
A Knowledge-Based Electronic Information and
Documentation System

Robert L. Young, Ph.D.
SciComp Inc.

5806 Mesa Drive
Austin, TX 78731-3742

1-512-451-1050, ext. 204

ryoung@scicomp.com

Elaine Kant, Ph.D.
SciComp Inc.

5806 Mesa Drive
Austin, TX 78731-3742

1-512-451-1050, ext. 201

kant@scicomp.com

Larry A. Akers, Ph.D.
SciComp Inc.

5806 Mesa Drive
Austin, TX 78731-3742

1-512-451-1050, ext. 205

akers@scicomp.com

ABSTRACT
We describe the capabilities of a knowledge-based system to
automatically generate a collection of electronic notebooks
containing various forms of online documentation and reports.
This system is a subsystem of a larger knowledge-based system
called SciNapse. SciNapse’s raison d’etre is to transform high-
level simulation problem specifications into executable numerical
programs. The electronic notebooks are generated from the same
domain knowledge bases that the system uses to perform its
primary tasks. These online notebooks are of two different kinds:
reference materials and reports. Reference materials are generated
from the latest version of the knowledge base, which includes the
classes that drive the system, and a network of objects
representing meta-information about the system. The reference
materials document the system’s capabilities and help users
understand what the system can do. Reports are generated from
the instances created by a run of the system. They document the
transformations the input specification underwent in becoming
code, and are intended to help a user understand what the system
has done.

We have found that our approach to producing documents has
both advantages and disadvantages when compared with more
traditional approaches to documentation. The advantages are that
we can minimize the manual effort that is involved in writing
documentation about the system, while at the same time
maximizing the accuracy of the documentation that is produced.

The main disadvantage has been the lack of truly appropriate
authoring tools built to work in our environment. When we began,
we expected the task of creating such authoring tools to be much
easier than it has turned out to be. Later in this paper, we explore
some of the factors that have caused this to be the case.

Keywords
Knowledge-based systems, intelligent interfaces.

1. SYSTEM OVERVIEW
We present a knowledge-based documentation and information
system that is part of a larger knowledge-based system called
SciNapse. SciNapse’s purpose is to transform high-level
simulation problem specifications into executable numerical
programs. The information system draws on four distinct sources
of knowledge to produce reference materials and reports. They are
the knowledge embedded in object classes, which drives SciNapse
to perform its principal tasks; instances created by the system
while performing its tasks; a semantic network model of the
system created specifically for the information system; and an
organized collection of real SciNapse examples that are connected
to the model.

The documentation system helps automate document production
and facilitates producing different kinds of documents from the
same information. We support both automated and manual
document authoring. The documents are viewed in windows that
display “trees of data,” the visibility of which is controlled by the
reader. Hyperlinks to other document locations are included in the
displays when appropriate. SciNapse defines classes, attributes,
facets (attributes of attributes), and rules for inheritance and
instantiation. The object system and the knowledge base encoded
in it are implemented completely in Mathematica®. It was not our
goal to develop yet another object-oriented knowledge
representation for the sake of doing it, but rather to bring the
frequently cited advantages of these techniques [1] to the unique
environment provided by Mathematica. SciNapse makes extensive
use of mathematical transformations and mathematical
programming knowledge, both areas in which Mathematica
excels. Mathematica also has some interesting tools for user
interaction.

SciNapse [2] is intended to “take the programming out of
numerical modeling.” The use of computer models in design and
analysis is rapidly increasing. High-level specifications that turn
into efficiently executable numerical simulation models should be
valuable in many application areas. The class of problems we
have focused on typically involves the solution of partial
differential equations (PDEs). The ability to describe these models
in mathematical or application-specific terms, rather than in
programming terms, makes the modelers more efficient. Their
design work is not burdened with implementation-related
complications, and because code synthesis is automatic, they have
more time to do the “what if” comparisons that computer
modeling enables but frequently omits due to time and scheduling
constraints. These modelers need a language to specify their

problems. The language must be mathematically precise,
reflective of application concepts, and extensible.

Our basic premises have been validated by the successful
development of SciFinance™, a system built by specializing and
augmenting SciNapse’s knowledge[3]. SciFinance aids financial
analysts with the problem of valuing derivatives. SciFinance has a
significant amount of additional knowledge of this domain, but
utilizes the foundation provided by SciNapse to produce C
programs to efficiently implement the models. The financial
knowledge is less than ten percent of the total system.

2. SYSTEM IMPLEMENTATION
SciNapse, SciFinance, and the information system are
implemented fully using Mathematica. The Mathematica system
[4] has two separate parts. There is an evaluator/interpreter called
the kernel, which implements a very large set of functions (more
than 1,000) for dealing with general-purpose programming
applied to the domain of mathematics. A sophisticated collection
of rule rewriting functions is included. The other component is the
support for Mathematica notebooks, which are the windows that
provide communication between a user and the kernel.
Mathematica notebooks provide the browsing vehicle for the
interactive views of our information system.

The notebooks provide a built-in set of WYSIWYG document
writing capabilities. The author has control over whether text is
treated as text or evaluated by the kernel. There is a documented
ASCII external representation of notebooks and a set of kernel
functions for manipulating them. The ASCII representation of a
notebook is something like HTML or XML [5], but the document
grammar is not public.

In addition to normal text, there are three other categories of
entities that can be represented in notebooks. They are
conventional mathematical notation, a hierarchical grouping
construct called a cell, and active areas with the ability to invoke
an arbitrary function in response to clicking. All these entities are
important to the information system.

3. A PROBLEM AND OUR APPROACH
System documentation has the responsibility of presenting a view
that helps system users understand a system, and hence
understand how to use the system. For complex systems, the
conceptual view that “connects” with users best is rarely obvious.
It is not surprising that the earliest versions of system
documentation are frequently only marginally usable. This
inadequacy is in addition to the problems of accuracy and
completeness of the documentation. This situation is usually
addressed by completely manual (brute force) preparation of
documentation and the acceptance that the documentation will
always, inevitably, be incorrect.

We have conducted an experiment in making more of the
documentation production automatic. We built a “semantic
network” of knowledge about the system, using the same
knowledge representation tools that are used to capture the
domain knowledge. We needed a model of the system to organize
the information we would need to make available. It needed to be
a real computational model, not a metaphorical one. The model is
a subsystem of SciNapse, as is all the other knowledge the system
uses. And we wanted it to result in a net saving of human effort in
producing user documentation over the life of the system. That is,
building it and keeping it current should take less manual effort

than organizing and maintaining the same information without the
model.

The nodes of the network correspond to the basic vocabulary
needed to discuss the system. This includes some general
mathematical concepts and SciNapse-specific concepts and terms.
Only those mathematical concepts that were absolutely central to
SciNapse were introduced as general concepts. The SciNapse-
specific terms, on the other hand, include all the elements of the
modeling specification language and the modeling concepts they
implement. The current system has approximately 75 concepts
and 350 SciNapse-specific terms. The concepts include truly
mathematical terms like “equation” and SciNapse terms like
“Coordinate Free Level.”

The nodes of the network represent concepts. Each node of the
network has six possible relationship attributes: (1) a short
definition, (2) a fuller description, (3) a syntax description, (4)
examples, (5) alternative concepts, and (6) other arbitrarily related
concepts.

We felt it was necessary to have more than one, totally non-
specific relationship between concepts. On the other hand, we did
not want to refine these relationships to be overly specific. We felt
that being overly specific would contribute nothing to our goals.
The relationships we have identified, especially given that there is
a category called “other,” have proven adequate. We will give
some examples to make it more concrete.

Figure 1 (below) is an abbreviated snapshot from one of the
generated documents showing the presentation of several
concepts, including two concepts called “equation.” The first,
labeled “equation (a concept)” corresponds to the mathematical
idea, an equation. The second entry, “Equation (a specification
form)” describes the SciNapse specification language construct,
“Equation.” Not surprisingly, it is a construct used to describe
mathematical equations. When working out definitions, we
realized early on that it was natural, perhaps inevitable, that the
same words would occur both as concepts and as SciNapse
language elements, as is the case with equation. When this
happens, the super-classes of the two terms will differ at some
level and will indicate what kind of entities the sub-class is. We
use the appended names (as shown in Figure 1) when this case
occurs.

Figure 1: The SciFinance Help Notebook

Examples are important in teaching people how to use SciNapse.
In addition to small example fragments (the values of the
examples attribute), we build an entire network of nodes for

examples, each of which has the same six possible attributes to
describe its example. Each example node corresponds to an
external example file.

4. PRODUCING AND INTERACTING
WITH DOCUMENTS
We will discuss four kinds of reference documents. Two are
automatically produced, and two are written primarily by humans.
The SciFinance reference document and examples collection are
automatically produced. The quick reference guide and
specifications turned into active displays are primarily written by
humans.

Let’s look more carefully at some of the reference documents and
how they are produced. The master SciFinance help document is
produced by selecting all the appropriate nodes from the network.
The nodes are then sorted alphabetically. Then each is rendered as
a Mathematica cell or a tree of nested cells, and written into a
notebook document.

A Mathematica notebook cell is a rectangular space in a notebook,
which may contain displayable content of any sort. Cells may be
nested hierarchically. They can provide a tree of display elements.
Cells provide an important form of view control. Each cell can be
open or closed. When a cell is closed, only its first line is visible.
Embedded cells in a closed cell are invisible, regardless of
whether they are open or closed. To provide an outline view of the
material, we construct most of our documents using nested cells
containing the appropriate text as the first line of the cell. Each
cell can be easily opened or closed by the user. The open/closed
state of contained cells is unchanged when a containing cell is
toggled.

Let’s return to the notebook shown in Figure 1 and discuss the
state of its cells. The “Equation (a specification form)” is closed,
as are the other cells in this fragment. However, all the sub-cells
of this latter cell are closed, except for the first one containing the
word “Definition.” You can toggle either by clicking one of the
triangular icons on the left-hand side of a cell, or by double-
clicking the brackets on the right-hand side of the cell. This
marking of cells and the triangular icon is optionally invisible.
The brackets show both cell boundaries and cell nesting. In a
situation where the user does not need to see this information, it is
can be omitted.

5. GIVING THE VIEWER MORE
CONTROL
Hyperlinks are one way to separate detailed information on a topic
from the references to the topic. However, using the HTML
browser scheme has some consequences. First, the user has most
of the responsibility for remembering the context surrounding the
hyperlink. When someone is trying to learn information, both
context and details are relevant. Second, moving back through the
stack of pages visited is clumsy. Third, the only hyperlinks
available are those explicitly provided by the author. The viewer
has no way to add them. Fourth, the time to produce a page in
response to clicking on a hyperlink may not be constant.

The nested cell scheme can be used to address some of these
issues. When a body of material can be organized hierarchically, it
can be mapped to tree of cells. A reader can leave cells closed to
suppress the details while opening any that contain details of

interest. Any subset of the cells that the reader finds useful may be
opened. The rest of the tree skeleton provides the context.

Another aspect of Mathematica notebook interactivity is the
ability to make an area of a notebook cell active, and to provide a
function to be used with that area. When the viewer clicks on the
area, the function is invoked. Words corresponding to concepts
are made active in the notebook described above. This
correspondence is indicated by color and by underlining. (The
appearance of the notebooks is not accurately reproduced in some
of the figures in this paper. However, Figure 1 should be close.)
In this case, clicking an active word invokes a hyperlink jump
action. The notebook moves the concept into view. This can
trigger several different actions. If the target is in the same
notebook, the target is scrolled into view. If it is in a closed cell,
the cell is opened so the target really becomes visible. If the
reference is to another notebook, the notebook is opened as a
separate window and the target is brought into view. There is a
stack of locations, and the reader can move backwards as with an
HTML browser.

So to give the viewer more control, we provide two different
forms of information organization and natural ways to navigate
through both. The hierarchy of cells is used for all information
about a concept. We write these notebooks with all the top-level
cells closed, providing a natural table of contents from the text
itself. Phrases that are defined elsewhere are marked distinctly. If
one of these is contained in an open visible cell, it is visible.
Clicking on it will jump you to the definition of that term. The
open/closed cell paradigm is very simple and is used in the same
way everywhere we employ it. The hyperlinks and page stack
paradigm we use is essentially the HTML browser paradigm, so
users will normally already be familiar with it.

6. MAKING EXAMPLES AVAILABLE
Example specification files are processed by the information
system to connect specification files with the documentation about
the specification language. Figure 2 shows a portion of an
examples notebook. BlackScholes1D is the name of this example.
It corresponds to an external file that could be processed by
SciFinance, named BlackScholes1D.eqn.

Figure 2: A Fragment from the SciFinance
Examples Help Notebook

An examples notebook is built much the same way as the
previously described reference notebook. Whereas concept and
terminology nodes are defined manually by the knowledge entry
process, the example nodes are determined automatically by

BlackScholes1D
Definition
Equation Generator for the 1D Black-Scholes
 Equation with greeks BlackScholes1D.eqn
Examples
 BlackScholes1D[Keywords->{Vega,Rho}]
 BlackScholes1D[D0->0]
 BlackScholes1D[Keywords->{Vega,Rho}, D0->0]
Syntax
 BlackScholes1D[] |
 BlackScholes1D[Keywords->
 {<subset of Vega,Rho}>},
 <var>->value]
Description
 The equation generator for the
 1D Black-Scholes Equation

searching a list of external directories. For every file found
meeting some naming criteria, a node is built. These actual
example files are parsed. There are comments at the beginning of
each of the files providing the descriptive information that
becomes the values of the attributes for the node that is built. This
very late binding of values seems appropriate for examples.
Example files can be inserted and deleted at any time, and their
comments can be edited at any time prior to running the examples
collector. A reader of the examples notebook can do the same type
of interactions discussed above: either opening/closing cells or
following a hyperlink. Here, however, following a hyperlink takes
the reader to the full display of the actual example specification
file, rather than to a concept definition.

Information can be “encoded” by the names and organization of
the directories containing the examples. Meaningful directory
names help identify the nature of the examples. Under each
directory is listed the actual examples found in that directory and
sub-directory relationships are captured as a tree of names. Figure
3 (below) shows this part of the notebook for a typical SciFinance
system. The terms have domain significance. If the cell
corresponding to any one of them is opened, the list of examples
for that category is visible. Each line is a cell containing a list of
the names of the examples found in that directory.

Figure 3: The Hierarchy of SciFinance Example Directories

7. DEVELOPER- STRUCTURED
DOCUMENTS
The reference guides discussed above are generated totally by
gathering and ordering nodes from the knowledge network. All of
the information comes from the network. These documents have
simple structures. The content is collected, ordered, and rendered
in hierarchical cells. We felt the need for documents with more
complex structure, mostly written by humans. We support this by
allowing writing and processing of fairly arbitrary Mathematica
notebooks. Recall that Mathematica notebooks provide
“WYSIWYG” writing capabilities.

The “Quick Reference Guide” is in this category. This kind of
document can have any text its author wants. Since documents of
this type will be using terms found in the knowledge network, we
wanted it to be easy to create hyperlinks from references to nodes
of the network. Therefore, we used access to the knowledge
network to construct the hyperlinks automatically.

In a live cell, all terms exactly matching a network node are
automatically converted into hyperlinks by a preprocessor. This
relieves the author from explicitly identifying references to nodes.
The author may choose a cell type that does not support auto-
linking and the discussion will remain uncluttered by link
markings.

We use the same conventions to indicate parts of the display as
hyperlinks to the concept node of the same name, as defined in the
Reference Notebook.

We use very similar preprocessing to automatically produce
“active” displays of specification files from real specifications.
Each word in the specification that corresponds to a term in the
language is converted into a hyperlink jumping from its
occurrence in the specification file display to the help notebook
explanation of the term.

These techniques would be applicable to documents of any kind.
We have not yet applied them to long documents needing a
professional appearance because of the lack of some needed
features in the Mathematica notebook system.

There is another point worth noting. Our reference documents
have been at the ends of the spectrum of automatic versus manual
structuring. This need not be the case. Documents that combine
approaches are certainly possible. One useful technique would be
to use more sophisticated pattern matching to decide when text is
converted into a hyperlink and what that hyperlink points to.
More sophisticated algorithms for the basic document structure
would also be easy to implement, given the tools we have in
place.

8. KNOWLEDGE AUTHORING
For the most part, human authors have populated the network of
information we have been discussing. They specify what nodes
should exist, and the values for their attributes. The authors must
mark a term in the text as a reference to some other node. Unlike
the processing of the Quick Reference Guide we knew that in the
knowledge network the mixture of text using words that could
refer to concepts and those that are actually meant to do so would
only be handled reliably with explicit indications of a concept
reference.

The representations of the network take full advantage of
taxonomic inheritance and computed methods. Using methods we
have defined some aids for the knowledge authors. Two
interesting ones are for the values of “Alternatives” and “See
Also” attributes.

The Alternatives for a concept can, in some cases, be defined
automatically. This is the case when the entire set of concepts
corresponds to a set of classes that are descendents of a particular
class, perhaps filtered in some way. Computing alternatives values
in this way has several advantages. Since these are the classes that
actually drive SciNapse, they will certainly be a correct
representation of the system’s implementation. Specifying how to
compute them is less work than enumerating them manually. For
any node in the set, its Alternatives are the set with the node itself
removed.

Another aid exists, one for the See Also. This value is computed
as an explicit, manually entered list conjoined with all the
concepts referenced in any other node’s attributes. That is, we
allow a knowledge author to enter an arbitrary set of concepts and
call them the See Also set. Then, we add to that set any concept
mentioned in specifying any of the node’s other attributes. This
mechanism is always used to compute the value of a See Also,
although either or both lists may be empty.

Furthermore, an author may construct a generic documentation
method for a class of objects which will compose a documentation
string from a template of substrings and from attributes that are
common to all members of the class, but whose attribute values
may distinguish one class member from the others.

Examples\
 correlation\
 other\
 pathdep\
 asian\
 barrier\
 lookback\
 vanilla\

9. LEVEL SUMMARIES
 SciNapse solves the problem of converting a very high-level
problem specification into a running program by refining the
problem through a series of levels. It starts at the Keyword Level,
a very abstract level of problem representation. It terminates when
the Code Level is finished. A Level Summary notebook is
produced for each SciNapse run to document the progress of the
synthesis refining the problem.

Figure 4 (below) is part of one of these notebooks. It uses the
same kind of hierarchically grouped cells to provide the tree of
information in a Level Summary. The summary for each level
starts with a title and sub-divides into named geometric regions.
Eventually, equation names and the equations they name are
grouped. In Figure 4 we go from Summary for Keyword Level to
TotalRegion1 to Global to Eq1 to the equation that is named Eq1.
As discussed before, the open or closed status of the cells is easily
controlled by the reader. In the Level Summaries, there are also
active areas of the cells. Each active area corresponds to an object.
In fact, each one corresponds to an object instance, which was
produced as part of the process of transforming the original
specification into the target program.

Figure 4: Part of a SciFinance Level Summary

The mathematical notation most appropriate for equations at
different levels changes. We honor these mathematical
conventions by using Mathematica’s ability to display very
authentic mathematical notation.

10. BROWSING OBJECTS
As mentioned above, the names of objects appearing in the Level
Summaries are active. Clicking on one will cause the execution of

a function that creates and opens a notebook containing a
description of that object. The description includes the names of
the parent class and children objects, if any. It also includes some
subset of the attributes with their values, and includes a subset of
the facets with their values for each attribute. We use the same
technique of hierarchically grouping cells to capture the
relationships among the pieces of text producing the display. The
reader has the control to suppress details by closing cells exactly
as we discussed above.

Whenever the name of an object is displayed, it is active. When
clicked, it behaves just like the clicking of an object name at the
Level Summary. A function is executed that creates and opens a
notebook containing a description of that object. A list of objects
currently displayed in notebooks is maintained so that a second
click anywhere on the same object name does not create a new
notebook. It just de-iconifies the existing window and brings it to
the top of other windows on the screen.

Attribute and facet values are displayed using the same
mathematical notation described for the Level Summaries.
SciNapse represents the same equation at different levels by using
different object/attribute combinations for each. Hence, the Level
Summary hides these bookkeeping details and makes it easier for
the user to follow the progress of equations, with their
transformations, from level to level. When looking at raw objects,
more implicit, contextual information is needed to understand
what they mean and how they fit into the solution of the original
problem.

We provide three different views for objects, aimed at different
kinds of users. First, is a view for SciNapse users. Second is a
view for SciNapse developers. Third is a view for someone who
needs specific information on the structure of the object with
respect to the object taxonomy.

The user view presents attributes of an object ordered by the level
with which they are associated. This level is the one during which
the attribute acquired a value. Furthermore, only attributes marked
as having “math” values are displayed. This is a meta-marking
that the knowledge base authors use to mark appropriate
attributes. This filters out attributes that would be of interest to
developers, but meaningless to a “naïve” user.

The developer view presents attributes of an object ordered by
level, just like the user view, but does not filter out any attributes.
Each attribute is displayed with its value. SciNapse uses facets of
attributes for a variety of bookkeeping tasks. The facets that hold
this bookkeeping information are filtered from the developer view
in the interest of reducing clutter. But, if other facets for an
attribute are found, they are displayed with their values. The cell
displaying an attribute is created closed. The facets will not be
visible unless the user wants to see them and explicitly opens the
cell.

The object structure view organizes and filters the attributes and
facets in a way different from either of the other views. It divides
attributes into those that have local values and those that inherit
values from some ancestor. The level of an attribute is ignored for
ordering. The cells for attributes of either kind are sub-cells of a
label, either local attributes or inherited. Either entire group may
be toggled open or closed. As with the developer view, the
attribute cells are created closed, with only their values visible.
However, for this view, all facets with local values are shown. No

filtering of the bookkeeping facets occurs. This view is intended
to readily answer a different set of questions than the other views.

It should be noted that these three object views are produced by
editor sibling classes that share methods and the attributes that
control the views. It would be very easy to change any of them, or
to create new views with other characteristics.

11. SUMMARY AND CONCLUSIONS
Knowledge is central to the functioning of SciNapse. The
knowledge representation tools we are using make both
knowledge and meta-knowledge readily available. It seemed
expedient to use the primary knowledge representation tools to
also build a model of SciNapse that helps organize information
about the system. Both purely descriptive textual information,
identified by its place in the model, and the classes and instances
that actually control SciNapse’s operation were readily available.
The decision to approach system documentation in this way was
influenced by the fact that human resources were at a minimum at
that point in the project. We also knew that if the cost to
document in this way was too high, we could do a one-time
conversion to a purely manual system.

Having this network in place, we found many ways to take
advantage of the declarative knowledge. This strategy required a
knowledge representation system. We built the representation
system in Mathematica, but Mathematica did not bring
functionality that made the system easier to build.

We have developed a uniform style of organizing all the
notebooks. This style uses functionality of Mathematica
notebooks. Documents are typically organized hierarchically.
That is what a table of contents is intended to convey. We have
used the behavior of nested cells in Mathematica notebooks to
create documents that are, in some sense, their own tables of
contents.

In contrast, hyperlinks in traditional HTML documents provide
only one way to move from the occurrence of a reference to an
idea, to an elaborated discussion of the idea. All the work
producing the correct pagination and hyperlinking has to be done
by the human author, in advance. The reader has no choices other
than those that the author has built in. We believe that
supplementing this style of interaction with the interaction
available through a reader’s control of cell visibility gives the
reader useful ability. It is also important that using this control be
instantaneous, as it is for our pre-computed cells. A reader would
be inhibited if cell expansion could take large or varying amounts
of time. This aspect of our presentation addresses the same
controllability issues that the Microsoft Windows Explorer does
for a tree of folders. However, that technique addresses only the
names of files and folders, not the contents of the files.

12. PROS AND CONS
 The main disadvantage we found was the cost of authoring, of
both knowledge for the system and documents to be processed by
the system. Knowledge authoring would become more efficient
with the introduction of standard GUI tools for Mathematica
notebooks. These have not yet become available. Even though
Mathematica has had a very sophisticated document model
underlying the notebooks, writing complete professional looking
documents manually in Mathematica is still too time consuming.

New versions of Mathematica and some Mathematica-based
products and tools will eventually make this job much easier. We
seriously underestimated the time before this software would
become available.

We can compute using our knowledge representation very easily.
It provides inheritance, methods, and the techniques designed to
make the computations with knowledge easy and natural. There
are a number of powerful functions Mathematica provides for
creating and reading notebooks. They address dealing with
notebooks syntactically, and help simplify what would otherwise
be very tedious code to write. These functions are not specific to
the content of the notebooks. Together, these sets of
computational abilities create a large space of document
production strategies. We have only explored a small part of this
space.

Our approach to document creation eliminates the possibility of
making certain kinds of errors. As we mentioned earlier, the
automatic computation of all or part of a value both reduces the
manual work of updating this kind of information and makes it
necessarily correct since it is computed from the knowledge base
itself. It is also possible to do validity checking of some properties
of the knowledge network. It is easy to check that every alleged
reference to a node is to a node that actually exists. It is also
possible to check that starting from a list of nodes, every node in
the network can be reached. These can be thought of respectively
as detecting “dangling references” and “garbage.” For us, the
advantages have outweighed the disadvantages. Since the system
is new, a more quantitative measurement of costs for comparison
is not yet possible.

13. ACKNOWLEDGEMENTS
SciNapse would not exist without the contributions of Curt
Randall and Stanly Steinberg.

This work was supported in part by the National Institute of
Standards and Technology, Advanced Technology Program under
Cooperative Agreement #70NANB5H1017.

14. REFERENCES
[1] R. Fikes and T. Kehler, “The Role of Frame-Based

Representation in Reasoning,” CACM, September,
1985, pp. 904-920.

[2] R. A. Akers, E. Kant, C.J. Randall, S. Steinberg and R.
L. Young, “SciNapse: A problem-solving environment
for partial differential Equations,” IEEE Computational
Science and Engineering, July-September, 1997,
pp.32-42.

[3] J. Gatheral, Y. Epelbaum, J. Han, K. Laud, O.
Lubovitsky, E. Kant and C. Randall, "Implementing
Options-Pricing Models Using Software Synthesis",
Computing in Science & Engineering, November-
December, 1999, pp. 54-64.

[4] Stephen Wolfram, Mathematica (3rd ed.), Cambridge
University Press, 1996.

[5] Extendable Markup Language: XML. See
http://www.xml.org

	SYSTEM OVERVIEW
	SYSTEM IMPLEMENTATION
	A PROBLEM AND OUR APPROACH
	PRODUCING AND INTERACTING WITH DOCUMENTS
	GIVING THE VIEWER MORE CONTROL
	MAKING EXAMPLES AVAILABLE
	DEVELOPER- STRUCTURED DOCUMENTS
	KNOWLEDGE AUTHORING
	LEVEL SUMMARIES
	BROWSING OBJECTS
	SUMMARY AND CONCLUSIONS
	PROS AND CONS
	ACKNOWLEDGEMENTS
	REFERENCES

