Physically-Based Modeling: Mass-Spring Systems

M. Alex O. Vasilescu

Surface Reconstruction

Data Structures

- Node *i*. *i*=1....N
 - Mass m_i
 - Position: $\mathbf{x}_{i}(t) = [x_{i}(t), y_{i}(t), z_{i}(t)]^{t}$
 - $\mathbf{v}_i(t) = d\mathbf{x}_i(t)/dt$ - Velocity:
 - Accelaration $\mathbf{a}_i(t) = d^2 \mathbf{x}_i(t)/dt^2$
 - Net nodal force: $\mathbf{f}_{i}^{net}(t)$
- Spring
 - Connects node *j* to node *i*
 - Natural length l_{ii}
 - Stiffness k_{ii}

typedef struct node{ float mass; vector position; vector velocity; vector force; } node;

typedef struct spring{ node *n1; node *n2; double rest length; double spring_constant; } spring;

System Dynamics:

Lagrange equations of motion:

$$m_i \ddot{\mathbf{x}}_i + \gamma_i \dot{\mathbf{x}}_i - \mathbf{g}_i - \mathbf{f}_i = \mathbf{0},$$

*γ*_i is damping coefficient

- f_i is the external force at node i
- g, total internal force on the node i due to neighboring nodes

System Dynamics:

Lagrange equations of motion:

$$\mathbf{F}_{i,\text{total}} = -\gamma_i \dot{\mathbf{x}}_i + \mathbf{g}_i + \mathbf{f}_i$$

$$\mathbf{F}_{i,\text{total}} = m_i \tilde{\mathbf{X}}_i$$

- γ_i is damping coefficient
- f_i is the external force at node i
- g_i total internal force on the node *i* due to neighboring nodes

 $m_i \ddot{\mathbf{x}}_i + \gamma_i \dot{\mathbf{x}}_i - \mathbf{g}_i - \mathbf{f}_i = \mathbf{0},$

- for (i=0; i<num_nodes; i++){ vscale((1 / nds[i].mass), nds[i].force, accel); vscale(dt, accel, delta_vel);
- vplus(delta_vel, nds[i].velocity, nds[i].velocity); vscale(dt, nds[i].velocity, delta_pos);
- $\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \Delta t \mathbf{v}_i(t + \Delta t) \implies \text{vinc(delta_pos, nds[i].position);}$

Force Computation (Cont.)

Damping Forces: $\gamma \dot{\mathbf{x}}_{i}(t)$

void damping_forces (int num_nodes, node *nds) { vector force; int i; for (i=0; i<num_nodes; i++){ vscale(DAMPING, nds[i].velocity, force);

vdec(force, nds[i].force);}}

External force (very simple) : springs attached to the data from each mesh node

 $\boldsymbol{f}_{i}(t) = \boldsymbol{k}_{data} \| \operatorname{data}(\mathbf{x}_{i}(t)) - \mathbf{x}_{i}(t) \|$

- project the position of node i $\mathbf{x}_i(t)$ into the data, and extract the value at that location $data(\mathbf{x}_i(t))$
- calculate the force using a data spring \implies nd->force.z += IMAGE_CONST*(val p.z); constant k_{data}

void external forces(int num nodes, node *nds) { int i; node *nd; vector p; float val; for (i=0: i<num nodes: i++) { nd = &ndslil

p = nd->position;

val=image_interp(p.x, p.y, IMAGE_DATA);

Mass-Spring Forces

Spring Forces:

 $\mathbf{a}_i(t) =$

mi

 $\mathbf{v}_{i}(t + \Delta t) = \mathbf{v}_{i}(t) + \Delta t \, \mathbf{a}_{i}(t)$

 $-\mathbf{g}_i(t)$ total force on the node *i* due to springs connecting it to neighboring nodes $j \in N_i$

Force Computation

Spring Forces: • g_i total force on the node i due to springs connecting it to neighboring • $g_i(t) = \sum_{j \in N_i} sij$ • the force spring ij exerts on node i $s_{ij} = k_i j e_{ij} \left| \frac{r_{ij}}{|r_{ij}|} \right|$ • where • $r_{ij} = x_j - x_i$ is separation of nodes • $r_{ij} = |r_{ij}| - l_{ij}$ is actual length of spring $e_{ij} = |r_{ij}| - l_{ij}$ is deformation of spring $e_{ij} = |r_{ij}| - l_{ij}| - l_{ij}$

Adaptive Meshes

• Use Lagrangian equations of motion to simulate mesh dynamics.

۰E

$$m_i \ddot{\mathbf{x}}_i + \gamma_i \dot{\mathbf{x}}_i - \mathbf{g}_i - \mathbf{f}_i = 0$$

• The internal spring forces have spring "constants" that vary according to a data dependent function, such as the magnitude of the gradient.

	$\mathbf{g}_i(t) = \sum_{\substack{j \in N_i}} \mathbf{s}_{ij} ,$	$\mathbf{s}_{ij} = k_{ij} e_{ij} \frac{\mathbf{r}_{ij}}{ \mathbf{r}_{ij} }$
igital Image:	$\mathbf{d}(k,l)$	
daptation function:	$\mathbf{a}_{d} = G * \left\ \nabla \mathbf{d} \right\ $	G = gaussian
bservation:	$O_i = \mathbf{a}_d(x_i, y_i)$	
pring "Constant": - var	ies according to the adaptation fu	nction
	$k = (1 \circ k) + \circ k$	a = 5(0 + 0)

Adaptive Surface Reconstruction

SpringLens

Distributed Nonlinear Magnifications

Tobias Germer Timo Götzelmann Martin Spindler Thomas Strothotte

Department of Simulation and Graphics Otto-von-Guericke University of Magdeburg

Mass-Spring Systems Applications

Surface Reconstruction:

Deformable objects capable of:

- Heat conduction,
- Thermoelasticity,
- Melting and fluid-like behavior in the molten state

Cloth simulation

Heating and Melting Deformable Models

Heat/Diffusion Equation

• Diffusion of heat in materials:

$$\stackrel{\partial}{\partial t}(\mu\sigma\theta) - \nabla \cdot (\mathbf{C}\nabla\theta) = \mathbf{d}$$

Heat is conducted from high temperature to low temperature .

The rate of heat conduction per unit area is proportional to the gradient of the temperature.

The amount of heat required to raise the temperature of a material theta degrees is proportional to the mass of the sample per unit volume and the proportionality factor sigma, the specific heat of the material.

Heat/Diffusion Equation

• Homogeneous, isotropic material:

$$\frac{\partial}{\partial t}(\mu\sigma\theta) - c\nabla^2\theta = q$$

• Discretize the heat equation:

$$\mu\sigma \frac{\left(\theta^{t+\Delta t} - \theta^{t}\right)}{\Delta t} - c \left[\frac{\theta^{t}_{u+\Delta u,v,w} - 2\theta^{t}_{u,v,w} + \theta^{t}_{u-\Delta u,v,w}}{\Delta t^{2}} + \frac{\theta^{t}_{u,v+\Delta u,w} - 2\theta^{t}_{u,v,w} + \theta^{t}_{u,v-\Delta v,w}}{\Delta v^{2}} + \frac{\theta^{t}_{u,v,w+\Delta w} - 2\theta^{t}_{u,v,w} + \theta^{t}_{u,v-\Delta v,w}}{\Delta w^{2}} \right] = q$$

Liquids - Particle Models

Model long range attraction and short range repulsion forces between pairs of particles according to Lennard-Jones potentials.

Forces involving inverse powers of particle separation

Discrete Fluid Model

The total force on a particle, i, due to all other particles

$$\mathbf{g}_{i}(t) = \sum_{j \neq i} \mathbf{g}_{ij}(t) \qquad \text{attraction term repulsion term}$$
$$\mathbf{g}_{ij}(t) = m_{i}m_{j}(\mathbf{x}_{i} - \mathbf{x}_{j}) \left(-\frac{\alpha}{(r_{ij} + \varsigma)^{\alpha}} + \frac{\beta}{(r_{ij})^{b}} \right)$$

a=2 and b=4

 α and β determine the strength of the attraction and repulsion forces $r_{ij} = \left\| \mathbf{x}_{j} - \mathbf{x}_{i} \right\|$

 ζ minimum required separation between particles

Implicit Numerical Solution $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{G}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{f}$ discretize time: $t \Rightarrow 0, \Delta t, 2\Delta t, \dots, t, t + \Delta t, \dots$ $\mathbf{x}^{t+\Delta t} = \mathbf{x}^{t} + \Delta t \, \dot{\mathbf{x}}^{t+\Delta t} \qquad \mathbf{x}^{t+\Delta t} = \mathbf{x}^{t} + \Delta t \, \dot{\mathbf{x}}^{t}$ $\dot{\mathbf{x}}^{t+\Delta t} = \dot{\mathbf{x}}^{t} + \Delta t \, \ddot{\mathbf{x}}^{t+\Delta t} \qquad \dot{\mathbf{x}}^{t+\Delta t} = \dot{\mathbf{x}}^{t} + \Delta t \, \ddot{\mathbf{x}}^{t}$ $\Rightarrow \ddot{\mathbf{x}}^{t+\Delta t} = (\dot{\mathbf{x}}^{t+\Delta t} - \dot{\mathbf{x}}^{t})/\Delta t \qquad \ddot{\mathbf{x}}^{t+\Delta t}$ $\left(\frac{\mathbf{M}}{\Delta t}\dot{\mathbf{x}}^{t+\Delta t} - \frac{\mathbf{M}}{\Delta t}\dot{\mathbf{x}}^{t}\right) + \left(\mathbf{G}^{t}\dot{\mathbf{x}}^{t+\Delta t}\right) + \left(\mathbf{K}^{t}\mathbf{x}^{t} + \Delta t\mathbf{K}^{t}\dot{\mathbf{x}}^{t+\Delta t}\right) = \mathbf{f}^{t}$

Skyline Storage Schemes for System Matrix A

A is a $n^2 \times n^2$ matrix that typically requires O(n³) storage.

