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Face RecognitionFace Recognition

Recognized Person

Face Recognition

Query Image

Richard P. Feynman, Dec. 29, 1959
There's Plenty of Room at the Bottom
An Invitation to Enter a New Field of Physics

Richard P. Feynman, Dec. 29, 1959
There's Plenty of Room at the Bottom
An Invitation to Enter a New Field of Physics

• “…If I look at your face I immediately recognize that I have 
seen it before. …Yet there is no machine which, with that 
speed, can take a picture of a face and say even that it is a 
man; and much less that it is the same man that you 
showed it before—unless it is exactly the same picture. If 
the face is changed; if I am closer to the face; if I am 
further from the face; if the light changes—I recognize it 
anyway. Now, this little computer I carry in my head is 
easily able to do that. The computers that we build are not 
able to do that.  …”

Why is Face Recognition 
Difficult?

Why is Face Recognition 
Difficult?

• Severe illumination change • Varying viewpoint, illumination, etc.

Automated Face Recognition
Why is it Difficult?

Automated Face Recognition
Why is it Difficult?

Face RecognitionFace Recognition
• Definition:

– Given a database of  labeled facial images 
– Recognize an individual from an image formed from new and varying 

conditions (pose, expression, lighting etc.)

• Sub-Problems:

– Representation:
• How do we represent images of faces?
• What information do we store?

– Classification:
• How do we compare stored information to a new sample?

– Search
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RepresentationRepresentation

Goal:
Compact, descriptive object representation for recognition

Representations:

– Shape Representation:
• Generalized cylinders, Superquadrics …

– Apperace Based Representation for Recognition:
• Ordinary images
• statistics

Today: Apperance Based RecognitionToday: Apperance Based Recognition

Appearance based recognition refers to the recognition of 3D 
objects from ordinary images.

• Linear Models
– PCA – Eigenfaces, EigenImages
– FLD – Fisher Linear Discriminant Analysis
– ICA – images are a linear combination of multiliple sources

• Multilinear Models 
– Relevant Tensor Math
– MPCA – TensorFaces
– MICA
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Linear AlgebraLinear Algebra

• The algebra of vectors and matrices
– Traditionally of great value in image science

• Fourier transform
• Karhunen-Loeve transform (PCA)
• Eigenfaces

– Linear methods model:
• Linear operators over a vector space
• Single-factor linear variation in image formation
• The linear combination of multiple sources (ICA)

Multilinear AlgebraMultilinear Algebra
• The algebra of higher-order (>2) tensors

– A unifying mathematical framework for image science
– Natural images result from the interaction of multiple factors 

related to
• scene geometry
• Illumination
• Imaging

– Multilinear algebra can explicitly represent multiple factors
• Multilinear operators over a set of vector spaces

– Multilinear algebra subsumes linear algebra as a special 
case

Linear ModelsLinear Models

1×ℜ∈ kli

• An image is a point in             dimensional space
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Image RepresentationImage Representation
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pixel value axis representing pixel 1

Image RepresentationImage Representation
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Basis Matrix, B 

vector of coefficients, c
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RepresentationRepresentation

• Find a new basis matrix that results in a 
compact representation

Toy Example - Representation 
Heuristic

Toy Example - Representation 
Heuristic

• Consider a set of images of N people under the same viewpoint and lighting
• Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 

for all images
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Toy Example - Representation 
Heuristic

• Consider a set of images of N people under the same viewpoint and lighting
• Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 
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Toy Example - Representation 
Heuristic

• Consider a set of images of N people under the same viewpoint and lighting
• Each image is made up of 3 pixels and pixel 1 has the same value as pixel 3 

for all images
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Toy Example-RecognitionToy Example-Recognition
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D,  data  matrix C, coefficient matrix

• Next, compare           a reduced dimensionality 
representation of           against all coefficient 
vectors                              

•One possible classifier: nearest-neighbor classifier

newc
newi
Nnn ≤≤1   c

Solve for and store the coefficient matrix C:

Given a new image, inew :

Principal Component Analysis:
Eigenfaces

Principal Component Analysis:
Eigenfaces

• Employs second order statistics to compute 
in a principled way a new basis matrix

Statistical LearningStatistical Learning
• Statistics: the science of collecting, organizing, and 

interpreting data.
– Data collection.
– Data analysis - organize & summarize data to bring out main 

features and clarify their underlying structure.
– Inference and decision theory – extract relevant info from collected 

data and use it as 
a guide for further action. People
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Data CollectionData Collection

• Population: the entire group of individuals that 
we want information about.

• Sample: a representative part of the population 
that we actually examine in order to gather 
information.

• Sample size: number of observations/individuals 
in a sample.

• Statistical inference: to make an inference 
about a population based on the information 
contained in a sample.

DefinitionsDefinitions

• Individuals (people or things) - - objects described by 
data. 

• Individuals on which an experiment is being 
performed are known as experimental units, 
subjects.

• Variables- - describe characteristics of an individual.
– Categorical variable – places an individual into a category 

such as male/female.

– Quantitative variable – measures some characteristic of 
the individual, such as height, or pixel values in an image.

Data AnalysisData Analysis
• Experimental Units: images
• Observed Data: pixel values in images are directly 

measurable but rarely of direct interest
• Data Analysis: extracts the relevant information
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VariablesVariables

• Response Variables – are directly measurable, 
they measure the outcome of a study. 
– Pixels are response variables that are directly 

measurable from an image.

• Explanatory Variables, Factors – explain or 
cause changes in the response variable. 

– Pixel values change with scene geometry, illumination 
location, camera location which are known as the 
explanatory variables 

Response vs. Explanatory VariablesResponse vs. Explanatory Variables

• Pixels (response variables, directly measurable from data) 
change with changes in view and illumination, the 
explanatory variables (not directly measurable but of actual 
interest).

The Principle Behind 
Principal Component Analysis1

• Also called: - Hotteling Transform2 or the             
- Karhunen- Loeve Method 3.

• Find an orthogonal coordinate system such that 
data is approximated best and the correlation 
between different axis is minimized.

1 I.T.Jolliffe; Principle Component Analysis; 1986
2 R.C.Gonzalas, P.A.Wintz; Digital Image Processing; 1987
3 K.Karhunen; Uber Lineare Methoden in der Wahrscheinlichkeits Rechnug; 1946

M.M.Loeve; Probability Theory; 1955

PCA for Recognition
Eigenimages

PCA for Recognition
Eigenimages

• PCA / Eigenimages:
– Sirovich & Kirby 1987

"Low Dimensional Procedure for the Characterization of Human Faces"

– Turk & Pentland 1991
"Face Recognition Using Eigenfaces"

– Murase & Nayar 1995
"Visual learning and recognition of 3D objects from appearance"

x1

x2

PCA: Theory

• Define a new origin as the mean of the data set

• Find the direction of maximum variance in the samples (e1) and align it with 
the first axis (y1), 

• Continue this process with orthogonal directions of decreasing variance, 
aligning each with the next axis 

• Thus, we have a rotation which minimizes the covariance.
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PCA-Dimensionality ReductionPCA-Dimensionality Reduction
• Consider a set of images, & each image is made up of 3 pixels and pixel 1 has the same value 

as pixel 3 for all images

• PCA chooses axis in the direction of highest variability of the data, maximum scatter
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• Each image       is now represented by a  vector of 
coefficients          in a reduced dimensionality space.
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The Covariance MatrixThe Covariance Matrix
• Define the covariance (scatter) matrix of the input samples:

(where µ is the sample mean)
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PCA: Some Properties of the 
Covariance/Scatter Matrix

PCA: Some Properties of the 
Covariance/Scatter Matrix

• The matrix ST is symmetric

• The diagonal contains the variance of each parameter 
(i.e. element ST,ii is the variance in the i’th direction).

• Each element ST,ij is the co-variance between the two 
directions i and j, represents the level of correlation 

(i.e. a value of zero indicates that the two dimensions are 
uncorrelated).

SVD of a MatrixSVD of a Matrix

Scatter of matrix:

( ) ( )M-DVUMD  of svdby     TΣ=− UB =set 

( )( ) ) of (svd  2
T
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( )( )TT MDMDS −−=

UB =set 

PCA: Goal Revisited

• Look for: - B
• Such that:

– [c1  …  cN] = BT [i1  …  iN]
– correlation is mininmized Cov(C) is diagonal

Note that Cov(C) can be expressed via Cov(D) and B :

BSB
BMDMDBCC

T
T

TTT ))((
=

−−=

Selecting the Optimal B

How do we find such B ?

Bopt contains the eigenvectors of the covariance of D

Bopt = [b1|…|bd]

BBS Λ=T

iii bbµDµD λ=−− T))((

Data Reduction: Theory

• Each eigenvalue represents the the total variance in 
its dimension.

• Throwing away the least significant eigenvectors in 
Bopt means throwing away the least significant 
variance information
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PCA for RecognitionPCA for Recognition
• Consider the set of images

• PCA chooses axis in the direction of highest variability of the data

• Given a new image,          ,  compute the vector of coefficients           associated 
with the new basis, B

T
new

T
new BBiBc == −1
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newi

• Next, compare           a reduced dimensionality 
representation of           against all coefficient 
vectors                              

•One possible classifier: nearest-neighbor 
classifier

newc
newi
Nnn ≤≤1   c
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newc

Data and EigenfacesData and Eigenfaces

• Each image below is a column vector in the basis matrix B

• Data is composed of 28 faces photographed under same 
lighting and viewing conditions

© 2002 by M. Alex O. Vasilescu
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• Principal components (eigenvectors) of image ensemble

• Eigenvectors are typically computed using the Singular 
Value Decomposition (SVD) algorithm

EigenimagesEigenimages
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The Covariance Matrix
• Define the covariance (scatter) matrix of the input samples:

(where µ is the sample mean)∑
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PIE Database (Weizmann)
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EigenImages-Basis VectorsEigenImages-Basis Vectors

• Each image bellow is a column vector in the basis matrix B
• PCA encodes encodes the variability across

images without distinguishing between variability in people,
viewpoints and illumination

© 2002 by M. Alex O. Vasilescu

PCA for Recognition - EigenImagesPCA for Recognition - EigenImages
• Consider a set of images of 2 people under fixed viewpoint  & N lighting condition 
• Each image is made up of 2 pixels

1st axis

2nd axis

1st axis

2nd axis

• Reduce dimensionality by throwing away the axis along which the data varies the least
• The coefficient vector associated with the 1st basis vector is used for classifiction
• Possible classifier: Mahalanobis distance
• Each image is represented by one coefficient vector
• Each person is displayed in N images and therefore has N coefficient vectors
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