TensorTextures:
Multilinear Image-Based Rendering

Computer Graphics

Image-Based Rendering

[Gortler et al. 1996, Levoy & Hanrahan 1996,
Debevec, Taylor & Malik 1996, ...]

» World is modeled by a collection of images (and
possibly some coarse geometry)

These images are used to synthesize novel images
representing the scene from arbitrary viewpoints and
illuminations

Advantages:
— Rendering is decoupled from the scene complexity
— Photorealism is improved

Bidirectional Texture Function

BTF: Captures the appearance of
extended textured surfaces with
— Spatially varying reflectance

— Surface mesostructure (3D texture)
— Subsurface scattering

— Etc.

Generalization of BRDF, which &
accounts only for surface
microstructure at a point

Motivation

» Goal: Generation of photorealistic virtual environments

» Classical Computer Graphics: Model — based
Rendering
— From object models to images
— Model specifies geometry of a scene and surface properties

— Images are generated by projecting 3D model onto an image
plane and computing surface shading

» Photorealism requires complex models
— Difficult
— Time consuming

Our Contribution

» We introduce a tensor framework for
image-based rendering (IBR)
— Specifically, rendering of 3D textured surfaces

Surface appearance is determined by the
complex interaction of multiple factors:

— Scene geometry

— lllumination

—Imaging

BTF Texture Mapping

[Dana et al. 1999]
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BTF

» Reflectance as a function of position on surface,
view direction, and illumination direction

fBTF(&Z}‘%)@)M)

position view illumination
on surface direction direction
photometric angles

* The BTF captures shading and mesostructural
self-shadowing, self-occlusion, interreflection

Background

BTF introduced by Dana et al. [1999]

BTF acquisition devices

[Debevec et al. 2000]

[Dana 2001]

[Furukawa et al. 2002]

[Han & Perlin 2003] (BTF Kaleidoscope)
BTF based rendering methods

— Polynomial texture maps
[Malzbender et al. 2001]

— Synthesis of BTFs for curved surfaces
[Liu et al. 2001]
[Tong et al. 2002]
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TensorTextures: Learns BTFs from ensembles of sample images
Nonlinear generative BTF model

TensorTextures Overview

1. Mathematical foundations: Eigentextures

— Linear Analysis / Principal Components Analysis
fixed viewpoint, changing illumination

changing viewpoint and illumination
2. TensorTextures

— Nonlinear (multilinear) Analysis / Tensor decomposition

3. Experiments and results




Simple Data Acquisition:
Fixed Viewpoint, Varying Illumination

“Eigentextures” — PCA
(Matrix Algebra)

Sample images are points in “pixel The 1-Mode Case

(fixed viewpoint, varying illumination)
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Principal Components Analysis (PCA) - Image Representation using PCA
Eigentextures
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Sampling Multiple Viewpoints and Image Rectification
Illuminations = '\

» This poses a 3-mode BTF estimation problem

— Viewpoint, illumination, and pixel modes

Rectifying Homography Applying PCA

3;\\

+ Image unwarpingp’= Hp

— H can be computed given at least 4 fiducials p’ & p

Rectify

PCA Reconstruction

original ] 111 basis vectors

TensorTextures
(Tensor Algebra)




System Diagram
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TensorTexture: 3-Mode Data Tensor
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Background on Tensor Decomposition

Factor Analysis:
— Psychometrics, Econometrics, Chemometrics, ...

SVD:
— [Beltrani, 1873] (Giornalle di Matematiche 11) “Sulle funzioni bilineari*
— [Eckart and Young, 1936] (Psychometrika)

“The approximation of one matrix by another of lower rank*

3-Way Factor Analysis:
— [Tucker,1966] (Psychometrika)
“Some mathematical notes on three mode factor analysis*

— [Kroonenberg and De Leeuw, 1980] — 3-mode ALS

N-Way Factor Analysis:
— [Kapteyn, Neudecker, and Wansbeek, 1986] — N-way ALS factor analysis
[Franc, 1992] — tensor algebra
[Denis & Dhorne, 1989]
[de Lathauwer, 19971

TensorTextures: 3-Mode Data Tensor
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» This leads to a multilinear BTF learning method

System Diagram
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Tensor Decomposition

Dimensionality Reduction £

« Amatrix De/R"™ has a column and row space
+ SVD orthogonalizes these spaces and decomposes D

_ T
D=UsU]

( U1 contains the “eigentextures” )

* Reuwrite in terms of mode-n products

D=S x U, x, U,




Tensor Decomposition

® (D is a n-dimensional matrix, comprising N-spaces
* N-mode SVD is the natural generalization of SVD

D = S><1U1 XZUZ

_ T
D=USU, ==

* N-mode SVD orthogonalizes these spaces & decomposes

@ as the mode-n product of N-orthogonal spaces

= ‘ZX1U1 ><2U2X3U3 x, eee xy U

N

® Z core tensor; governs interaction between mode matrices

Un mode-n matrix, is the column space of D( )
n

Tensor Decomposition
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N-Mode SVD Algorithm

TensorTexture Decomposition

Forn=1,..., N, compute matrix U by

computing the SVD of the flattened matrix D_

and setting U, to be the left matrix of the SV

)
D.

Solve for the core tensor as follows
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ComPUT ' ng UTeers
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Mode-N Product

* Mode-n product is a generalization of the product of two matrices
« Itis the product of a tensor with a matrix

* Mode-n product of and M =R/,
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TensorTextures: T= Z x,U

pixels

TensorTextures:
explicitly represent
covariance across
factors

N-Mode SVD Algorithm

For n=1,...,N, compute matrix U, by

computing the SVD of the flattened matrix D,

and setting U, to be the left matrix of the SVD.

Solve for the core tensor as follows

Z=® x, U/ x, Ul ...x, U

T
N

Mode-N Product

_ﬂ = §R11X12X"'1.x'

N-th order tensor

matrix (2-nd order tensor)

Me R
mode-n_product:

B = _/q Xn M where B(n) = MA(H)

TensorTextures: T= 7 x,U
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Variation in Illuminations

Variation in Viewing Direction
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TensorTextures vs. PCA Strategic Dimensionality Reduction

« Multilinear Analysis / TensorTextures:

D= Z X‘Utexe\s XZUiIIums. XsUviews

* Linear Analysis :

U ® U\\Iums)r

Z((exe\s) ( views

D(lexels) U
coefficient matrix

ey
data matrix basis matrix

* TensorTextures subsumes PCA / Eigentextures
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Strategic Dimensionality Reduction
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Synthesis Algorithm / Texture Representation Rendered Texture for a Planar Surface
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Rendering on Arbitrary Geometry

Bonn natural BTF datasets ~ TensorTextures renderings
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