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Independent Component AnalysisIndependent Component Analysis

• PCA finds the directions that uncorellate

• ICA / Blind Source Separation:
– Observed data is modeled as a linear combination of 

independent sources
• Cocktail Problem: A sound recording at a party is the 

result of multiple individuals speaking (independent 
sources)

• ICA finds the directions of maximum 
independence

Computing Independent Components Computing Independent Components 

– By maximization of nongaussianity: kurtosis
– By maximum likelihood estimation
– By minimization of mutual information
– By tensorial methods
– By nonlinear decorrelation and nonlinear PCA
– By methods using time structure

• Hyvärinen A, Karhunen J, Oja E. “Independent component analysis”, 
John Wiley & Sons, Inc., New York, 2001, p. 481

• http://www.cis.hut.fi/projects/ica/fastica/

Computing IC’s using Non-GausianityComputing IC’s using Non-Gausianity

• a measure of non-gaussianity: kurtosis
– kurt(y) = E{y4} – 3(E{y2})2 = E{y4} – 3

• for unit-variance data 
– kurt(y) = 0 for gaussian data
– kurt(y) < 0 for subgaussian data
– kurt(y) > 0 for supergaussian data

• kurtosis is measured along each possible projection 
direction over the data
– a maximum corresponds to one of the IC’s
– other IC’s are found from the orthogonal directions with an iterative 

algorithm
– rotation matrix R has now been solved
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Geometric View of ICAGeometric View of ICA
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Independent Components

Fisher Linear Discriminant:

FisherFaces

Fisher Linear Discriminant:

FisherFaces

Fisher’s Linear DiscriminantFisher’s Linear Discriminant

• Objective: Find a projection which separates data clusters

Good separationPoor separation

FLD: Data ScatterFLD: Data Scatter

• Within- class scatter matrix

• Between- class scatter matrix

• Total scatter matrix
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Fisher Linear DiscriminantFisher Linear Discriminant

• The basis matrix B is chosen in order to maximize ratio of the determinant 
between class scatter matrix of the projected samples to the determinant 
within  class scatter matrix of the projected samples

• B is the set of generalized eigenvectors of SBtw and SWin corresponding with a 
set of decreasing eigenvalues
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Fisher Linear DiscriminantFisher Linear Discriminant
• Consider a set of images of 2 people under fixed viewpoint  & N lighting condition
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• Each image is represented by one coefficient vector
• Each person is displayed in N images and therefore has N coefficient vectors
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