Image pyramids and their
applications
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Image pyramids

* Gaussian

» Laplacian

* Wavelet/QMF

* Steerable pyramid

GAUSSIAN PYRAMID
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Fig. 4. First s bevels of the Gaussian pyramid for the “Lady” image The original image, level 0, meusures 247 by 257 pivels and each
higher level array is roughly Balf the dimensdons of its prodocessor, Thus, level § measures just @ by 9 pisels
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The computational advantage of pyramids

JSSIAN PYRAMID
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Fig I. A o 1 graphic repr

generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is

used to generate all levels.

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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ivalent weighting functions A(x) for nodes in levels 1, 2, 3
y of the Gaussias pyrssed. Note that axis scaks have

by factors of 2 to aid comparison Here the parameter a o
g kool is 04, and the roshing equivakont weighting
ey rescmble the Giamssian probability deasity funcres.

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Convolution and subsampling as a matrix multiply (1-d case)
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Next pyramid level
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The combined effect of the two pyramid levels
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Image pyramids

* Gaussian

» Laplacian

* Wavelet/QMF

» Steerable pyramid

Image pyramids

* Gaussian

* Laplacian

¢ Wavelet/QMF

¢ Steerable pyramid

The Laplacian Pyramid

* Synthesis
preserve difference between upsampled Gaussian
pyramid level and Gaussian pyramid level

band pass filter- each level represents spatial
frequencies (largely) unrepresented at other levels

* Analysis
reconstruct Gaussian pyramid, take top layer




Laplacian pyramid algorithm
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What is a good representation for
image analysis?
(Goldilocks and the three representations)

¢ Fourier transform domain tells you “what” (textural
properties), but not “where”. In space, this
representation is too spread out.

« Pixel domain representation tells you “where” (pixel
location), but not “what”. In space, this representation
is too localized

* Want an image representation that gives you a local
description of image events—what is happening where.
That representation might be “just right”.

Image pyramids

* Gaussian

» Laplacian

* Wavelet/QMF

* Steerable pyramid

Wavelets/QMF’s

transformed image
F — U «—— Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform




The simplest wavelet transform: the Haar transform The inverse transform for the Haar wavelet

i) mother wavelet @) scaling function U=

(wavelet function)
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Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.
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Figure 4.4: Octave band splitting produced by a four-level pyramid eas-
cade of a two-band AfS system. The top picture represents the splitting
of the two-band AfS system. Each successive picture shows the effect of
reapplying the system to the lowpass subband (indicated in grey ) of the
previous picture. The bottom picture gives the inal four-level partition of
e Mrequency domain. Al frequency axes cover Ue range from 0 lo 7.

Now, in 2 dimensions...

Horizonlal high pass

Frequericy domain

Harizantal low pass

Apply the wavelet transform separable in both dimensions

Hori'zonlal high pass, HorizontzJI high pass,
vertical high pass vertical low-pass

Horizontial low pass,

Horizontal'low pass, N
P Vertical low-pass

vertical high-pass

Simoncelli and Adelson, in “Subband coding”, Kluwer, 1990.

To create 2-d filters, apply
the 1-d filters separably in

/___,__/\__‘___\ the two spatial dimensions

! cuch welbue
sebdivided furikes.

Wavelet/QMF representation

Good and bad features of wavelet filters

* Bad:
Aliased subbands
Non aiented diagonal subband
* Good:
Not overcomplete (so same number of coefficients as
image pixels).
Good for image compression (JPEG 2000)




Image pyramids

Steerable filters

* Gaussian

» Laplacian

« Wavelet/QMF

* Steerable pyramid

Steerable Filter Architecture

Summ: Adapth
oniion  iered e

ter system block diagram. A bank of dedicated filters
e nailtipl set of gain maps which
entation of the synthesized filter,

adaptively control the or

http://people.csail.mit.edu/billf/freemanThesis.pdf

Oriented Filters

* Filter bank:
« Mix of edge, bar, spot filters at multiple scales and orientations

1st derivative of a gaussian 2nd derivative of a gaussian

6 orientations 6 orientations

3 scales

8 Laplacian of Gaussian filters 4 Gaussian filters

Filter Kemnels

Image

Filtered images

Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., [EEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

Non-oriented steerable pyramid

Figure 4: A 3-level k = | (non-oriented) steer-
able pyramid. Shown are the bandpass images
and the final lowpass image.

http://www.merl.com/reports/docs/TR95-15.pdf

3-orientation steerable pyramid
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C
o

Figure 5 A 3-level k = 3 (second derivative)
steerable pyramid. Shown are the three band-
pass images at cach scale and the final lowpass

image.

http://www.merl.com/reports/docs/TR95-15.pdf




Steerable pyramids

Oriented pyramids

* Good:
Oriented subbands
Non-aliased subbands
Steerable filters

* Bad:
Overcomplete

Have one high frequency residual subband, required in order to
form a circular region of analysis in frequency from a square
region of support in frequency.

» Laplacian pyramid is orientation independent

* Apply an oriented filter to determine orientations at
each layer
by clever filter design, we can simplify synthesis

this represents image information at a particular scale
and orientation

Tir compencat of
eyer |

Laplacian Pyramd Onented Pyramid

Taplacian Pyramid | Dyadic QMT; Wavelet | Steerable Pyramid
self-inverting (tight frame) || no yes Vi
overcompleteness 13 1 153
aliasing in subbands perhaps yos no
rotated orientation bands no only on hex lattice [9] | ves

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

htp ns.nyu 5b.pdf 1li and Freeman, ICIP 1995

But we need to get rid
of the cornes
before starti

ions

recursive circular

filtering

Figure 1. [dealized illustration of the spectral
decomposition performed by a steerable pyra-
mid with & = 4. Frequency axes range from
—7 to 7. The basis functions are related by
translations, dilations and rotations (except for
the initial highpass subband and the final low-
pass subband). For example, the shaded region
corresponds to the spectral support of a single
(vertically-oriented) subband.

li and Freeman, ICIP 1995

hitp: cns.nyu.edu/fipy 195b.pdf’

* Summary of pyramid representations




Image pyramids
_— }r p \ 3

// \ % ssively blurred and
) ) ﬁ sampled versions of the
« Gaussian 4 = ilxlqge. Adds >c¢11g invariance
2 f to fixed-size algorithms.

H

Shows the information added in

¢ Laplacian jaussian pyramid at each
spatial scale. Useful for noise
reduction & coding.

* Wavelet/Q ) _
Bandpassed representation, complete, but with
aliasing and some non-oriented subbands.

Steerable pyra Shows cnm]‘)(mcn‘ls at each

scale and orientation

separately. Non-aliased

Schematic pictures of each matrix transform

Shown for 1-d images
The matrices for 2-d images are the same idea, but more
complicated, to account for vertical, as well as horizontal,
neighbor relationships.

transformed image
—

F — U_' <« Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform

subbands. Good for texture
and feature analysis.

Fourier transform

= %
Fourier Fourier bases pixel domain
transform are global: image
each transform
coefficient

depends on all
pixel locations.

Gaussigg — pixel image
pyrami -

Overcomplete representation.
Low-pass filters, sampled

Laplacian pyramid

Laplacian
pyramid

pixel image

Overcomplete representation.
Transformed pixels represent
bandpassed image information.

appropriately for their blur.

Wavelet (QMF) transform

Wavelet _
pyramid = | | *

Ortho-normal pixel image
transform (like

Fourier transform),

but with localized

basis functions.




o
Steerable pyramid Matlab resources for pyramids (with tutorial)

_ —— http://www.cns.nyu.edu/~eero/software.html

Eero P. Simoncelli

p— Associate Investigator,

Multiple — Howard Hughes Medical Institute
orientations aty | T Associate Professor,
= onescale — %k Neural Seience and Mathematics,
— Mew York University
Steerable T pixel image
pyramid - —
Multiple I
orientations at — |
the next scale — Over-c omplete
- — representation,
the next scale... —— | butnon-aliased
—— ~——| subbands.
Matlab resources for pyramids (with tutorial) Why use these representations?
http://www.cns.nyu.edu/~eero/software.html 3 Lo ) .
lev: * Handle real vald size variations with a constant sze
Laboratory for Computational Vision vision algorlthm.
| teoms | Pessie | essman | Pustestons| ot | * Remove noise
Publicly Available Software Packages . Ana]yze texture
r;mmmn;mm HEADME | Gortents | Changelog | Source . Recognize objects
- e e * Label image features
ety » MatlabPyrToods - Matish source code for Mmum pceLng.
Inchudies ool for budiding and manglatng Laplacian
Oﬂl‘h\‘m oy tructy et}
README. Cﬂ"!: i
UMEPC source o Maciosh souce
—p » The Steemble Pymmd
M- me mage decomposaon. MatLab (ves above) and &
mplementaton are avaisbis
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REACME f("-’,luﬂ-’w l“ﬁhiSww Code (2 25M)
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README /Changs MFW{OCM l||hl

E. H. Adelson | C. H. Anderson | J. R. Bergen | P. J. Burl | J. M. Ogden

ot wxionged Seues o i i

Pyramid methods in image processing we [
= é T

The image pyramid offers a flaxible, convenlent multiresolution ~ | ——e Tangey T =
format that mirrors the multiple scales of processing in the lesil 1 — .t tinad ".“ B o |
human visual system. L | o — +— -:.3 b
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Fig. 1. Two mathods of searching for a largel pafiem over mﬂudwmueﬂmmm The et shoukd
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http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf




Fig. 10. image mosaics. The left ha¥ of mage {aj is catinaed with the right half of
inge (b) 1o gie the mosse i (] Mobe That e boundiry betwesn regions is
cloarly visble. The mosasic in (d) was obésined by cambinng images separately i
et apatial eguancy and of Duwt prramid wpresetatons then sxdng and
e Mase bandpuas mosses

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Creating large depth-of-field (eary approacn)

Fig. 9. Mubifcos composte mage. The onginal Images win lmited caply of ekl sersenc
e shown i (3) and B) These an combined diptaly 19 ghe e mage Wl an N &
SRR SR of T 9 (1

http://web.mit.edu/persci/people/adelson/pub_pdfs/RCA84.pdf

Image pyramids for noise removal

Image statistics (or, mathematically, how can you
tell image from noise?)

Noisy image

Clean image

Range [0, 255]
Dims [394, 599]

Pixel representation
image histogram




Bandpass filtered image

Range [-228, 227]
Dims [334, 538]

Pixel domain noise image and histogram

oo ) [} a0 S0 150

Noise-corrupted full-freq and bandpass images

But want
the
bandpass
I — .~ image
A NAAs EET o B . g histogram
to look like|
this

s Mo BEREEE

fHEaBBEB

Bandpassed representation
image histogram

hm-lm-lmﬂnmlmmmzn

Bandpass domain noise image and histogram

Noise removal results

Figure & Soise relection exampbe. (a) Original image (coopped ). () bmage costaminatol with sdditive Gansian
white moiee: (SN = DML (o) Lsvage restored using (remi-blmd ) Wienes fltee (5510 = LLSSAIL (d) Image eestored
s (i bnd | Bapesian stinate (S5E = 1025000 Simoncelli and Adelson, Noise Removal via

ip:/Avw-bes mit edupeople/adelsonpub_pdfssimoncelli noise pdf Bayesian Wavelet Coring




Image texture

The Goal of Texture Synthesis

. e input image

5

* Given a finite sample of some texture, the goal is to
synthesize other samples from that same texture

The sample needs to be "large enough*

The Goal of Texture Analysis

_ input image

“Same” or
“different”

True (infinite) texture  generated image

Compare textures and decide if they’re made of the same
“stuff”.

Pre-attentive texture discrimination
L 1JLr LT 1L 1+
Fr1 4Ll 1T ARET
L AJdJLri T 3+T
JArcd1LTTELT
L 14JLr L THLFE
1 JLrihr 1T L HFHET
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Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?




Pre-attentive texture discrimination

Pre-attentive texture discrimination

Same or different textures?

Influential paper:

Early vision and texture perception

James R. Bergen® & Edward H. Adelson*®*

* SRI1 David Sarnoffl Research Center. Princeton,

New Jersey 08540, USA

##* Media Lab and Department of Brain and Cognitive Science.
Massachusetts Institute of Technology. Cambridge.
Massachusetts 02139, USA

Pre-attentive texture discrimination
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Julesz

e Textons: analyze the texture in terms of
statistical relationships between
fundamental texture elements, called
“textons”.

« It generally required a human to look at
the texture in order to decide what those
fundamental units were...

L L L L T T T
L L L T T T

Learn: use filters.

Bergen and Adelson, Nature 1988




Malik and Perona

Learn: use lots of filters, multi-ori&scale.

|

w9

@
&

N

Malik J, Perona P. Preattentive texture
discrimination with early vision
mechanisms. J OPT SOC AM A 7: (5) 923-

932 MAY 1990

Representing textures

Textures are made up of quite stylised subelements, repeated in
meaningful ways

Representation:
find the subelements, and represent their statistics

But what are the subelements, and how do we find them?
recall normalized correlation

find subelements by applying filters, looking at the magnitude of
the response

What filters?

experience suggests spots and oriented bars at a variety of different
scales

details probably don’t matter

What statistics?
within reason, the more the merrier.
At least, mean and standard deviation
better, various conditional histograms

Squared responses  Spatially blurred

vemcal filter

Threshold squared,
blurred responses,
then categorize
texture based on
those two bits

image

>
-

horizontal filter




If matching the averaged squared filter values is a good
way to match a given texture, then maybe matching
the entire marginal distribution (eg, the histogram) of
a filter’s response would be even better.

Jim Bergen proposed this...

Pyramid-Based Texture Analysis/Synthesis

Dravid 1. Hecger" James R. Bergent
Stanford University SRI David Samall Research Center

SIGGRAPH 1994

Histogram matching algorithm

Match-histogram (imil,im2)

iml-cdf = Make-cdf (iml)

im2-cdf = Make-cdf (im2)

inv-im2-cdf = Make-inverse-loockup-table(im2-cdf)

Loop for each pixel do

iml [pixel] =
Lookup (inv-im2-cdf,
Lookup (iml-cdf, iml [pixel] ))

“At this im1 pixel value, 10% of the im1 values are lower. What im2
pixel value has 10% of the im2 values below it?”

The Problem ... in Words

* Given texture I, generate a texture J which
Looks like the same texture
Has no obvious copying or tiling from /

Difference between 7 and J should be the same as the
way [ “differs from itself” [DeBonet97]

* Things to watch for:
‘Looks the same’: what is the texture model?
‘Obvious copying’: how is it avoided?
Underlined text: indicates algorithm parameter




Classes of Algorithms

¢ Multiresolution pyramids
[HeegerBergen95]
 Pixel-by-pixel synthesis
[EfrosLeung99]
¢ Multiresolution pixel-by-pixel
[DeBonet97], [WeiLevoy00], [Hertzmann et.al. 01],
[Ashikhmin01]
« Patch quilting
[EfrosFreeman01], [Kwatra et.al. 03], [WuYu04]
* Geometric feature matching
[WuYu04], [Liu et.al. 04]

Heeger Bergen 1995

* Seminal paper that introduced texture synthesis to
the graphics community

» Algorithm:
Initialize J to noise
Create multiresolution pyramids for / and J

Match the histograms of J’s pyramid levels with I’s
pyramid levels

Loop until convergence
Can be generalized to 3D

Heeger Bergen 1995 - Algorithm

* Image pyramids

IR Gavssian
EE ° : Laplacian
* Steerable pyramids

[SimoncelliFreeman95]

b): multiple scales of
oriented filters

c): a sample image

d): results of filters in b)
applied to c)

Heeger Bergen 1995 - Results

Successes Failures

i J i J

Heeger Bergen 1995 - Results

Heeger Bergen 1995 - Verdict

* Texture model:
Histograms of responses to various filters
* Avoiding copying:
Inherent in algorithm
* No user intervention required
» Captures stochastic textures well
* Does not capture structure
Lack of inter <ale constraints




De Bonet 1997

* Propagate constraints downwards by matching
statistics all the way up the pyramid

» Feature vector: multiscale collection of filter responses
for a given pixel
* Algorithm:
Initialize J to empty image
Create multiresolution pyramids for / and J

For each pixel in level of J, randomly choose pixel from
corresponding level of / that has similar feature vector

De Bonet 1997 - Algorithm

* 6 feature vectors
f ‘ shown
i * Notice how they
i "’ share parent

/ [ ! information
4 4f}} l;.... }
I

De Bonet 1997 - Results

De Bonet 1997 - Verdict

e Texture model:

Feature vector containing multiscale responses to
various filters

* Avoiding copying:
Random choice of pixels with ‘close’ feature vectors,
but copying still frequent on small scale
* Individual per fiter thresholds are cumbersome
* Feature vectors used in later synthesis work

Efros & Leung Algorithm

non-parametric

- sampling" *
i -

|
HH Input image
Synthesizing a pixel

« Assuming Markov property, compute P(p|N(p))
Building explicit probability tables infeasible

— Instead, we search the input image for all similar
neighborhoods — that’s our pdf for p

— To sample from this pdf, just pick one match at
random




Some Details

* Growing is in “onion skin” order

Within each “layer”, pixels with most neighbors are

synthesized first

If no close match can be found, the pixel is not
synthesized until the end

» Using Gaussian-weighted SSD is very important

to make sure the new pixel agrees with its closest

neighbors

Approximates reduction to a smaller neighborhood

window if data is too sparse

Neighborhood Window

Varying Window Size

Increasing window size

\4

Synthesis Results

french canvas rafia weave

More Results

white bread

brick wall

Homage to Shannon
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Hole Filling

Extrapolation

Summary

Image Quilting [Efros & Freeman]

* The Efros & Leung algorithm
Very simple
Surprisingly good results
Synthesis is easier than analysis!
...but very slow

non-parametric
sampling
< H

Input image

Synthesizing a block

* Observation: neighbor pixels are highly correlated
Idea: unit of synthesis = block

¢ Exactly the same but now we want P(B|N(B))

¢ Much faster: synthesize all pixels in a block at once

¢ Not the same as multi-scale!

block

Minimal error boundary

Input texture

B1 B2 B1 B2

B1

B2

Random placement Neighboring blocks

of blocks constrained by overlap

Minimal error
boundary cut

overlapping blocks vertical boundary

Z-84
1 R

overlap error

min. error boundary




Our Philosophy

* The “Corrupt Professor’s Algorithm”:
Plagiarize as much of the source image as you can
Then try to cover up the evidence

« Rationale:

Texture blocks are by definition correct samples of
texture so problem only connecting them together




