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Abstract -- Independent component analysis (ICA) exploits the high-order statistics of data 
and hence can better extract the structural features than principle component analysis. The 
conventional ICA, however, suffers from the small sample size (SSS) problem, i.e. the 
dimensionality of feature space is much higher than the number of available training 
samples. In this paper, two new measurements of the non-Gaussianity of vector variables, 
instead of scalar variables, are defined to extract the independent components (ICs) from 
images rather than vectors. Then the Matrix-FastICA algorithm is developed to compute 
the demixing matrix of images. In order to reduce the feature storage space and generalize 
the Matrix-FastICA algorithm to a higher dimensional array, a tensor ICA (T-ICA) 
algorithm is proposed to extract image ICs in a tensor form. Compared with the 
conventional ICA, neither Matrix-FastICA nor T-ICA needs the image-to-vector transform 
and thus they can better preserve the local structural information embedded in images. The 
SSS problem in conventional ICA is also significantly alleviated because the demixing 
vectors are directly estimated from image matrices. Extensive experiments on face 
databases are performed and the results validate that the proposed Matrix-FastICA and 
T-ICA algorithms outperform many state-of-the-art subspace analysis schemes. 
 
Index terms -- Independent component analysis (ICA), feature extraction, face recognition 
 

1. Introduction 

Dimensionality reduction, aiming at revealing meaningful structures and unexpected 

relationships in multivariate data, is one of the key techniques in cluster analysis, pattern 

recognition and image classification, especially in biometric authentication applications such as 

face recognition [1-2]. The most representative approaches to dimensionality reduction may be 
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the subspace analysis methods (SAM), which include principal component analysis (PCA) [3-4], 

independent component analysis (ICA) [5], linear discriminant analysis (LDA) [6], etc. PCA and 

ICA are popular unsupervised SAM schemes and LDA is a popular supervised SAM technique. 

In general, SAM is to find an optimal subspace or projection via different criteria. 

As one of the most popular SAM techniques, PCA is to find an optimal subspace so that the 

image coordinates are uncorrelated in it. Kirby and Sirovich [3] showed that any face image can 

be economically represented along the eigenpictures coordinate space and be approximately 

reconstructed using just a small collection of eigenpictures and their corresponding projections. 

Based on this work, Turk and Pentland [4] developed the well-known Eigenfaces method for face 

recognition. Since then, PCA has been extensively investigated and many related face recognition 

algorithms have been developed [7-8]. PCA, however, exploits only the second-order statistics of 

the data, and is optimal only if the underlying data follow the Gaussian distribution. It has been 

observed in many real applications that the natural signals, including speech, EEG signal, and 

natural images, can be better described as linear combinations of sources with long tailed 

distributions [5, 9]. In addition, the features extracted via PCA capture the amplitude spectrum of 

images but not their phase structure spectrum [5]. 

It has been reported that the high-order statistics can capture the phase spectrum of images [5, 

10], which can be very useful for image representation and recognition. For a given image, if we 

scramble its phase spectrum while maintaining its power spectrum, this will dramatically alter the 

appearance of the image without changing its second-order statistics. As pointed out by 

Oppenheim and Lim [11], the phase spectrum contains more image structural information than 

the power spectrum for human visual perception. For example, if we synthesize a facial image 

from the amplitude spectrum of face A and the phase spectrum of face B, then the synthesized 

image will be perceived as an image of face B. To improve the performance of feature extraction 
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and representation, we need to adopt the high-order statistics into the criterion. 

ICA, as an extension of PCA, was proposed to this end and has been widely used in blind 

source separation, signal processing, medical image analysis, pattern recognition, and texture 

detection [5, 9, 12]. The objective of ICA is to seek for a better set of basis vectors so that the 

projection coefficients, which are called independent components (ICs), are statistically as 

independent as possible in the sense of high-order statistics other than the second-order statistic. 

Therefore, ICA can remove the high-order statistical dependencies to produce a more sparse and 

independent code that is useful for subsequent pattern discrimination [13]. 

By using ICA for face representation and recognition, Bartlett et al [5] found that much of the 

information that perceptually distinguishes faces is contained in the high-order statistics of 

images, and then they proposed two ICA architectures for face representation. Architecture I is to 

find a set of spatially independent basis vectors (images) and the coefficients that code each face 

are not necessarily independent. Architecture II treats the pixels as random variables and the 

images as outcomes, i.e. it uses ICA to find a set of basis images that make the projection 

coefficients of image be statistically independent. Their experimental results on FERET database 

showed that ICA is superior to PCA for face representation and recognition. Since then, a lot of 

face recognition methods have been developed to improve the representation performance and 

classification accuracy [14-19]. Liu [14] proposed an enhanced ICA method, which implements 

ICA in a reduced PCA space. The dimensionality of the PCA space is determined by balancing 

the representation criterion for adequate face representation and the magnitude criterion for 

enhanced retrieval performance. Pong et al [16] studied the relationship between the number of 

ICs and the classification accuracy and argued that not all ICs are useful for classification. They 

then proposed an IC selection algorithm for better classification. Bressan et al [17] discussed the 

selection of ICs and their classification ability by using the global and class-conditional 
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independence. All these algorithms claim that ICA is superior to PCA for face recognition. 

By comparing detailedly the performance of PCA with ICA under different similarity metrics, 

however, Moghaddam [20] found that ICA is not always better than PCA. Yang et al [21] used 

PCA I and PCA II to evaluate the performance of ICA under Architecture I and Architecture II 

respectively. Experimental results showed that ICA is not always superior to PCA. Vicente et al 

[22] compared the performance of ICA with PCA and whitened PCA, and argued that ICA can 

have better recognition performance than PCA when a suitable feature selection step is employed 

for classification. Li et al [23] found that ICA is also superior to PCA in estimating the pose and 

multi-view subspace. In [24], Kim et al modified the kurtosis definition in ICA and proposed an 

LS-ICA algorithm by using Architecture I. The experimental results showed that LS-ICA 

performs better than PCA, especially in the case of partial occlusions and local distortions. 

Most ICA based algorithms extract ICs via three principles: non-Gaussianity estimation, 

minimization of mutual information, and maximum likelihood [12]. All the three principles use a 

vectorized representation of the object. The face images have to be unfolded into 1-D vectors 

before applying these algorithms. However, the face images are more naturally represented as 

matrices (second-order tensor) or higher order arrays. The unfolded vectors may lose some 

structural information embedded in face images, which may be useful for recognition. Another 

problem is the high dimensionality of the unfolded vector (e.g. 10304 for a 112×92 image), 

which leads to the small sample size (SSS) problem of SAM: the number of available training 

samples is much less than the dimension of the underlying vector. This dilemma makes it very 

difficult to estimate accurately the statistics of the underlying face vector and the estimation error 

will then deteriorate the accuracy of face recognition. 

Recently, matrix-based feature extraction has been attracting much attention in Biometric 
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authentication. Yang et al [7] proposed the two-dimensional PCA (2DPCA) scheme, which 

directly evaluates the basis vectors from image matrix rather than vectors. Ye [8] proposed the 

low rank representation of an image in the matrix form. Tao et al [25] and Kim et al [26] 

extended this idea to high-order matrix (n-array mode, n>2), and proposed some tensor subspace 

analysis methods. Compared with traditional SAM schemes, tensor subspace analysis can not 

only alleviate the SSS problem but also improve the classification accuracy. However, 

independent feature extraction on image matrix or tensor is rarely investigated yet. Recently, 

Vasilescu et al [27] proposed a multi-linear (tensor) ICA method which uses a tensor to represent 

the different factors, such as illumination, viewpoint, etc., in facial images. Nonetheless, image 

matrix is still stretched to a vector in their algorithm. 

This paper will present a framework of matrix based ICA by analyzing the measure of 

non-Gaussianity of facial images. First we will present two new measurements of kurtosis to 

estimate the non-Gaussianity of vector variables, instead of scalar variables, and propose a novel 

method, which is called Matrix-FastICA, to calculate the demixing matrix of facial images. The 

main advantage of Matrix-FastICA is that it avoids transforming image matrix into vector. In 

order to reduce the feature storage space and apply Matrix-FastICA to higher dimensional array, a 

tensor ICA (T-ICA) algorithm is then proposed. Both Matrix-FastICA and T-ICA can preserve 

the local structural information embedded in the images and they alleviate greatly the SSS 

problem in traditional SAM schemes. 

The remainder of this paper is organized as follows. Section 2 briefly reviews ICA. Section 3 

presents two new measurements of kurtosis for vector variables and the Matrix-FastICA 

algorithms are then proposed. Feature extraction by using Matrix-FastICA is discussed in section 

4. Section 5 extends Matrix-FastICA to T-ICA. Extensive experiments are performed in Section 6. 

Finally, the conclusion is made in Section 7. 
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2. Independent Component Analysis (ICA) 

Denote by 1 2, , ,
T

px x x⎡ ⎤⎦= ⎣x p

s

 a -dimensional vector (mix-signal), which is assumed to be a 

linear combination of several -dimensional basis vectors  with unknown coefficients . It 

is expected that the coefficients  are as statistically independent as possible and they are called 

the desired ICs of . The mixture model of ICA can be expressed as follows: 

p iq is

is

x

1 1 2 2 l ls s s= + + + =x q q q Q                           (1) 

where  is a  mixing matrix, Q p l× [ ]1 2, , , ls s s=s , l p≤ , is the independent feature vector 

that is composed of the desired ICs and  is the number of ICs. The objective of ICA is to 

estimate the ICs from the observed data  by computing an 

l

x l p×  demixing matrix  TW

T T= =u W x W Qs                                (2) 

such that the estimated IC vector  is a good approximation of the desired IC vector . u s

Many algorithms have been proposed to estimate the ICs of random vectors by using three 

different principles: non-Gaussianity estimation, minimization of mutual information, and 

maximum likelihood [12]. The FastICA algorithm, proposed by Hyvärinen [28], has been widely 

used in pattern recognition [12, 18, 23, 24]. It uses kurtosis to measure the non-Gaussianity and 

compute the demixing matrix W . Denote by  the column vector of W . The kurtosis of 

 is defined as [28] 

w

Tw x

( ) ( )
24

( ) 3T T Tkurt E E⎛
2 ⎞⎡ ⎤ ⎡ ⎤= − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

w x w x w x                    (3) 

Let , we can see that  is a scalar variable, which represents the elements of . 

To make the components of  as independent as possible,  can be estimated by maximizing 

(3) under constraint 

u = Tw x u u

u w
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        ( )2
1TE ⎡ ⎤ =⎢ ⎥⎣ ⎦

w x                                (4) 

w  can be estimated iteratively as follows: 

( )( ) (
3

1( ) 1 3 1Tt E t tΩ − ⎡ ⎤= − −⎢ ⎥⎣ ⎦
w x w x w )−                     (5) 

( ) ( )
( ) ( )

t
t

t t
=

w
w

w Hw
                            (6) 

where . Using (5) and (6), it is readily to calculate all orthogonal column vectors 

, , of  and then 

TEΩ ⎡= ⎣xx ⎤⎦

iw 1, ,i l= W [ ]1 l=W w w  is obtained. For more detailed information 

about FastICA, please refer to [28]. 

 

3. The Matrix-FastICA Algorithm 

From Section 2 we can see that the FastICA algorithm calculates the demixing matrix  of the 

input signal  by maximizing its kurtosis, which is defined for the scalar variable . 

When we apply FastICA to facial images to extract the ICs, we need to stretch the face image 

into a vector . Therefore, some local structural information, which may be very useful for 

image representation and classification, may be lost, and the dimensionality of the stretched 

vector will be very high, which leads to the SSS problem of ICA. To solve those problems, in this 

section we propose two new definitions of kurtosis for vector variables, instead of a scalar 

variable as in the conventional FastICA algorithms. Two new ICA algorithms, called 

Matrix-FastICA I and II, will be consequently derived and they allow us to extract the demixing 

matrix and ICs directly from images without image-to-vector transformation. 

W

x u = Tw x

x

Denote by m nR ×∈A  an  face image. Our goal is to find a demixing matrix m n× n lR ×∈V  

( ) such that the independent features of l n≤ A , denoted by S , can be directly obtained by 
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projecting A  onto V  

=S AV                                  (7) 

where S  is a  matrix. Each column of m l× S  is a -dimensional vector, which is called 

the independent component of 

m

A . Denote by  and , respectively, the column variables of s v

S  and V  such that . To measure the non-Gaussianity of vector variable , we define 

two new forms of kurtosis on  as follows 

s = Av s

s

   Definition 1 

( ){ } { }( )
( ) ( )( ){ } ( ) ( ){ }( )

22

22

( ) 3

3

T

T T

kurt E E

E E

= −

= −

Ts s s s s

Av Av Av Av
                  (8) 

Definition 2 

( ){ } { }( )

( )( )( ){ } ( )( ){ }( )

22

22

( ) 3

3

T T

T T

kurt trace E E

trace E E

⎡ ⎤= ⋅ − ⋅⎢ ⎥⎣ ⎦
⎡ ⎤= −⎢ ⎥⎣ ⎦

s s s s s

Av Av Av Av
           (9) 

In definition 1, the non-Gaussianity of  is actually measured by using its inner product, while 

in definition 2, the high-order cross correlations between the elements in  are also considered 

in calculating the non-Gaussianity of . Definition 2 is more complex than Definition 1 and then 

needs more computation. 

s

s

s

In order to solve , the column vector of the desired demixing matrix , in the case of 

definition 1 we could maximize the kurtosis (8) under the constraint 

v V

( ) ( ){ } 1TE =Av Av                             (10) 

and in the case of definition 2 we could maximize kurtosis (9) under the constraint 

 ( )( ){ } 1TE
M

=Av Av H                           (11) 
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where  is a  matrix whose elements are all 1 and H m m× M m m= ×  is a constant. 

By calculating the demixing matrices based on the above two definitions, we have the 

following two Matrix-FastICA algorithms accordingly. 

 
A. Matrix-FastICA algorithm I -- By introducing a Lagrangian coefficient λ  to (8), the 

optimal solution  to (7) under constraint (10) can be obtained by maximizing the following 

objective function 

v

( ) ( )( ){ } ( ) ( ){ }( ) ( ) ( )[ ]( )AvAvAvAvAvAvAv TTT EEEkurt −+−= 13)(
22

λ      (12) 

After some calculation, we can derive that 

{2 3T T TE
λ

}⎡ ⎤= −⎣ ⎦v v A AvA Av v                        (13) 

Please refer to Appendices A and B for the detailed derivation process of (13). 

Equation (13) is not an analytic form of . Similar to FastICA,  can be calculated 

iteratively by using the following update rules: 

v v

( ) ( )( ) ( ) ( ){ } (1 1 1 3
T* T Tt E t t t t= − − − −v v A Av A Av v )1−             (14) 

( ) ( )
( ) ( )

*

T* *

t
t

t t
=

v
v

v v
                            (15) 

Once we calculate the first column vector  by using (14)~(15), the second column vector  

can be then calculated by using (14)~(15) under the condition that it is orthogonal to . 

Similarly, more column vectors can be computed and finally the demixing matrix V  can be 

obtained as 

1v 2v

1v

[ ]1 n=V v v . 

 
B. Matrix-FastICA algorithm II -- By introducing a Lagrangian coefficient λ  to (9), the 
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optimal solution  to (7) under constraint (11) can be obtained by maximizing the following 

objective function  

v

( ) ( )( )( ){ } ( )( ){ }( )
( ) ( ){ }( )

22
3

1

T T

T

kurt trace E E

trace Eλ

⎡ ⎤= −⎢ ⎥⎣ ⎦

⎡ ⎤+ − ⎣ ⎦

Av Av Av Av Av

Av Av
        (16) 

After some calculation, we can derive that 

( ){ } ( )2 3TT TE
λ

F⎡ ⎤= −
⎣ ⎦

v A Av v A Av v                    (17) 

where ( ) { }Av
1 1

1 m m

ij
i j

F E
m m = =

⎡ ⎤= ⎣ ⎦× ∑∑ Tv A E ijE and  denotes a matrix whose element at the thi  

row and the j th column is 1 and all other elements are zero. 

Please refer to Appendices A and C for the detailed derivation process of (17). 

As in algorithm I,  can be computed iteratively by using the following rules: v

( ) ( ) ( )( ) ( ){ } (* 1 1 1 3 ( 1)
TT Tt E t t t F t= − − − −v A Av v A Av v )−           (18) 

( ) ( )
( ) ( )

*

T* *

t
t

t t
=

v
v

v v
                           (19) 

By calculating the vectors one by one as in algorithm I, we can get the desired demixing matrix 

 as V [ ]1 m=V v v . 

 

4. Feature Extraction and Classification using Matrix-FastICA 

Given  training face images N m n
i R ×∈A  ( Ni ,,2,1= ) and suppose that n lR ×∈V  ( l n≤ ) is 

the demixing matrix obtained by the Matrix-FastICA algorithms developed in Section 3, it is easy 

to obtain the ICs of image iA  by projecting it onto . In practice, however, we will whiten the V
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facial image dataset before applying Matrix-FastICA in order to reduce the computational load 

and improve the performance of classification [5, 14-15, 22]. 

The whitened image iX  of a face image iA  is calculated by 

( ) 1i i= −X A A W                              (20) 

where 
1

1 N

i
iN =

= ∑A A  is the mean of training images.  is the whiten matrix of the training 

images, which is calculated by 

1W

1
2

1

−
=W PΛ                                (21) 

where  is composed of the eigenvectors of the covariance matrix P ( ) ( )
1

1 N T

i i
iN =

= − −∑G A A A A  

of the training dataset and  is a diagonal matrix with the diagonal element being the 

eigenvalues of . 

Λ

G

Applying the proposed Matrix-FastICA algorithms to the whitened data iX , it is readily to 

get the demixing matrix 1
n lR ×∈V . The independent features, denoted by iS , of iX  can be 

obtained by projecting iX  onto  1V

1 2 1
i i i

i l⎡ ⎤= =⎣ ⎦ iS s s s X V                          (22) 

Substituting (20) into (22), we have 

( ) 1i i 1= − × ×S A A W V                           (23) 

For the convenience of expression and the consistency of the ICA model, we denote by  the 

product of  and  and call it the demixing matrix of the original dataset, i.e. 

V

1W 1V 1 1= ×V W V , 

then ( )i i= − ×S A A V . 
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In ICA, however, the discriminability of each column in the demixing matrix V  is not 

known in prior. In order to improve the classification accuracy and reduce the dimensionality of 

features, we measure the discriminability of each column of  via class discriminability [5] V

w

br
σ
σ

=                                (24) 

where ( ) (∑ −−=
j

j
T

jb ccccσ )  and ( ) ( )∑∑
∈

−−=
j c

j
T

jw
js

cscsσ  represent the between-class 

variability and the within-class variability, respectively, of the projection coefficients of the 

training images. c  denotes the global mean of the training images and jc  denotes the mean of 

the images in the jth class.  denotes the ICs of the images. Based on the magnitude of , the 

discriminabilities of the columns of  can be measured and then a sub-matrix of , denoted 

by 

s r

V V

n k
r R ×∈V , can be determined, where  is the number of selected columns for feature 

extraction. 

k

After obtaining the reduced demixing matrix , we can get the reduced independent 

features 

rV

iS  from each face image iA . Then given a probe face image * m nR ×∈A , its 

independent features  can be obtained by projecting it onto . The task of identification can 

be realized by using the nearest neighbor classifier, which calculates the similarity measurement 

*S rV

δ  between *S  and iS . In this paper, the Euclidean distance (L2) is used to measure the 

similarity, which is defined as 

( )
2 1

k* * i
L i jj

,δ
=

= ∑ j−S S s s                        (25) 

where *
js  and i

js  denote the jth column of feature matrices *S  and iS , respectively. Note that 

*
js  or i

js  is an m-dimensional vector, i.e. the ICs extracted by Matrix-FastICA are vectors rather 
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than scalars as in the conventional ICA. As we can see in the experiments, though 

Matrix-FastICA can achieve much higher recognition accuracy than conventional ICA schemes, 

it may require a large feature storage space. To overcome this shortcoming, the tensor 

independent component analysis introduced next can be a good solution to reducing the storage 

space while keeping high recognition accuracy. 

 

5. Extension of Matrix-FastICA to Tensor ICA 

Although Matrix-FastICA can extract independent features directly from image matrices without 

image-to-vector stretching, it may need a large feature storage space because each feature in 

Matrix-FastICA is an m-dimensional vector. In addition, the natural images may be represented 

in a form of high-order tensors, e.g. color image as third-order tensor. Recently, tensor-based 

subspace analysis has been extracting more and more attention in biometric authentication [25, 

26]. In order to overcome the problem of Matrix-FastICA and extend it to tensor subspace 

analysis, in this section we propose a tensor independent component analysis (TICA) technique, 

which estimates the demixing matrix by using the previously developed Matrix-FastICA 

algorithms.  

Before presenting the TICA algorithm, we first briefly review some basic terminologies and 

concepts of tensor analysis in section 5.1. For more detailed information about tensor algebra, 

please refer to [25-26, 29-30]. 

 
5.1 Tensor algebra 

Denote by A  a tensor of size 1 2 k KI I I I× × × × × . The order of A  is K  and the k th 

dimension (or mode) of A  is of size kI . An element of A  is denoted by 
1, 2, , Ki i i…A , where 
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1 ki I≤ ≤ k  and 1 . We have the following definitions [29-30]. k K≤ ≤

 
Definition 3. (Mode-  Matrixizing or Matrix Unfolding) The mode-  matrixizing or matrix 

unfolding of a 

k k

K th order tensor A  is a matrix ( )
k kI I

k R ×∈D , ( )jk j k
I I

≠
= ∏ , which is the 

ensemble of vectors in space kIR  obtained by keeping index  fixed and varying the other 

indices. We call  the mode- k  matrixizing of 

ki

( )kD A . 

 
Definition 4. (Mode-  product) The mode- k  product k k× UA  of a tensor A  and a matrix 

 is an R k kI I '×∈U '
1 2 1 1k k k KI I I I I− +× × × × × × I… …×  tensor defined by 

( ) ( )1 2 1 11 2 1 1 k k k K kk k K
k

k i i i ii i i j i i
i

− +− +
× × × × × × ×× × × × × × ×

× = i i j i∑U U… …… …A A              (26) 

for all index values. The mode-  product is a type of contraction. k

 
5.2 TICA by using Matrix-FastICA 

Given an arbitrary K -array ( 2K > ) matrix, i.e. tensor, 1 2 KI I IR × × ×∈A , it can be expressed as 

follows [29] 

1 1 2 2 3 K K= × × × ×U U UA S   and  1 1 2 2 3 K K= × × × ×U U US A          (27) 

where tensor , called the core tensor, governs the interaction between the mode matrices  

for . Matrix  contains the orthogonal vectors spanning the column space of 

matrix 

S kU

1, ,k = … K kU

( )kD  that resulted from the mode-  flatting of k A . The goal of the TICA to be 

developed is to find K  transformation matrices k kL I
k R ×∈U  ( k kL I< , ) such that 

the columns of  are as independent as possible by maximizing the non-Gaussianity of the 

input data. Here we use the previously developed Matrix-FastICA algorithms to evaluate and 

1, 2, ,k = K

S
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maximize the non-Gaussianity. 

Note that direct computation of the transformation matrices  (kU 1, ,k K= ) is infeasible 

[25, 26, 29, 30]. In general, this problem can be solved approximately by employing an iterative 

scheme which was originally proposed for low-rank approximation of the second-order tensors 

and was later extended for high-order tensors [25-26, 29]. In what follows, we discuss how to 

compute the transformation matrix  in (27) by using such an iterative scheme. kU

Assuming that  are known, we denote by 1 1 1,..., , ,...,k k− +U U U UK kY  the tensor 

1 1 2 2 1 1 1 1k k k k k− − + += × × × × ×U U U U UK KY A                 (28) 

Denote by  the corresponding -mode matrix unfolding of ( )kY k kY  and by  the tensor Sk

k k= × US Yk k                               (29) 

Denote by ( )kS  the corresponding -mode unfolding of . Then (29) can be expressed as k Sk

( )( )k k k=S U Y                               (30) 

Now the problem is to seek for a  such that the columns of kU ( )kS , which are the ICs of 

, are as independent as possible. , instead of the face images ( )kY ( )kY A  in the original dataset, 

are viewed as the available training samples now. After such an operation, the Matrix-FastICA 

algorithms developed in Sections 3 and 4 can be used to calculate the demixing matrix  of 

. The other transformation matrices  ( i

kU

( )kY iU k≠ ) can be estimated using the similar procedure. 

 
5.3 TICA algorithm 

The TICA algorithm described in Section 5.2 can be summarized as follows: 

Step 1. Input the training dataset 1 2 KI I I
i R × × ×∈A , 1, 2, ,i N= . Set the dimensionality of the 
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output tensor 1 2 Kl l l
i R × × ×∈S  and set the maximum training iteration number . maxT

Step 2. Initialize 
1 2

0 0 0
1 2, ,...,

Kl l K= = =U I U I U Il , where 
jlI  denote the j jI l×  unit matrix. 

Step 3. Training iteration. 

for  max1,2, ,t T=

       for  1, 2, ,k K=

          Calculating 1 1 1 1 1 1
i t t t
k i k k k k K− − + += × × × ×U U U t

KUY A  

          Calculating  via definition (30) ( )
i
k ←Y Y i

k

K

          Calculating  by using (14)-(15) or (18)-(19). t
kU

     end 

       end 

Step 4. Extracting ICs . 1 1i i K= × ×U US A

Step 5. Extracting ICs of probe image *A : *
1 1

*
K K= × ×U US A . 

Step 6. Classification based on the similarity between  and . iS *S

 

6. Experimental Results 

In this section, we will verify the performance of the proposed Matrix-FastICA and T-ICA 

algorithms in comparison with some popular unsupervised SAM schemes, including ICA [5], 

PCA [4], 2DPCA [7], R-ICA2 and popular supervised SAM schemes FLD [6] and 2DFLD [31]. 

For the convenience of expression, we denote by MICA-1 the proposed Matrix-FastICA 

algorithm 1, by MICA-2 the proposed Matrix-FastICA algorithm 2, by TICA-1 the proposed 

                                                        
2 Here R-ICA refers to that we take the rows of images as training samples, and then perform ICA on these samples 
to compute the demixing matrix. The procedures are similar to those in 2DPCA. 
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TICA with MICA-1 and by TICA-2 the proposed TICA with MICA-2. 

Four well-known face databases are used here: the Yale database [32] is used to evaluate the 

performance of the proposed methods under illumination and expression variations; the FERET 

database [33] is used to test the performance under expression and pose variations; the UMIST 

database [34] is used to test the performance under pose and rotation variations; and the ORL 

database is used to evaluate the performance under variations of pose and scale [35]. In the Yale 

database, the original images were normalized (in scale and orientation) such that the two eyes 

are aligned at the same position. The facial images were then cropped (32×32) for training and 

matching in the experiments3. For the FERET database, the facial portion of each image was 

manually cropped and then normalized to 80×80. For the other databases, no further 

preprocessing was made. 

 
6.1 Yale database 

The Yale face database was established at the Yale Center [32]. It consists of images from 15 

different persons, with 11 images each person, and has 165 images in total. The images 

demonstrate variations in lighting conditions and facial expressions. Therefore this database is 

used to evaluate the performance of the proposed methods under the variations of illumination 

and expression. Fig.1 shows some cropped images of one subject in the Yale database. 

 

 
Figure 1. Some sample images of one subject in the Yale database. 

                                                        
3 We thank Dr. He Xiaofei for providing the cropped images. 
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A subset with the first seven images per individual was used as the training set. The rest 

images were used for testing. Thus, the training and testing datasets have 105 and 60 images 

respectively. The different schemes were applied to the training images to compute the projection 

matrices, which were then used to project the testing images onto lower dimensional subspaces 

for classification. The classification was performed by using the nearest-neighbor classifier. The 

recognition accuracy varies with the number of dimensions of the extracted features. Fig. 2 plots 

the curves of recognition accuracy versus number of features by different schemes. In Table 1 we 

listed the top recognition accuracies of different schemes. 
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  (a)                                           (b) 

Figure 2. The recognition accuracies of different vector-based representation and matrix-based representation 
algorithms on the Yale database. (a) Vector-based algorithms, i.e. PCA, FLD, ICA; (b) matrix-based 
algorithms, i.e. 2DPCA, 2DFLD, R-ICA, MICA-1, MICA-2, TICA-1, and TICA-2. 
 

Table 1. Top recognition accuracies (%) and the associated dimensionalities on the Yale database by different 
schemes. 

Method PCA ICA FLD 2DPCA 2DFLD R-ICA MICA-1 MICA-2 TICA-1 TICA-2 
Accuracy  78.33 68.33 76.67 81.67 85.00 85.00 86.67 91.67 90.00 91.67 

Dimension 30 26 11 192 160 128 128 96 27 32 
 

From Fig. 2 we can see that the proposed MICA and TICA schemes, especially MICA-2 and 

TICA-2, can achieve much higher accuracies than the other schemes, even including the 

supervised learning techniques FLD and 2D-FLD. From Table 1, we see that the top accuracies 
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of PCA, FLD, ICA, 2DPCA, 2DFLD, R-ICA, MICA-1, MICA-2, TICA-1 and TICA-2 are 

78.33%, 76.67%, 68.33%, 81.67%, 85.00%, 85.00%, 86.67%, 91.67%, 90% and 91.67%, 

respectively. The associated numbers of features, i.e. dimensions, with those recognition 

accuracies are 30, 11, 19, 192, 160, 128, 128, 96, 27 and 32, respectively. We see that MICA and 

TICA schemes achieve higher accuracy than other schemes. MICA-2 has better recognition 

accuracy than that of MICA-1 and TICA-2 works better than TICA-1. On this database, the 

classification accuracy of TICA is better than the associated MICA scheme. Particularly, the 

TICA schemes need only a small amount of features while having high recognition accuracy. 

 
Table 2. Top recognition accuracies (%) on the Yale database by different schemes. The values in the 
parentheses are the associated dimensionality of features. 
 

Training 
number 1 2 3 4 5 6 7 8 9 

PCA 32 
(11) 

52.59 
(25) 

59.17 
(40) 

63.81 
(47) 

66.67 
(14) 

66.67 
(40) 

78.33 
(30) 

82.22 
(26) 

86.67 
(46) 

2DPCA 34.67 
(128) 

57.04 
(128) 

61.67 
(128) 

68.57 
(96) 

68.57 
(128) 

72.22 
(128) 

81.67 
(192) 

86.67 
(128) 

86.67 
(96) 

FLD ------- 49.63 
(3) 

61.67 
(6) 

62.8571 
(13) 

68.89 
(12) 

70.67 
(10) 

76.67 
(11) 

86.67 
(12) 

76.67 
(10) 

2DFLD ------- 46.67 
(64) 

56.67 
(224) 

63.81 
(96) 

73.33 
(96) 

73.33 
(128) 

85.00 
(160) 

88.89 
(160) 

86.67 
(96) 

ICA 35.33 
(11) 

56.30 
(28) 

54.17 
(30) 

56.19 
(27) 

61.11 
(20) 

64.00 
(19) 

73.33 
(19) 

77.78 
(22) 

83.33 
(19) 

R-ICA 33.33 
(96) 

56.30 
(64) 

65.00 
(64) 

69.52 
(128) 

76.00 
(64) 

73.33 
(64) 

85.00 
(128) 

84.44 
(96) 

83.33 
(64) 

MICA-1 36.00 
(96) 

57.78 
(128) 

61.67 
(96) 

71.43 
(96) 

72.22 
(96) 

70.67 
(96) 

86.67 
(128) 

88.89 
(128) 

90.00 
(128) 

MICA-2 38.67 
(32) 

57.78 
(96) 

65.83 
(64) 

76.19 
(96) 

78.89 
(96) 

78.67 
(96) 

91.67 
(96) 

93.33 
(96) 

93.33 
(96) 

TICA-1 43.33 
(12) 

59.17 
(22) 

66.67 
(20) 

70.48 
(24) 

71.11 
(24) 

70.67 
(20) 

90.00 
(32) 

84.44 
(28) 

90.00 
(26) 

TICA-2 48.00 
(12) 

59.78 
(20) 

66.67 
(24) 

76.19 
(21) 

77.78 
(24) 

80.00 
(24) 

91.67 
(32) 

91.11 
(21) 

93.33 
(4*8) 

Gabor-MICA-1 55.33 
(7680) 

71.11 
(5120) 

82.50 
(2560) 

80.95 
(3840) 

85.56 
(6400) 

86.67 
(6400) 

93.33 
(2560) 

95.56 
(2560) 

96.67 
(2560) 

Gabor-MICA-2 56.00 
(6400) 

72.59 
(2560) 

84.17 
(2560) 

81.90 
(2560) 

88.89 
(3840) 

89.33 
(3860) 

93.33 
(2560) 

97.78 
(5120) 

100 
(3840) 

Gabor-TICA-1 54.00 
(640) 

74.07 
(480) 

85.83 
(320) 

83.81 
(640) 

88.89 
(960) 

88.00 
(960) 

93.33 
(640) 

97.78 
(1000) 

100 
(600) 

Gabor-TICA-2 54.67 
(800) 

76.29 
(480) 

85.83 
(480) 

83.81 
(600) 

91.11 
(720) 

93.33 
(480) 

96.67 
(600) 

100 
(720) 

100 
(480) 
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In order to evaluate more sufficiently the performance of the proposed methods in 

comparison with other algorithms, we made the following experiments. We used the first 1 to 9 

images per person for training and used the remaining images for testing. Table 2 lists the best 

recognition accuracies of different algorithms and the associated numbers of features. The 

Gabor-MICA and Gabor-TICA refer to the algorithms that applying MICA and TICA to the 

Gabor filtering enhanced images respectively, like in the Gabor filter based ICA scheme 

proposed by Liu et al [17]. In the experiments, 5 scales and 8 directions are used as in [17]. It can 

be seen that Gabor-TICA and Gabor-MICA algorithms have much better results than the other 

schemes, and the Gabor-TICA methods achieve the best classification accuracies but with the 

highest numbers of features. 

 
6.2 FERET database 

The partial FERET face database used in this section comprises 400 gray-level frontal view face 

images from 200 persons. Each person has two images (fa and fb), which were obtained at 

different times and with different facial expressions. All the images were cropped manually to the 

size of 80×80. In the experiment, the fa images were used as gallery for training while the fb 

images as probes for testing. 

Fig. 3 plots the recognition accuracies by different methods under different numbers of 

features. Table 3 lists the top recognition accuracy results by different methods and the associated 

dimensions of features. As can be seen from Fig. 3 and Table 3, the MICA schemes have better 

results than the other methods. Though R-ICA and MICA methods have higher top recognition 

accuracies than TICA, they require much higher dimensions of feature than TICA. By using 

Gabor filters to enhance the face images, the Gabor-TICA schemes achieve the best classification 
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accuracies among all the algorithms but with the largest numbers of features. This is consistent 

with the results on the Yale database. 
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(a)                                        (b) 

Figure 3. The recognition accuracies of different vector-based representation and matrix-based representation 
algorithms on the FERET fafb database. (a) Vector-based algorithms, i.e. PCA, and ICA; (b) matrix-based 
algorithms, i.e. 2DPCA, R-ICA, MICA-1, MICA-2, TICA-1 and TICA-2. 

 
Table 3. Top recognition accuracies (%) and the associated dimensionalities on the FERET fafb database by 
different schemes.  

 
Methods PCA 2DPCA ICA R-ICA MICA-1 MICA-2 TICA-1 TICA-2 Gabor-ICA-1 Gabor-TICA-2
Accuracy 89.00 89.00 85.00 93.00 93.00 93.00 87.50 90.50 96.00 95.50 

Dimension 31 400 35 640 480 560 42 40 800 720 
 

6.3 ORL database 

The ORL database contains samples from 40 individuals, each providing 10 sample images. For 

some subjects, the images were taken at different times. The facial expressions (open or closed 

eyes, smiling or non-smiling) and occlusion (glasses or no glasses) also vary. The images were 

taken with a tolerance for tilting and rotation up to 20 degrees. There is also some variation in the 

scale of up to 10 percent. All images are grayscale and normalized to a resolution of 112×92 

pixels. Fig. 4 shows five sample images of one subject in the ORL database. 
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Figure 4. Some images of one subject in the ORL database. 

 
In the experiments, the first 1 to 5 images per person were used to form the training set and 

the remaining images were used for testing. Fig. 5 shows the classification accuracy versus 

number of features by different schemes when five images per person were selected for training, 

and the remaining images for testing. Table 4 lists the top recognition results of the different 

methods and the associated dimensions of features. As can be seen from Fig. 5 and Table 4, the 

MICA and TICA schemes have significantly better classification performance than PCA, ICA 

and R-ICA schemes, and achieve better or similar results to 2DPCA and FLD methods. TICA 

outperforms MICA in classification and has less number of features. The recognition accuracy of 

TICA-2 is higher than 2DPCA and the supervised FLD and only slightly less than 2DFLD. Again, 

the Gabor filter enhanced Gabor-TICA methods have the best classification accuracy among all 

the algorithms. 
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Figure 5. The recognition accuracies of different vector-based representation and matrix-based representation 
algorithms on the ORL database. (a) Vector-based algorithms, i.e. PCA, and ICA; (b) matrix-based 
algorithms, i.e. 2DPCA, R-ICA, MICA-1, MICA-2, TICA-1 and TICA-2. 
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Table 4. Top recognition accuracies (%) and the associated dimensionalities on the ORL database by different 
schemes. The values in the parentheses are the associated dimensionality of features.  

 
Training number 1 2 3 4 5 

PCA 70.00(36) 82.50(68) 85.00(56) 88.33(65) 90.50(73) 

2DPCA 75.56(560) 86.88(448) 88.57(672) 91.67(672) 93.00(560) 

ICA 64.44(10) 76.56(35) 78.93(40) 82.92(50) 86.50(40) 

FLD ---------- 81.25(33) 86.43(36) 90.00(29) 91.50(23) 

2DFLD ---------- 88.13(224) 91.07(448) 94.17(560) 94.50(560) 

R-ICA 74.44(224) 85.31(224) 86.79(224) 89.58(336) 91.00(336) 

MICA-1 75.28(224) 85.00(224) 86.79(224) 89.58(448) 91.00(448) 

MICA-2 75.28(224) 85.00(224) 88.93(336) 92.92(336) 93.50(336) 

TICA-1 75.56(10) 86.25(30) 88.93(24) 91.25(25) 93.00(27) 

TICA-2 75.56(18) 87.81(32) 89.29(21) 92.50(30) 94.00(27) 

Gabor-TICA-1 85.83(600) 92.81(640) 93.93(600) 97.50(1120) 98.00(960) 

Gabor-TICA-2 85.00(720) 93.44(600) 94.29(600) 97.92(600) 98.00(640) 

 

6.4 UMIST database 

The UMIST database was established at the University of Manchester Institute of Science and 

Technology [34]. It is a multi-view database, consisting of 575 images from 20 people and 

covering a wide range of poses from profile to frontal views. The image size was cropped to 

112×92. Fig. 6 shows some sample images of one subject. 

In the experiments, we used the first 1, 3, 6, 9 images per person for training and used the 

remaining images for testing. Table 5 shows the top classification accuracies of different 

algorithms and the associated numbers of features. Fig. 7 plots the classification accuracy versus 

number of features by different schemes when 9 images per person are selected for training, and 

the remaining images for testing. It can be seen from Table 5 and Fig. 7 that the proposed MICA 

and TICA schemes, especially the MICA-2 and TICA-2 methods, perform much than the other 

unsupervised algorithms and even the supervised 2DFLD algorithm. 
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Figure 6. Some images for one subject of UMIST database 
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Figure 7. The recognition accuracies of different vector-based representation and matrix-based representation 
algorithms on the UMIST database. (a) Vector-based algorithms, i.e. PCA, FLD, ICA; (b) matrix-based 
algorithms, i.e. 2DPCA, 2DFLD, R-ICA, MICA-1, MICA-2, TICA-1, and TICA-2. 
 
 
Table 5. The recognition accuracies (%) of different schemes on the UMIST database. The values in 
parentheses are the corresponding number of features.  
 
Training number PCA ICA 2DPCA FLD 2DFLD R-ICA MICA-1 MICA-2 TICA-1 TICA-2 

1 57.50 
 (18) 

52.78 
(17) 

59.72 
(672) ----- ----- 61.11 

(672) 
60.56 
(336) 

60.56 
(336) 

61.39 
(30) 

62.50 
(24) 

3 58.75  
(16) 

47.81 
(18) 

62.19 
(336) 

66.56 
(8) 

67.81 
(224) 

71.87 
(224) 

62.81 
(336) 

76.25 
(224) 

71.56 
(27) 

72.31 
(10) 

6 58.85  
(46) 

57.69 
(50) 

66.92 
(336) 

79.23 
(10) 

76.54 
(448) 

76.15 
(224) 

72.31 
(224) 

79.23 
(224) 

77.31 
(12) 

77.31 
(30) 

9 65.00 
(48) 

70.00 
(25) 

76.50 
(336) 

89.50 
(9) 

82.00 
(224) 

80.00 
(336) 

80.50 
 (112) 

83.50 
(224) 

85.50 
(18) 

86.50 
(20) 

 

7. Conclusion 

Independent feature extraction based on image matrix was discussed in this paper and two new 

measurements of the kurtosis for vector variables were presented. Then two Matrix-FastICA 

(MICA) algorithms were developed to estimate the demixing matrix directly from the images. 
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The MICA algorithms were consequently extended for high array image matrices so that the 

tensor ICA (TICA) schemes were proposed. Both TICA and MICA work directly on image 

matrix without image-to-vector stretching and hence they significantly alleviate the small sample 

size problem in subspace analysis. Extensive experiments on Yale, FERET, ORL and UMIST 

databases were conducted to validate the performance of the proposed schemes and it can be 

concludes that the matrix and tensor representation based MICA and TICA schemes perform 

better than the conventional vector representation based algorithms because the intrinsic 

structural information embedded in the images can be better preserved by MICA and TICA. 

Especially, the TICA schemes only require a small amount of features for classification, which 

means that the storage space can be greatly reduced while achieving high accuracy.  
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