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Abstract. Justify is an interactive “end-user development environment” for  
deliberation.  Justify organizes discussions in a hierarchy of points, each ex-
pressing a single idea. Points have a rich ontology of types, such as pro or con, 
mathematical, or aesthetic arguments. “Programs” in this environment use 
 inference rules to provide assessments that summarize groups of points. Inter-
active browsing modes serve as visualizers or debuggers for arguments.  

1 Introduction 

Online social media have given us a new opportunities to have large-scale discussions 
that help us understand and make decisions. But large-scale discussions can quickly 
get too complex. Who said what? Did anybody reply to a particularly devastating 
criticism?  Is this redundant?  Do the pros outweigh the cons? 

Most people know basic concepts in decision-making, like weighing evidence, vot-
ing, or understanding dependencies. But an intuitive understanding is not enough to 
express ideas unambiguously, or when situations get complex. 

We are proposing, essentially, an end-user development environment for online de-
liberation. Just like Eclipse is a development environment for Java, and Excel is a 
development environment for numerical constraints, we introduce the Justify system 
as an end-user development environment for rational arguments. 

2 The Analogy between Deliberation and Programming 

The analogy between deliberation and programming runs deep. Discussions are  
hierarchies of ideas. Programs are hierarchies of statements. In a discussion, people 
express reasons for believing or rejecting a single idea. Each of those reasons can, 
recursively, have reasons for accepting or rejecting it. Justify calls each idea, a point.  

2.1 Points and Point Types  

Since an argument is frequently a hierarchy, we adopt an outline view for the user 
interface. A point is shown as a single line in the outline, but it can be selected to see 
details or expanded to see subpoints.  
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Fig. 3. Documentation on the question/pro_or_con point type, and a particular question’s  
details 

Assessments summarize their subtrees. A user can read an assessment and learn the 
result of the sub-arguments without reading through them.  

Assessments appear to the left of the arrow on each line. Each point type has its 
own rules to compute its assessment.  For example, an objection, with no subpoints, 
is assessed as refuted.  So the “poorly written” criticism is refuted by the assertion 
that the “mistakes can be fixed”.  

The moot point type asserts that its superpoint is worthless, trumping any other as-
sessment of that argument. Here we have a moot point, “It’s been published else-
where”. Thus, the entire “Should we accept Paper X?” question is marked refuted. 

2.3 Justify’s Computational Model Is Like a Spreadsheet 

The computational model of Justify is like a spreadsheet. Each Justify point is like a 
spreadsheet cell. The assessment, to the left of the arrow, is like the value of a cell. To 
the right of the arrow, the point type, represented by its icon, is like a spreadsheet 
formula that determines how the value of the cell is computed. The subpoints of a 
point, appearing below, are like the arguments to the computational rule that is 
represented by the point type. The point title is essentially a domain-specific com-
ment. 

For example, the math point type has subtypes that apply a given function to its 
subpoints; they can perform arithmetic makeing end-user programming in Justify like 
spreadsheet programming. 

Like spreadsheets, Justify has a continuous computation model. When a point is 
changed, everything that depends on it is immediately recomputed. Assessments, 
which represent intermediate values, are always visible, facilitating debugging, as in 
the ZStep debugger [Lieberman and Fry 97]. 
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the complexity of Justify's ontology of point types might limit usability. Although we 
only tested a few point types, results were positive. The point types, and hierarchical 
structure, did not prove a barrier to usability.  

4.1 Experimental Method 

Participants were shown a demonstration, then walked through two examples:  
“Should I subscribe to a public bicycle sharing system? Should I purchase an iPad?   
They then used Justify on whether or not to take a vacation in Hawaii.  

4.2 Experimental Results 

We tested 8 college students in their 20s. 88% said they understood the purpose of 
Justify (agree/strongly agree), 100% were confident in the basic operations on points, 
while 75% felt that way about using the more advanced point types. Respondents 
were split halfway about whether the ease of use was appropriate to the complexity of 
the example discussions, perhaps not surprising considering the example discussions 
were simple and Justify shines mainly in more complex discussions. 63% said they 
would be willing to use Justify for their own (presumably more complex) discussions.  
The one participant who strongly disagreed later clarified that her answer was due to 
the simplicity of the examples. Later work will test more complex scenarios.  

5 Related Work 

Argumentation systems have a long history, though we believe that this paper is the 
first to explicitly draw an analogy between argumentation and end-user programming. 
[Conklin, et al 2003] surveys landmark systems from Doug Engelbart’s work on 
Augmentation and Hypertext from 1963 through NoteCards, gIBIS [Conklin 1988] 
and QuestMap through Compendium [Conklin 2003]. Conklin’s work on Compen-
dium incorporates the best ideas of the previous systems.  

Compendium employs a 2-D graph of “icons on strings” showing links between 
nodes. This is semantically flexible, but requires more work in graphical arrangement 
and declaring link types than Justify’s outline/hierarchy. We like Buckingham’s work 
on Cohere and the conceptual framework described in [Buckingham Shum 2010]. 

We also like SIBYL [Lee 91] by Jintae Lee at the Center for Coordination Science 
directed by Thomas Malone. Fry worked in the early 1990’s there.  Malone’s work of 
planet-wide importance continues at MIT’s Center for Collective Intelligence. 

Iyad Rahwan [Rahwan 11] tackles representing argumentation in the Semantic 
Web technologies of XML, RDF and OWL. This can standardize and share an ontol-
ogy across the web, but pays little attention to the accessibility of the interface.  
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