for local errors. If there is no error, the method 
sub-method analyzer creates links between the new method 
and existing methods and shows the user the dependencies 
among them in terms of which super-method can call which 
sub-method. Whenever there is any missing knowledge 
detected, it is highlighted with a red diamond. The 
undefined method proposer generates an initial sketch of 
the missing knowledge based on an analysis of what is 
expected to be added.  The global error detector analyzes 
the knowledge base further and detects more subtle errors 
in the context of problem solving.  

EXPERIMENTAL DESIGN AND SETUP  
An overview of the methodology that we are developing to 
evaluate acquisition interfaces is described in [Tallis et al. 
1999].  

 The hypotheses that we wanted to test were:  

1. Users will be able to complete tasks in less time using 
the EMeD acquisition interface.  

2. The reduction in completion time will be more 
noticeable for less  experienced  users. 

The subjects were divided into four groups:  

1. users familiar with the knowledge base environment 
(Group 1), i.e., who had previous experience in developing 
knowledge-based systems in EXPECT.  

2. users  familiar with related AI technology (Group 2), i.e., 
who were familiar with ontologies and knowledge-based 
systems, but who had never developed systems with 
EXPECT.  

3. users trained in CS (Group 3) who were not familiar with 
either knowledge-based systems or EXPECT. 

4. users with no formal CS background (Group 4), who are 
familiar with software tools such as spreadsheets and HTML 
editors (our project assistants). 

Notice that end users were in Group 4.  We tested four 
subjects in Group 1, two subjects in Group 2, four subjects 
in Group 3, and two subjects in Group 4. None of the 
subjects had used or seen EMeD before the experiment. 
Each subject was tested under two conditions: using EMeD 
and using an ablated version of EMeD that only allowed 
them to edit methods and did not have any other 
functionality from EMeD.  In order to prevent a transfer 
effect, each subject used a different scenario for each 
condition.  Different  subjects were given the scenarios and 
tools in different orders to reduce the influences from 
familiarity with tools or fatigue.  The two scenarios were 
comparable in order to make the results of the experiment 
meaningful, and involved adding a different set of methods 
to the same initial knowledge base.  This knowledge base is 
of considerable complexity, and was developed by our 
group to participate in the evaluation of the DARPA High-
Performance Knowledge Bases program that investigates 
the development of large-scale knowledge based systems 
[Cohen et al 1998].  The problem that we addressed was 
analyzing enemy workarounds to a damaged target.  

Each subject was given a tutorial of the tools with simpler 
scenarios and was allowed a period of practice with both 
tools.  During the practice, each subject was asked to 
perform a simple acquisition task with both tools. We 
instrumented the tools to record the actions performed by 
the subjects.  We took detailed transcripts of their activities 
and the comments they voiced out loud as they were 
performing the tasks.  

RESULTS  
Before we report on the results concerning the performance 
during the experiment, it is worth describing the differences 
across subject groups during the training and practice 
periods.  The training time we measured includes the time 
spent on the tutorial and the practice with the tools.  Group 
1 users were not given the tutorial because they were 
already familiar with the language, and it took them an 
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average of two hours to practice with EMeD.  Group 2 
needed some time to learn the representation language (3.5 
hrs), and Group 3 needed more time for both phases (4 hrs).  
The training time for Group 4 was almost twice the time 
(7.7 hrs) for Group 3 and almost 4 times of what Group 1 
had. 

A few observations about training the subjects in Group 4 
are worth mentioning. First, teaching the representation 
language was not easy although this was hardly a surprise 
for us. Because of their lack of background on organizing 
and structuring algorithms, we decided that these subjects 
would need support in breaking down the statements of the 
new knowledge that they were given and organizing them 
into methods. We suggested that they write on paper first 
what they intended to put in each method. (We are now 
developing an interface to support this.)  

 

 

 

 

 

 

 

 

 

 

Figure 2: Average time to complete KA tasks 

 

 

 

 

 

 

 

 

 

 

Figure 3: Average time per axiom 

Figure 2 shows that EMeD reduced the time to complete the 
tasks by an average of 32%.  Because the subjects 
performed the task in different ways, they ended up adding 
a different number of methods with different numbers of 
axioms and of different kinds. The subjects added 10 to 14 
methods for  the two tasks, building 102  to 133 axioms for 
them. We decided to measure the average amount of 
knowledge added in terms of new axioms in the knowledge 
base, following common practice in knowledge base 

research.  Figure 3 shows the average time to add an axiom.  
The overall time and the overall time savings increase when 
the subjects have less experience in knowledge-based 
systems and computer science.  The time savings provided 
by the tool is more acute for users with no CS background. 

For some subjects in Group 1, the time per axiom was not 
very different in both conditions.  Our hypothesis is that 
since they were proficient  in the language and the KB 
environment and were given relatively small sized tasks, 
they were able to keep track of the interdependencies in 
their minds without needing the help that the tool provides.  
We expect that the time difference will be larger when 
tested with more realistic scenarios, where the users would 
need to add more knowledge and keep track of many more 
interdependencies.   

 

 

 

 

 

 

 

 

 

Figure 4: Average number of interventions 

We allowed some interventions of the experimenter so that 
the users would not go way off track and take more time to 
finish the task than they had patience and inclination to 
spend. There were various types of interventions that we 
divided into two major classes.  Class A interventions were 
simple hints on language and syntax, and were considered 
less grave. For example, the experimenter would indicate 
where to put parentheses in a goal description.  It is worth 
noting that had the experimenter not intervened, the tool 
would have indicated a syntax error and the users would 
have had to look up the syntax and fix the error, something 
we believe they would be capable of doing. Detecting and 
fixing these errors is not a major goal of the tool, and we 
have developed form-based interfaces for this purpose that 
have not yet been integrated in EMeD.  Class B 
interventions were of  more serious nature and were done 
when the user was not making any progress during the 
experiment.  For example, Group 4 users often asked for 
help to compose sub-goal descriptions to represent a goal. 
We predict that, if we had not given the help, the times in 
Figure 2 for this user group would have grown to a very 
large number.  These interventions point to new 
functionality that future versions of our interface should 
provide to users.  

Figure 4 shows the number of interventions of Class A and 
Class B during the experiment.  Overall, subjects not using 
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EMeD required a larger number of Class B interventions. 
As shown in Figure 4, the increase from Group 1 to Group 
2 and Group 3 was moderate, but Group 4 needed a 
significantly larger amount when not using EMeD (about 
four times more than Group 3.) 

We also analyzed the use of each of the components of 
EMeD throughout the experiments.  Figure 5 shows the 
average number of times that each component was used for 
each user group.  The local error detector was the 
component most used, mostly for errors within a method. It 
effectively displayed errors within a method definition, and 
subjects in all groups used it whenever they introduced an 
error in creating or modifying a method.  The undefined 
method proposer was the second most used in the 
experiment.  Subjects used it to see what methods remained 
to be built and to create new methods called by already 
defined methods. This component seems more useful when 
the users build methods in top-down fashion, and was used 
more often for users with some AI background.  It is 
interesting to notice that some users in Group 4 took what 
seemed like a bottom-up approach to develop the methods.  

 

 

 

 

 

 

 

 

 

Figure 5: Average use of EMeD features 

The method seeker was found useful to find system-defined 
methods, such as arithmetic and logic operations, but the 
search capability was not used very often.  We believe that 
this is because of the small number of methods involved in 
the experiments. We expect that this functionality will be 
more useful in practice when larger numbers of methods are 
added.  

The method sub-method analyzer was used, but not as many 
times as we expected.  The subjects felt that it was hard to 
understand the way these relationships are displayed.  With 
more exposure to the interface, we hope it can become 
easier to understand.  Perhaps a more graphical view, or a 
more summarized view would be more adequate.  

The method organizer was only provided to Group 1, 
because we thought others would not really use it and 
because we thought that providing too many features would 
divert their attention and possibly cause confusion.  
However, subjects in the other groups ended up asking for 
ways to do this, because they thought it would help them to 

collect related methods in one place and look at methods in 
groups without being distracted by other methods.   

CONCLUSIONS 
Perhaps he most remarkable result of these experiments is 
that end users were able to complete the complex tasks they 
were given.  The interventions of the experimenters were a 
crucial factor for this, but they were punctual and concerned 
with very specific steps during the process and that we hope 
to be able to support in future versions of our acquisition 
interfaces.   The fact that these subjects were able to take 
charge of the task and execute it to completion is in itself a 
very encouraging result.   

The results reported here provided us with very important 
feedback about how to build our acquisition interfaces.  
Based on these results, we have already developed a new 
version of EMeD and have successfully tested it with 
domain experts (Army officers) extending a knowledge 
base as part of the DARPA High Performance Knowledge 
Bases Knowledge Acquisition Critical Component 
Experiment. The kinds of user evaluations that we are 
conducting and that we report here are crucial to understand 
how intelligent interfaces can help end users in the complex 
task of extending a system’s knowledge. 

ACKNOWLEDGMENTS 
We would like to thank Marcelo Tallis for his tremendous help 
during the experiment. Also, we are indebted to the many subjects 
that have participated in our experiments for their time and their 
patience. We gratefully acknowledge the support of DARPA with 
grant F30602-97-1-0195 as part of the DARPA High Performance 
Knowledge Bases Program and with contract DABT63-95-C-
0059 as part of the DARPA/Rome Laboratory Planning Initiative.   

REFERENCES 
Bareiss, R., Porter, B., and Murray, K. (1989).  Supporting start-
to-finish development of knowledge bases.  Machine Learning, 
4:259-283.  

Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr, B., 
Gunning, D., and Burke, M. (1998).  The DARPA High-
Performance  Knowledge Bases project.  AI Magazine, 19(4). 

Cypher, A. (1993)  Watch what I do: Programming by 
demonstration.  Allen Cypher, Ed.  MIT Press. 

Gil, Y. and Melz, E. (1996) Explicit representations of problem-
solving strategies to support knowledge acquisition. In 
Proceedings of  AAAI-96. 

Gil, Y. (1994) Knowledge refinement in a reflective architecture. 
In Proceedings of AAAI-94. 

Kim, J. and Gil, Y. (1999) Deriving expectations to guide 
knowledge base creation. In Proceedings of AAAI-99. 

Mitchell, T., Mahadevan, S. and Steinberg, L. (1982)  LEAP: A 
learning apprentice for  VLSI design. In Proceedings of IJCAI-85. 

Tallis, M., Kim, J. and Gil, Y. (1999) User studies of knowledge 
acquisition tools: Methodology and lessons learned. In 
Proceedings of KAW-99. 

Swartout B. and Gil, Y. (1995) EXPECT: Explicit representations 
for flexible acquisition. In Proceedings of KAW-95.  

0

2

4

6

8

10

12

method s ub-
method

analyzer

undefined
method

propos er

method
s eeker 

error
dis player

(local)

error
dis player
(others )

method
organizer (*)

Familiar with KB environment

Familiar with related AI technology

T rained in CS

No formal CS  background



 


