

Y. Dittrich et al. (Eds.): IS-EUD 2013, LNCS 7897, pp. 247–253, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Decision-Making Should Be More Like Programming

Christopher Fry and Henry Lieberman

MIT Media Lab
20 Ames St., Cambridge, MA 02139 USA
{cfry,lieber}@media.mit.edu

Abstract. Justify is an interactive “end-user development environment” for
deliberation. Justify organizes discussions in a hierarchy of points, each ex-
pressing a single idea. Points have a rich ontology of types, such as pro or con,
mathematical, or aesthetic arguments. “Programs” in this environment use
 inference rules to provide assessments that summarize groups of points. Inter-
active browsing modes serve as visualizers or debuggers for arguments.

1 Introduction

Online social media have given us a new opportunities to have large-scale discussions
that help us understand and make decisions. But large-scale discussions can quickly
get too complex. Who said what? Did anybody reply to a particularly devastating
criticism? Is this redundant? Do the pros outweigh the cons?

Most people know basic concepts in decision-making, like weighing evidence, vot-
ing, or understanding dependencies. But an intuitive understanding is not enough to
express ideas unambiguously, or when situations get complex.

We are proposing, essentially, an end-user development environment for online de-
liberation. Just like Eclipse is a development environment for Java, and Excel is a
development environment for numerical constraints, we introduce the Justify system
as an end-user development environment for rational arguments.

2 The Analogy between Deliberation and Programming

The analogy between deliberation and programming runs deep. Discussions are
hierarchies of ideas. Programs are hierarchies of statements. In a discussion, people
express reasons for believing or rejecting a single idea. Each of those reasons can,
recursively, have reasons for accepting or rejecting it. Justify calls each idea, a point.

2.1 Points and Point Types

Since an argument is frequently a hierarchy, we adopt an outline view for the user
interface. A point is shown as a single line in the outline, but it can be selected to see
details or expanded to see subpoints.

248 C. Fry and H. Lieber

Fig. 1. An argume

Programming has data ty
precede the one-line point
mark icon) which introduce
pro (thumbs-up icon) and c

Fig. 1 shows a Justify a
question is “Should we acc
tive”, and a con point, “No,

Below that appears anot
recursive. This refutes the c
because it is arguing again
accepting the paper.

2.2 Assessments

What does it mean to “eval
ing a subtree of the discuss
sessments for subpoints are

rman

ent about whether or not to accept a conference paper

ypes. Justify has point types. These are shown by icons t
description. Common point types are question, (quest
es an issue to be debated, and, for subpoints of a questi
on, (thumbs-down) for positions on the question.

argument about the acceptance of a conference paper. T
cept Paper X?”. Below it are a pro point, “Yes, it’s inno
, it is poorly written”.
ther con, “The mistakes are easily fixed”. Arguments
criticism of poor writing directly above it. It is a con po

nst the criticism, so therefore it is an argument in favor

Fig. 2. Justify point types

luate” a discussion? An assessment is the result of evalu
sion, and can be computed by arbitrary program code.
e like intermediate values in programming.

that
tion
ion,

The
ova-

are
oint
r of

uat-
As-

 Decision-Making Should Be More Like Programming 249

Fig. 3. Documentation on the question/pro_or_con point type, and a particular question’s
details

Assessments summarize their subtrees. A user can read an assessment and learn the
result of the sub-arguments without reading through them.

Assessments appear to the left of the arrow on each line. Each point type has its
own rules to compute its assessment. For example, an objection, with no subpoints,
is assessed as refuted. So the “poorly written” criticism is refuted by the assertion
that the “mistakes can be fixed”.

The moot point type asserts that its superpoint is worthless, trumping any other as-
sessment of that argument. Here we have a moot point, “It’s been published else-
where”. Thus, the entire “Should we accept Paper X?” question is marked refuted.

2.3 Justify’s Computational Model Is Like a Spreadsheet

The computational model of Justify is like a spreadsheet. Each Justify point is like a
spreadsheet cell. The assessment, to the left of the arrow, is like the value of a cell. To
the right of the arrow, the point type, represented by its icon, is like a spreadsheet
formula that determines how the value of the cell is computed. The subpoints of a
point, appearing below, are like the arguments to the computational rule that is
represented by the point type. The point title is essentially a domain-specific com-
ment.

For example, the math point type has subtypes that apply a given function to its
subpoints; they can perform arithmetic makeing end-user programming in Justify like
spreadsheet programming.

Like spreadsheets, Justify has a continuous computation model. When a point is
changed, everything that depends on it is immediately recomputed. Assessments,
which represent intermediate values, are always visible, facilitating debugging, as in
the ZStep debugger [Lieberman and Fry 97].

250 C. Fry and H. Lieber

Like other domain-speci
primitives for common pro
others so users can compose

2.4 Programming Conc

Table 1.

3 A More Substan
Meeting

Let's return to the example
the Program Chair. The init
Program Committee meetin

Many conferences use p
syChair or Precision Confe
work well. But with Justif

3.1 Papers Reviewed b

Reviewers can use Justify
rating (on the conventional

Fig

���������	�
��	��
� �	����
������� �	
��

��������	��
 ��
�	���
 �	��!	
�����
����

�
 ��	
����
��#���

�
 ��	
��

��
��	�

 �

�

�
*#+����
�
��� �������
$,���

	�
�	
�
���������� ��	
��	

rman

ific programming languages, Justify presents a small se
ocedures. The design helps procedures “play nicely” w
e new capabilities on the fly.

cepts and Justify Concepts

Programming concepts and Justify concepts

ntial Example: A Program Committee

e about reviewing conference papers. Imagine that you
tial paper are completed. You would like to prepare for
ng.
prepackaged conference management software, such as
erence. If the users follow the software's workflow, th
fy, conference organizers can program their own.

y External Reviewers

to identify pro or con points about the paper, or asse
1-5 scale).

g. 4. Reviewers’ discussion of Paper 17

�
�	
������� ���������	�
��	��
� �	����
�	
�������

	�
 �����
�������� �

�

��
�

����������
	���� ��������
� ������
���	
�

���
 "	
���������� ���������	
�
�#����
 $������
���������� �������	��%�	&��
�����
�
��
������
 (�$ ��)
����
���
�	���)�#�

�����#+���
�������	
�
 ��#����� $,��
����
��������	
�

��	
��

	�
��	������� -	�)��

�

��
�

et of
with

are
the

Ea-
hese

ert a

���'
	��

3.2 Program Committe

Author rebuttal and review
the Program Committee di
sion point type, allowing c

Fig. 5. Program Committee dis
by one of the reviewers, who t

Rebuttals or PC discussio
whole discussion for easy p

An author can rebut a re
ences what the reviewer ha
first pro point is a use_asse

3.3 Categories

Finally, the whole discussio

Fig. 6. Paper categ

The Program Chair has
consider, and rejected. We
to short paper. The result i

4 Usability Evalua

We conducted a small usab
Justify? What is its intende

Decision-Making Should Be More Like Programming

ee Discussion

er discussion can be implemented as Justify points, as
iscussion itself. Justify has access control via the disc
comments visible to the Program Committee only.

scussion. A PC member argues in favor, referencing a point m
hought it uses “important work”.

ons can target specific points of a review, packaging up
perusal by the Program Committee.
viewer point by creating a use_assessment point that re

ad to say in a different part of the hierarchy. In Fig. 5,
ssment point references the “important work” point.

on is organized by using the categorize point type.

gories established by the Program Chair, and decisions

set up four categories, accepted, accepted with revisi
might add other categories, for example, demote from lo
is to put each paper in one of the four categories.

ation

ility study to answer: Did people understand the concep
d purpose? Would they use Justify ? We were worried t

251

can
cus-

made

 the

efer-
the

ion,
ong

pt of
that

252 C. Fry and H. Lieberman

the complexity of Justify's ontology of point types might limit usability. Although we
only tested a few point types, results were positive. The point types, and hierarchical
structure, did not prove a barrier to usability.

4.1 Experimental Method

Participants were shown a demonstration, then walked through two examples:
“Should I subscribe to a public bicycle sharing system? Should I purchase an iPad?
They then used Justify on whether or not to take a vacation in Hawaii.

4.2 Experimental Results

We tested 8 college students in their 20s. 88% said they understood the purpose of
Justify (agree/strongly agree), 100% were confident in the basic operations on points,
while 75% felt that way about using the more advanced point types. Respondents
were split halfway about whether the ease of use was appropriate to the complexity of
the example discussions, perhaps not surprising considering the example discussions
were simple and Justify shines mainly in more complex discussions. 63% said they
would be willing to use Justify for their own (presumably more complex) discussions.
The one participant who strongly disagreed later clarified that her answer was due to
the simplicity of the examples. Later work will test more complex scenarios.

5 Related Work

Argumentation systems have a long history, though we believe that this paper is the
first to explicitly draw an analogy between argumentation and end-user programming.
[Conklin, et al 2003] surveys landmark systems from Doug Engelbart’s work on
Augmentation and Hypertext from 1963 through NoteCards, gIBIS [Conklin 1988]
and QuestMap through Compendium [Conklin 2003]. Conklin’s work on Compen-
dium incorporates the best ideas of the previous systems.

Compendium employs a 2-D graph of “icons on strings” showing links between
nodes. This is semantically flexible, but requires more work in graphical arrangement
and declaring link types than Justify’s outline/hierarchy. We like Buckingham’s work
on Cohere and the conceptual framework described in [Buckingham Shum 2010].

We also like SIBYL [Lee 91] by Jintae Lee at the Center for Coordination Science
directed by Thomas Malone. Fry worked in the early 1990’s there. Malone’s work of
planet-wide importance continues at MIT’s Center for Collective Intelligence.

Iyad Rahwan [Rahwan 11] tackles representing argumentation in the Semantic
Web technologies of XML, RDF and OWL. This can standardize and share an ontol-
ogy across the web, but pays little attention to the accessibility of the interface.

 Decision-Making Should Be More Like Programming 253

References

1. Buckingham Shum, S., De Liddo, A.: Collective intelligence for OER sustainability. In:
OpenED 2010: Seventh Annual Open Education Conference, Barcelona, Spain, November
2-4 (2010)

2. Conklin, J., Selvin, A., Buckingham Shum, S., Sierhuis, M.: Facilitated Hypertext for Collec-
tive Sensemaking: 15 Years on from gIBIS. In: Weigand, H., Goldkuhl, G., de Moor, A. (eds.)
Keynote Address, Proceedings LAP 2003: 8th International Working Conference on the Lan-
guage-Action Perspective on Communication Modelling, Tilburg, The Netherlands, July 1-2
(2003), http://www.uvt.nl/lap2003

3. Conklin, J., Begeman, M.L.: gIBIS: a hypertext tool for exploratory policy discussion. In:
Proceedings of the 1988 ACM Conference on Computer-Supported Cooperative Work
(CSCW 1988), pp. 140–152. ACM, New York (1988)

4. Lee, J.: SIBYL: A qualitative decision management system. In: Winston, P.H., Shellard,
S.A. (eds.) Artificial Intelligence at MIT Expanding Frontiers, pp. 104–133. MIT Press,
Cambridge (1991)

5. Lieberman, H., Fry, C.: ZStep 95: A Reversible, Animated, Source Code Stepper. In:
Stasko, J., Domingue, J., Brown, M., Price, B. (eds.) Software Visualization: Programming
as a Multimedia Experience. MIT Press, Cambridge (1997)

6. Malone, T.W., Lai, K.Y., Fry, C.: Experiments with Oval: A radically tailorable tool for
cooperative work. ACM Transactions on Information Systems 13(2), 177–205 (1995)

7. Mason, C., Johnson, R.: DATMS: A Framework for Assumption Based Reasoning. In:
Distributed Artificial Intelligence, vol. 2. Morgan Kaufmann Publishers, Inc. (1989)

8. Malone, T.W., Klein, M.: Harnessing Collective Intelligence to Address Global Climate
Change. Innovations 2(3), 15–26 (2007)

9. Minsky, M.: The Society of Mind. Simon & Schuster, New York (1988)
10. Rahwan, I., Banihashemi, B., Reed, C., Walton, D., Abdallah, S.: Representing and Classify-

ing Arguments on the Semantic Web. The Knowledge Engineering Review 26(4), 487–511
(2011)

11. Speer, R., Havasi, C., Lieberman, H.: AnalogySpace: Reducing the Dimensionality of
Commonsense Knowledge. In: Conference of the Assocation for the Advancement of Ar-
tificial Intelligence (AAAI 2008), Chicago (2008)

