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Why extract features?
Motivation: panorama stitching

We have two images – how do we combine them?

We need to match (align) images

Building a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003

Matching with Invariant Features

Darya Frolova, Denis Simakov
The Weizmann Institute of Science

March 2004
http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt

Why extract features?
Motivation: panorama stitching

We have two images – how do we combine them?

Step 1: Detect feature points in both images
Step 2: Find corresponding pairs

Why extract features?
Motivation: panorama stitching

We have two images – how do we combine them?

Step 3: Use these pairs to align images

Step 1: Detect feature points in both images
Step 2: Find corresponding pairs
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Matching with Features
Problem 1:

Detect the same point independently in both images

no chance to match!

We need a repeatable detector

Matching with Features
Problem 2:

For each point correctly recognize the corresponding 
one

?

We need a reliable and distinctive descriptor

Selecting Good Features
What’s a “good feature”?

Satisfies brightness constancy
Has sufficient texture variation
Does not have too much texture variation
Corresponds to a “real” surface patch
Does not deform too much over time

Applications  
Feature points are used for:

Motion tracking
Image alignment 
3D reconstruction
Object recognition
Indexing and database retrieval
Robot navigation

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Finding Corners

Key property: in the region around a 
corner, image gradient has two or more 
dominant directions
Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“
Proceedings of the 4th Alvey Vision Conference: pages 147--151.
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An introductory example:

Harris corner detector

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

The Basic Idea

We should easily recognize the point by looking 
through a small window
Shifting a window in any direction should give a 
large change in intensity

Harris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Harris Detector: Mathematics
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Window-averaged change of intensity for the shift [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Harris Detector: Mathematics

Change of intensity for the shift [u,v]:

Second-order Taylor expansion of E(u,v) about (0,0)
(bilinear approximation for small shifts):
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Harris Detector: Mathematics
Expanding E(u,v) in a 2nd order Taylor series expansion, we 
have,for small shifts [u,v],  a bilinear approximation:

where M is a 2×2 matrix computed from image derivatives:
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First, consider an axis-aligned corner:

Interpreting the second moment 
matrix
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• First, consider an axis-aligned corner:

• This means dominant gradient directions align 
with x or y axis

• If either λ is close to 0, then this is not a corner, 
so look for locations where both are large.

Slide credit: David Jacobs

Interpreting the second moment 
matrix

General Case

Since M is symmetric, we have RRM ⎥
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We can visualize M as an ellipse with axis lengths 
determined by the eigenvalues and orientation determined 
by R

direction of the 
slowest change

direction of the 
fastest change
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Harris Detector: Mathematics

λ1 and λ2 are small;
E is almost constant 
in all directions

Classification of 
image points using 
eigenvalues of M:

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Harris Detector: Mathematics

Measure of corner response:
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(k – empirical constant, k = 0.04-0.06)
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Harris Detector: Mathematics

• R depends only on 
eigenvalues of M

• R is large for a corner

• R is negative with large 
magnitude for an edge

• |R| is small for a flat
region

λ1

λ2 “Corner”

“Edge”

“Edge”

“Flat”

R > 0

R < 0

R < 0|R| small

06.04.0,)()(trace)det( 2
2121
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Harris Detector: Summary

Average intensity change in direction [u,v] can be expressed 
as a bilinear form: 

Describe a point in terms of eigenvalues of M:
measure of corner response

A good (corner) point should have a large intensity change in 
all directions, i.e. R should be large positive
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Harris Detector

Algorithm:
1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel 
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function 

(nonmaximum suppression)

Harris Detector: Workflow

Harris Detector: Workflow
Compute corner response R

Harris Detector: Workflow
Find points with large corner response: R>threshold
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Harris Detector: Workflow
Take only the points of local maxima of R

Harris Detector: Workflow

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Harris Detector: Some Properties
Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation

Harris Detector: Some Properties
Invariance to image intensity change?

Harris Detector: Some Properties

Partial invariance to additive and multiplicative 
intensity changes

 Only derivatives are used => invariance 
to intensity shift I → I +  b

 Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)
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Harris Detector: Some Properties

Invariant to image scale?

Harris Detector: Some Properties

All points will be 
classified as edges

Corner !

Not invariant to scaling

Harris Detector: Some Properties

Quality of Harris detector for different scale 
changes

Repeatability rate:
# correspondences

# possible correspondences

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

We want to:
detect the same interest points 
regardless of image changes

Darya Frolova, Denis Simakov
http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt

Invariance
We want features to be detected despite 
geometric or photometric changes in the image: 
if we have two transformed versions of the 
same image, features should be detected in 
corresponding locations
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Models of Image Change

Geometric
Rotation

Scale

Affine
valid for: orthographic camera, locally planar 
object

Photometric
Affine intensity change (I → a I + b)

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Rotation Invariant Detection
Harris Corner Detector

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Scale Invariant Detection

• Consider regions (e.g. circles) of different sizes around 
a point

• Regions of corresponding sizes will look the same in 
both images

Scale Invariant Detection

• The problem: how do we choose corresponding circles 
independently in each image?
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Scale Invariant Detection
• Solution:

– Design a function on the region (circle), which is “scale 
invariant” (the same for corresponding regions, even if 
they are at different scales)

Example: average intensity. For corresponding regions 
(even of different sizes) it will be the same.

scale = 1/2

– For a point in one image, we can consider it as a 
function of region size (circle radius) 

f

region size

Image 1 f

region size

Image 2

Scale Invariant Detection
• Common approach:

scale = 1/2
f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: region size, for which the maximum is 
achieved, should be invariant to image scale.

s1 s2

Important: this scale invariant region size is 
found in each image independently!

Scale Invariant Detection

• A “good” function for scale detection:
has one stable sharp peak

f

region size

bad

f

region size

bad

f

region size

Good !

• For usual images: a good function would be a one 
which responds to contrast (sharp local intensity 
change)

Scale Invariant Detection

• Functions for determining scale

2 2
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Kernel Imagef = ∗
Kernels:

where Gaussian

Note: both kernels are invariant to 
scale and rotation

(Laplacian)

(Difference of Gaussians)

Scale Invariant Detectors

• Harris-Laplacian1

Find local maximum of:
– Harris corner detector in 

space (image coordinates)
– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
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• SIFT (Lowe)2

Find local maximum of:
– Difference of Gaussians in 

space and scale

scale

x

y

← DoG →

←
D

oG
→

Scale Invariant Detectors

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

• Experimental evaluation of detectors 
w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences
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Scale Invariant Detection: 
Summary

• Given: two images of the same scene with a large scale 
difference between them

• Goal: find the same interest points independently in 
each image

• Solution: search for maxima of suitable functions in 
scale and in space (over the image)

Methods: 
1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over 

scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Affine Invariant Detection

• Above we considered:
Similarity transform (rotation + uniform scale)

• Now we go on to:
Affine transform (rotation + non-uniform scale)

Affine Invariant Detection
• Take a local intensity extremum as initial point
• Go along every ray starting from this point and stop when 

extremum of function  f is reached

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.

0
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( )

( )
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I t I
f t

I t I dt

−
=

−∫
f

points along the ray

• We will obtain approximately 
corresponding regions

Remark: we search for scale 
in every direction

Affine Invariant Detection

• Algorithm summary (detection of affine invariant region):
Start from a local intensity extremum point
Go in every direction until the point of extremum of some 

function  f
Curve connecting the points is the region boundary
Compute geometric moments of orders up to 2 for this region
Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local, 
Affinely Invariant Regions”. BMVC 2000.

Affine Invariant Detection

• The regions found may not exactly correspond, so we approximate 
them with ellipses

• Geometric Moments: 

2

( , )p q
pqm x y f x y dxdy= ∫ Fact: moments mpq uniquely 

determine the function f

Taking  f to be the characteristic function of a region 
(1 inside, 0 outside), moments of orders up to 2 allow 
to approximate the region by an ellipse

This ellipse will have the same moments of 
orders up to 2 as the original region
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Affine Invariant Detection

q Ap=

2 1
TA AΣ = Σ

1
2 1Tq q−Σ =

2 region 2

TqqΣ =

• Covariance matrix of region points defines an ellipse:

1
1 1Tp p−Σ =

1 region 1

TppΣ =

( p = [x, y]T is relative 
to the center of mass) 

Ellipses, computed for corresponding 
regions, also correspond!

Affine Invariant Detection : 
Summary

• Under affine transformation, we do not know in advance shapes of
the corresponding regions

• Ellipse given by geometric covariance matrix of a region robustly 
approximates this region

• For corresponding regions ellipses also correspond.

Methods: 
1. Search for extremum along rays [Tuytelaars, Van Gool]:

2. Maximally Stable Extremal Regions [Matas et.al.]

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Point Descriptors
• We know how to detect points
• Next question:

How to match them?

?
Point descriptor should be:

1. Invariant
2. Distinctive

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Descriptors Invariant to Rotation
• Harris corner response measure:

depends only on the eigenvalues of the matrix M
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C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988
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Descriptors Invariant to Rotation
• Image moments in polar coordinates

( , )k i l
klm r e I r drdθ θ θ−= ∫∫

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003

Rotation in polar coordinates is translation of the angle:
θ → θ + θ 0

This transformation changes only the phase of the moments, but 
not its magnitude

klmRotation invariant descriptor consists 
of magnitudes of moments:

Matching is done by comparing vectors [|mkl|]k,l

Descriptors Invariant to Rotation

• Find local orientation

Dominant direction of gradient

• Compute image derivatives relative to this 
orientation

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Descriptors Invariant to Scale

• Use the scale determined by detector to compute 
descriptor in a normalized frame

For example:
• moments integrated over an adapted window
• derivatives adapted to scale: sIx

Contents
• Harris Corner Detector

– Description
– Analysis

• Detectors
– Rotation invariant
– Scale invariant
– Affine invariant

• Descriptors
– Rotation invariant
– Scale invariant
– Affine invariant

Affine Invariant Descriptors
• Affine invariant color moments

( , ) ( , ) ( , )abc p q a b c
pq

region

m x y R x y G x y B x y dxdy= ∫

F.Mindru et.al. “Recognizing Color Patterns Irrespective of Viewpoint and Illumination”. CVPR99

Different combinations of these moments 
are fully affine invariant

Also invariant to affine transformation of 
intensity I → a  I + b
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Affine Invariant Descriptors
• Find affine normalized frame

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003

2
TqqΣ =

1
TppΣ =

A

A1
1

1 1 1
TA A−Σ = A2

1
2 2 2

TA A−Σ =

rotation

• Compute rotational invariant descriptor in this 
normalized frame

SIFT – Scale Invariant Feature Transform1

• Empirically found2 to show very good performance, invariant to 
image rotation, scale, intensity change, and to moderate affine
transformations

1 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003

Scale = 2.5
Rotation = 450

CVPR 2003 Tutorial

Recognition and Matching 
Based on Local Invariant 

Features
David Lowe 

Computer Science Department
University of British Columbia

Invariant Local Features

• Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features

• Locality: features are local, so robust to occlusion and 
clutter (no prior segmentation)

• Distinctiveness: individual features can be matched to 
a large database of objects

• Quantity: many features can be generated for even 
small objects

• Efficiency: close to real-time performance

• Extensibility: can easily be extended to wide range of 
differing feature types, with each adding robustness

Advantages of invariant local features Scale invariance
Requires a method to repeatably select points in location and scale:
• The only reasonable scale-space kernel is a Gaussian 

(Koenderink, 1984; Lindeberg, 1994)
• An efficient choice is to detect peaks in the difference of 

Gaussian pyramid (Burt & Adelson, 1983; Crowley & Parker, 
1984 – but examining more scales)

• Difference-of-Gaussian with constant ratio of scales is a close 
approximation to Lindeberg’s scale-normalized Laplacian (can 
be shown from the heat diffusion equation)

Blur SubtractBlur Subtract
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Scale space processed one octave at 
a time

Key point localization
• Detect maxima and minima of 

difference-of-Gaussian in scale space
• Fit a quadratic to surrounding values 

for sub-pixel and sub-scale 
interpolation (Brown & Lowe, 2002)

• Taylor expansion around point:

• Offset of extremum (use finite 
differences for derivatives):

Blur Subtract

Select canonical orientation
• Create histogram of local gradient 

directions computed at selected scale
• Assign canonical orientation at peak of 

smoothed histogram
• Each key specifies stable 2D 

coordinates (x, y, scale, orientation)

0 2π

Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle 
curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures

SIFT vector formation
• Thresholded image gradients are sampled over 16x16 array 

of locations in scale space
• Create array of orientation histograms
• 8 orientations x 4x4 histogram array = 128 dimensions

Feature stability to noise
• Match features after random change in image scale & 

orientation, with differing levels of image noise
• Find nearest neighbor in database of 30,000 features
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Feature stability to affine change
• Match features after random change in image scale & 

orientation, with 2% image noise, and affine distortion
• Find nearest neighbor in database of 30,000 features

Distinctiveness of features
• Vary size of database of features, with 30 degree affine 

change, 2% image noise
• Measure % correct for single nearest neighbor match

A good SIFT features tutorial
http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf
By Estrada, Jepson, and Fleet.


