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Computer Graphics

• Goal: Generation of photorealistic virtual environments 

• Classical Computer Graphics: Model – based 
Rendering
– From object models to images
– Model specifies geometry of a scene and surface properties
– Images are generated by projecting 3D model onto an image 

plane and computing surface shading

• Photorealism requires complex models
– Difficult 
– Time consuming

MotivationMotivation

• World is modeled by a collection of images (and 
possibly some coarse geometry)

• These images are used to synthesize novel images 
representing the scene from arbitrary viewpoints and 
illuminations

• Advantages:
– Rendering is decoupled from the scene complexity
– Photorealism is improved

Image-Based Rendering
[Gortler et al. 1996,  Levoy & Hanrahan 1996, 

Debevec, Taylor & Malik 1996, …]
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Our ContributionOur Contribution

• We introduce a tensor framework for 
image-based rendering (IBR)
– Specifically, rendering of 3D textured surfaces

• Surface appearance is determined by the 
complex interaction of multiple factors:
– Scene geometry
– Illumination
– Imaging

Bidirectional Texture FunctionBidirectional Texture Function

• BTF: Captures the appearance of 
extended textured surfaces with
– Spatially varying reflectance
– Surface mesostructure (3D texture)
– Subsurface scattering
– Etc.

• Generalization of BRDF, which 
accounts only for surface 
microstructure at a point

PlasterPebblesConcrete

BTF Texture Mapping
[Dana et al. 1999]
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BTFBTFBTF

• Reflectance as a function of position on surface, 
view direction, and illumination direction

• The BTF captures shading and mesostructural
self-shadowing, self-occlusion, interreflection

),,,,,( iivvBTF yxf φθφθ
position  
on surface
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illumination 
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TensorTexture MappingTensorTexture Mapping
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Standard
Texture Mapping

TensorTexture
Mapping

TextureGeometry

TensorTexturesTensorTextures: Learns BTFs from ensembles of sample images
Nonlinear generative BTF model

• BTF introduced by Dana et al. [1999]

• BTF acquisition devices
[Debevec et al. 2000]
[Dana 2001] 
[Furukawa et al. 2002] 
[Han & Perlin 2003] (BTF Kaleidoscope)

• BTF based rendering methods
– Polynomial texture maps 

[Malzbender et al. 2001]
– Synthesis of BTFs for curved surfaces

[Liu et al. 2001] 
[Tong et al. 2002]
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1. Mathematical foundations: Eigentextures
– Linear Analysis / Principal Components Analysis 

• fixed viewpoint, changing illumination

• changing viewpoint and illumination

2. TensorTextures
– Nonlinear (multilinear) Analysis / Tensor decomposition

3. Experiments and results
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“Eigentextures” – PCA
(Matrix Algebra)

“Eigentextures” – PCA
(Matrix Algebra)

Simple Data Acquisition: 
Fixed Viewpoint, Varying Illumination

Simple Data Acquisition: 
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Sample images are points in “pixel 
space”

Sample images are points in “pixel 
space”
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• Eigentextures – captures variation across illuminations• Eigentextures – captures variation across illuminations

The 1-Mode Case
(fixed viewpoint, varying illumination)
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Principal Components Analysis (PCA) -
Eigentextures

Principal Components Analysis (PCA) -
Eigentextures

• Eigentextures – captures variation across illuminations• Eigentextures – captures variation across illuminations • Note: This is a linear representation• Note: This is a linear representation
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Image Representation using PCA Image Representation using PCA 
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• This poses a 3-mode BTF estimation problem
– Viewpoint, illumination, and pixel modes

• This poses a 3-mode BTF estimation problem
– Viewpoint, illumination, and pixel modes

Sampling Multiple Viewpoints and 
Illuminations

Sampling Multiple Viewpoints and 
Illuminations

Image Rectification

Rectify

Rectifying HomographyRectifying Homography
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• Image unwarping
– H can be computed given at least 4 fiducials p’ & p

• Image unwarping
– H can be computed given at least 4 fiducials p’ & p
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Applying PCA
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• Eigentextures – variation across views and illuminations

PCA ReconstructionPCA Reconstruction
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TensorTextures
(Tensor Algebra)
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(Tensor Algebra)
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System DiagramSystem Diagram

Image Acquisition, 
Pre-processing

&
Organization

D

D

• This leads to a multilinear BTF learning method • This leads to a multilinear BTF learning method 

TensorTextures: 3-Mode Data TensorTensorTextures: 3-Mode Data Tensor
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Background on Tensor DecompositionBackground on Tensor Decomposition
• Factor Analysis: 

– Psychometrics, Econometrics, Chemometrics,…

• SVD:
– [Beltrani, 1873] (Giornalle di Matematiche 11) “Sulle funzioni bilineari“

– [Eckart and Young, 1936] (Psychometrika)
“The approximation of one matrix by another of lower rank“

• 3-Way Factor Analysis:
– [Tucker,1966] (Psychometrika)

“Some mathematical notes on three mode factor analysis“

– [Kroonenberg and De Leeuw, 1980] – 3-mode ALS

• N-Way Factor Analysis:
– [Kapteyn, Neudecker, and Wansbeek, 1986] – N-way ALS factor analysis
– [Franc, 1992] – tensor algebra
– [Denis & Dhorne, 1989]
– [de Lathauwer, 1997] 2UU SD    x1x 2  1 =

• A matrix                     has a column and row space

• SVD orthogonalizes these spaces and decomposes

• Rewrite in terms of mode-n products

Matrix Decomposition - SVDMatrix Decomposition - SVD
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Tensor DecompositionTensor Decomposition
• D is a n-dimensional matrix, comprising N-spaces 

• N-mode SVD is the natural generalization of SVD

• N-mode SVD orthogonalizes these spaces & decomposes

D as the mode-n product of N-orthogonal spaces

• Z core tensor; governs interaction between mode matrices

• mode-n matrix, is the column space of  nU
)(nD
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N-Mode SVD AlgorithmN-Mode SVD Algorithm

1. For n=1,…, N, compute matrix        by 
computing the SVD of the flattened matrix         
and setting        to be the left matrix of the SVD.

2. Solve for the core tensor as follows

)(nD
nU

nU

T
NN

TT UUU   x  xx L2211 DZ =

Computing UviewsComputing Uviews

• D(views) - flatten D along the view point dimension

• Uviews – orthogonalize the column space of D(views)

Illuminations
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ImagesD(views)

• D(illums) - flatten D along the illumination dimension

• Uillums – orthogonalizes the column space of D(illums)
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D(illums)

Computing UillumsComputing Uillums
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Illuminations

Views

D(texels)

• D(texels) - flatten D along the pixel dimension

• Utexels – orthogonal column space of D(texels)

– eigenimages

Computing UtexelsComputing Utexels N-Mode SVD AlgorithmN-Mode SVD Algorithm

1. For n=1,…,N, compute matrix         by 
computing the SVD of the flattened matrix         
and setting        to be the left matrix of the SVD.

2. Solve for the core tensor as follows

)(nD
nU

nU

T
NN

TT UUU   x  xx L2211 DZ =

• Mode-n product is a generalization of the product of two matrices
• It is the product of a tensor with a matrix

• Mode-n product of                                   and
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Mode-N ProductMode-N Product

N-th order tensor NIII L××ℜ∈ 21A

nn IJ ×ℜ∈Mmatrix (2-nd order tensor)

mode-n product:

Mn×= AB )()( nn AMB =where
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TensorTextures vs. PCATensorTextures vs. PCA

• Multilinear Analysis / TensorTextures:

viewsxillums.xtexelsx 321 UUU ZD =

(texels) Z illums.U⊗( )TviewsU=
321

matrix data
(texels)D

43421
matrix basis

   texelsU

• Linear Analysis :

• TensorTextures subsumes PCA / Eigentextures

44444 344444 21
matrix  tcoefficien

Strategic Dimensionality ReductionStrategic Dimensionality Reduction

Strategic Dimensionality Reduction
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Synthesis Algorithm / Texture RepresentationSynthesis Algorithm / Texture Representation
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Rendered Texture for a Planar SurfaceRendered Texture for a Planar Surface

Rendered Textures for CylinderRendered Textures for Cylinder Rendering on Arbitrary GeometryRendering on Arbitrary Geometry
Bonn natural BTF datasets
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TensorTextures renderings

Treasure Chest

VideoVideo

Scarecrows’ Quarterly

Flintstones Bird


