Motivation

Tensor Textures: Multilinear Image-Based Rendering

Computer Graphics

Goal: Generation of photorealistic virtual environments

- Classical Computer Graphics: Model based Rendering
 - From object models to images
 - Model specifies geometry of a scene and surface properties
- Images are generated by projecting 3D model onto an image plane and computing surface shading
- Photorealism requires complex models
 - Difficult
 - Time consuming

Image-Based Rendering

[Gortler et al. 1996, Levoy & Hanrahan 1996, Debevec, Taylor & Malik 1996, ...]

- World is modeled by a collection of images (and possibly some coarse geometry)
- These images are used to synthesize novel images representing the scene from arbitrary viewpoints and illuminations
- · Advantages:
 - Rendering is decoupled from the scene complexity
 - Photorealism is improved

Our Contribution

- We introduce a tensor framework for image-based rendering (IBR)
 - Specifically, rendering of 3D textured surfaces
- Surface appearance is determined by the complex interaction of multiple factors:
 - Scene geometry
 - Illumination
 - Imaging

Bidirectional Texture Function

- BTF: Captures the appearance of extended textured surfaces with
 - Spatially varying reflectance
 - Surface mesostructure (3D texture)
 - Subsurface scattering
 - Etc.
- Generalization of BRDF, which accounts only for surface microstructure at a point

	Concrete	Pebbles	Plaster
Standard Texture Mapping			
BTF Texture Mapping			

BTF Texture Mapping

BTF

Reflectance as a function of position on surface, view direction, and illumination direction

The BTF captures shading and mesostructural self-shadowing, self-occlusion, interreflection

Background

- BTF introduced by Dana et al. [1999]
- BTF acquisition devices

[Debevec et al. 2000] [Dana 2001] [Furukawa et al. 2002] [Han & Perlin 2003] (BTF Kaleidoscope)

- BTF based rendering methods
 - Polynomial texture maps [Malzbender et al. 2001]
 - Synthesis of BTFs for curved surfaces
 [Liu et al. 2001]
 [Tong et al. 2002]

TensorTextures Overview

1. Mathematical foundations: Eigentextures

- Linear Analysis / Principal Components Analysis
 - fixed viewpoint, changing illumination
 - changing viewpoint and illumination

2. TensorTextures

- Nonlinear (multilinear) Analysis / Tensor decomposition
- 3. Experiments and results

THE FOLLOWING **PREVIEW** HAS BEEN APPROVED FOR

ALL AUDIENCES

BY THE MOTION PICTURE DISASSOCIATION OF AMERICA

"Eigentextures" – PCA (Matrix Algebra)

Simple Data Acquisition: Fixed Viewpoint, Varying Illumination

TensorTextures (Tensor Algebra)

Background on Tensor Decomposition

Factor Analysis: hemetrics, Econometrics, Chemometrics,

SVD:

- [Beltrani, 1873] (Giornalle di Matematiche 11) "Sulle funzioni bilineari"
- [Eckart and Young, 1936] (*Psychometrika*) "The approximation of one matrix by another of lower rank"

3-Way Factor Analysis:

- [Tucker, 1966] (Psychometrika)
 "Some mathematical notes on three mode factor analysis"
- [Kroonenberg and De Leeuw, 1980] 3-mode ALS

N-Way Factor Analysis:

- [Kapteyn, Neudecker, and Wansbeek, 1986] N-way ALS factor analysis [Franc, 1992] tensor algebra
- [Denis & Dhorne, 1989] [de Lathauwer, 1997]

Matrix Decomposition - SVD

- A matrix $\mathbf{D} \in IR^{\mathbf{1}_{\mathsf{M}_2}}$ has a column and row space SVD orthogonalizes these spaces and decomposes D
 - $\mathbf{D} = \mathbf{U}_{1}\mathbf{S}\mathbf{U}_{2}^{T}$ ($\mathbf{U}_{\mathbf{I}}$ contains the "eigentextures")
- Rewrite in terms of mode-n products

 $\mathbf{D} = \mathbf{S} \mathbf{x}_1 \mathbf{U}_1 \mathbf{x}_2 \mathbf{U}_2$

• \mathbf{U}_n mode-n matrix, is the column space of $\mathbf{D}_{(n)}$

N-Mode SVD Algorithm

- For n=1,..., N, compute matrix U_n by computing the SVD of the flattened matrix D_(n) and setting U_n to be the left matrix of the SVD.
- 2. Solve for the core tensor as follows

 $\boldsymbol{\mathcal{Z}} = \boldsymbol{\mathcal{D}} \quad \mathbf{X}_{1} \mathbf{U}_{1}^{T} \quad \mathbf{X}_{2} \quad \mathbf{U}_{2}^{T} \quad \cdots \quad \mathbf{X}_{N} \quad \mathbf{U}_{N}^{T}$

N-Mode SVD Algorithm

- 1. For n=1,...,N, compute matrix U_n by computing the SVD of the flattened matrix $D_{(n)}$ and setting U_n to be the left matrix of the SVD.
- 2. Solve for the core tensor as follows

$$\boldsymbol{\mathcal{Z}} = \boldsymbol{\mathcal{D}} \quad \mathbf{X}_{1} \mathbf{U}_{1}^{T} \mathbf{X}_{2} \mathbf{U}_{2}^{T} \cdots \mathbf{X}_{N} \mathbf{U}_{N}^{T}$$

data matrix basis matrix coefficient matrix

TensorTextures subsumes PCA / Eigentextures

Strategic Dimensionality Reduction

Rendered Texture for a Planar Surface

