Scene Modeling for a Single View

Reading:

- A. Criminisi, I. Reid and A. Zisserman, "Single View Metrology" (ICCV 99)
- B. Zisser And Mundy, appendix

on to 3D...

We want real 3D scene walk-throughs:

Camera rotation
Camera translation

Can we do it from a single photograph?

Camera rotations with homographies

Original image

St.Petersburg photo by A. Tikhonov

Virtual camera rotations

Does it work? Synthetic PP PP1 PP2

Yes, with planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!

So, what can we do here?

Model the scene as a set of planes!

Now, just need to find the orientations of these planes.

Silly Euclid: Trix are for kids! Parallel lines???

A: It's at eye level: ray from COP to VP is perpendicular to image plane.

"Tour into the Picture" (SIGGRAPH '97)

Create a 3D "theatre stage" of five billboards

Specify foreground objects through bounding polygons

Use camera transformations to navigate through the scene

The idea

Many scenes (especially paintings), can be represented as an axis-aligned box volume (i.e. a stage)

Key assumptions:

- · All walls of volume are orthogonal
- · Camera view plane is parallel to back of volume
- Camera up is normal to volume bottom

How many vanishing points does the box have?

- Three, but two at infinity
- · Single-point perspective

Can use the vanishing point to fit the box to the particular Scene!

2D to 3D conversion

- Size of user-defined back plane must equal size of camera plane (orthogonal sides)
- Use top versus side ratio to determine relative height and width dimensions of box
- Left/right and top/bot ratios determine part of 3D camera placement

Compute the *heights* Z of all other points

Measurements on planes

Approach: unwarp, then measure What kind of warp is this?

Unwarp ground plane

Our old friend – the homography

Need 4 reference points with world coordinates

p = (x,y)

p' = (X,Y,0)

Finding world coordinates (X,Y,Z)

Define the ground plane (Z=0) Compute points (X,Y,0) on that plane Compute the *heights* Z of all other points

Preliminaries: projective geometry

The projective plane

Why do we need homogeneous coordinates?

represent points at infinity, homographies, perspective projection, multi-view relationships

What is the geometric intuition?

• a point in the image is a ray in projective space

Each point (x,y) on the plane is represented by a ray (sx,sy,s)
 – all points on the ray are equivalent: (x, y, 1) ≡ (sx, sy, s)

Projective lines

What does a line in the image correspond to in projective space?

A line is a *plane* of rays through origin
 all rays (x,y,z) satisfying: ax + by + cz = 0

in vector notation: $0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

• A line is also represented as a homogeneous 3-vector I

Point and line duality

- A line I is a homogeneous 3-vector
- It is ⊥ to every point (ray) **p** on the line: **I p**=0

What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I is the plane normal

What is the intersection of two lines I_1 and I_2 ?

• \mathbf{p} is \perp to $\mathbf{I_1}$ and $\mathbf{I_2}$ \Rightarrow $\mathbf{p} = \mathbf{I_1} \times \mathbf{I_2}$

Points and lines are dual in projective space

 given any formula, can switch the meanings of points and lines to get another formula

Computing vanishing points

Properties $v = \Pi P_{\infty}$

- P_∞ is a point at *infinity*, v is its projection
- They depend only on line direction
- Parallel lines P₀ + tD, P₁ + tD intersect at P_∞

Computing vanishing points

What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- · I is the plane normal

What is the intersection of two lines I_4 and I_2 ?

• \mathbf{v} is \perp to $\mathbf{I_1}$ and $\mathbf{I_2}$ \Rightarrow $\mathbf{v} = \mathbf{I_1} \times \mathbf{I_2}$

What is the intersection of a set of lines I_1 , I_i ... I_n ?

$$\mathbf{M} = \sum \mathbf{l}_i \mathbf{l}_i^T$$

Eigenvector of M with smalest eigenvalues is v

Vanishing Points and Projection Matrix

Camera Projection Matrix

- $\mathbf{v} = \mathbf{\Pi} \mathbf{X} = \begin{bmatrix} \boldsymbol{\pi}_1 & \boldsymbol{\pi}_2 & \boldsymbol{\pi}_3 & \boldsymbol{\pi}_4 \end{bmatrix} \mathbf{X}$
- $\pi_1 = \Pi[1 \ 0 \ 0 \ 0]^T = X \text{ vanishing point } (\mathbf{v}_x)$
- similarly, $\pi_2 = \mathbf{v}_Y$, $\pi_3 = \mathbf{v}_Z$
- $\pi_4 = \Pi[0 \ 0 \ 0 \ 1]^T = \text{projection of world origin}$

$$\rightarrow$$
 convenient to choose $\pi_4 = \frac{\mathbf{v}_X \times \mathbf{v}_Y}{\|\mathbf{v}_X \times \mathbf{v}_Y\|}$ call this \mathbf{l}

$$\mathbf{\Pi} = \begin{bmatrix} \mathbf{v}_X & \mathbf{v}_Y & \mathbf{v}_Z & \mathbf{1} \end{bmatrix}$$

Not So Fast! We only know \mathbf{v} 's up to a scale factor

$$\mathbf{\Pi} = \begin{bmatrix} a \mathbf{v}_{X} & b \mathbf{v}_{Y} & \alpha \mathbf{v}_{Z} & \mathbf{1} \end{bmatrix}$$

Measuring height without a ruler

Compute Z from image measurements

· Need more than vanishing points to do this

Measuring Heights

Compute Z from Image Measurements

- Will actually calculate αZ (scaled height)
 - can convert to actual (Euclidean) height given a reference point
- · First geometric argument
- · Then algebraic derivation and formula

The Cross Ratio

A Projective Invariant

 Something that does not change under projective transformations (including perspective projection)

The Cross-Ratio of 4 Colinear Points

Can permute the point ordering

• 4! = 24 different invariants

This is the fundamental invariant of projective geometry

· likely that all other invariants derived from cross-ratio

Measuring Height

Algebraic Derivation

- $\rho \mathbf{b} = \mathbf{\Pi} \begin{bmatrix} X & Y & 0 & 1 \end{bmatrix}^T = Xa \mathbf{v}_X + Yb \mathbf{v}_X + \mathbf{l}$
- $\mu \mathbf{t} = \mathbf{\Pi} \begin{bmatrix} X & Y & Z & 1 \end{bmatrix}^T = Xa \mathbf{v}_x + Yb \mathbf{v}_x + \alpha Z \mathbf{v}_z + 1$
- Eliminating ρ and μ yields

$$\alpha Z = \frac{-\|\mathbf{b} \times \mathbf{t}\|}{\mathbf{l}^T \mathbf{b} \|\mathbf{v}_z \times \mathbf{t}\|}$$

Can calculate α given a known height in scene

Measurements Within Reference Plane

Planar Perspective Map (homography) H

- · H Maps reference plane X-Y coords to image plane u-v coords
- Fully determined from 4 known points on ground plane
 - Option A: physically measure 4 points on ground
 - Option B: find a square, guess the size
 - Option C: Note $\mathbf{H} = [\mathbf{a}\mathbf{v}_X \ \mathbf{b}\mathbf{v}_Y \ \mathbf{l}]$ (columns 1,2,4 of Π) » play with scale factors a and b until the model "looks right"
- Given u-v, can find X-Y by H-1

Measurements Within Parallel Plane

Planar Perspective Map (homography) H₇

H_Z Maps X-Y-Z coords to image plane u-v coords

$$\mathbf{H}_{Z} = \begin{bmatrix} a\mathbf{v}_{X} & b\mathbf{v}_{Y} & \alpha Z \mathbf{v}_{Z} + \mathbf{1} \end{bmatrix}$$

- · Another way is to first map parallel plane to reference plane:
 - parallel planes related by a homology (5 parameter homography)
 - $\mathbf{\hat{H}} = \mathbf{H}_{\mathbf{Z}} \mathbf{H}^{-1} = \mathbf{I} + \alpha \mathbf{Z} \mathbf{v}_{\mathbf{Z}}^{\mathsf{T}} \mathbf{1}$
 - $-\,$ maps u-v coords on parallel plane to u-v coords on ref. plane

Assignment 4

Implement Technique in Criminisi et al.

Due: Never

- · Load in an image
- Click on parallel lines defining $X,\,Y,\, \text{and}\,\, Z$ directions
- · Compute vanishing points
- • Specify points on reference plane, ref. height
- · Compute 3D positions of several points
- Create a 3D model from these points
- · Extract texture maps
 - using Assignment 2 warping code
- Output a VRML model