TensorFaces:

Multilinear Representation of Image Ensembles

for Recognition and Compression

Decomposition from
Pixel Space to Factor Spaces

TensorFaces vs Eigenfaces
(PCA)

PIE Recognition Experiment

Training: 23 people, 3 viewpoints (0,+34,-34),
4 illuminations

Testing: 23 people, 2 viewpoints (+17,-17),
4 illuminations (center,left,right,left+right)

Training: 23 people, 5 viewpoints (0,+17,
17,+34,-34), 3 illuminations

Testing: 23 people, 5 viewpoints (0,+17,
-17,+34,-34), 4 illumination

The Problem with Linear (PCA)
Appearance Based Recognition
Methods

+ Eigenimages work best for recognition when only a single
factor — e.g., object identity — is allowed to vary

+ Natural images are the composite consequences of multiple

factors (or modes) related to scene structure, illumination and
imaging

Multilinear Model Approach

Non linear appearance based technique

Appearance based model that explicitly accounts for each of the
multiple factors inherent in image formation

Multilinear algebra, the algebra of higher order tensors

Applied to facial images, we call our tensor technique
“TensorFaces” [ Vasilescu & Terzopoulos, ECCV 02, ICPR 02]

PIE Database (Weizmann)
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Data Organization

» Linear/PCA: Data Matrix ] 0090000200009 »

_ Rpiels ximages

— a matrix of image vectors

» Multilinear: Data Tensor

— [RPeople x views xillums x express x pixels

- N-dimensional array
- 28 people, 45 images/person
— 5views, 3 illuminations,

3 expressions per person
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Tensor Decomposition

® @D is a n-dimensional matrix, comprising N-spaces
* N-mode SVD is the natural generalization of SVD

* N-mode SVD orthogonalizes these spaces & decomposes

@ as the mode-n product of N-orthogonal spaces

D = Zx1U1 x:U2x3U3 X, eoe x”U

n

e Z core tensor; governs interaction between mode matrices

« U | mode-n matrix, is the column space of D

n (n)

Learning Stage

Matrix Decomposition - SVD
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« Amatix D e /R ™ has a column and row space

+ SVD orthogonalizes these spaces and decomposes D

D=U XU’

+ Rewrite in terms of mode-n products

D=3 « U, xU,

( U1 contains the eigenfaces )

Multilinear (Tensor) Decomposition

J-0 @ o




N-Mode SVD Algorithm
For n=1,...,N, compute matrix U, by computing the SVD mode - n tensor flattening

of the flattened matrix D ) and setting U, to be the left
matrix of the SVD. ( 1 e R Ixlyx-e-Iyy

Solve for the core tensor as follows

Z =0 ><1U: X, U;...xn UZ Xy UL

flattening

A IS \}{Iﬂy“1’2”"!74’17+1"'IN) =

(n)

Facial Data Tensor Decomposition

Illuminations

* Djiews~ flatten @D along the view point dimension
U — orthogonalize the column space of D,

U

U express .Xs

D=2ZxU x, U

. x,U. X4 .
people views "3 illums. pixels

views

Computing U N-Mode SVD Algorithm

For n=1,..., N, compute matrix Un by computing the
D(pixcls) SVD of the flattened matrix D’, N ,and setting U, tobe
the left matrix of the SVD.
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Solve for the core tensor as follows

Z=D ><1U1T X, Ug xnU; ~-><NUL

*D fiatten D along the pixel dimension

pixels)”
.U - orthogonalize D(p‘xem)

- eigenimages

pixels




Mode-n Product

Mode-n product is a generalization of the product of two matrices
It is the product of a tensor with a matrix

Multilinear (Tensor) Algebra

Mode-n product of 4 € R "™**'»*-*/n gnd M=RIx
Be ‘lex...x!,, Xed X1 4% Xy

| @:}lng

[ﬂ x, M J = Z EX matrix (2" order tensor) MeR Jnxly

dn_yini i 1
n-tUn'n+1'N in

Lixlyx---1
N-th order tensor A € SR 2 N

mode- n product:

(b’ = _/q Xn M where

Eigenfaces vs TensorFaces TensorFaces: =2 x; Upixes

» Multilinear Analysis / TensorFaces:

D =2ZxU x, U

2 . x, U, X
people "2 " views "3 illums. ©*

U

express .XSU pixels
« Linear Analysis / Eigenfaces:

Dipixe\sj\ = U z (’Uexpress® U\Hums ®U ® U
~— —_— P 7

views people ) I TensorFaces:

datamatrix basis matrix coefficient matrix explicitly represent
covariance across

factors Tlums.

pixels

+ TensorFaces subsumes Eigenfaces

Strategic Data Compression =
Perceptual Quality

« TensorFaces data reduction in illumination space primarily degrades
illumination effects (cast shadows, highlights)

* PCA has lower mean square error but higher perceptual error

TS TensorFaces PCA

Original )
6 illum + 11 people param. |3 illum + 11 people param. 33 parameters

176 basis vectors 66 basis vectors 33 basis vectors 33 basis vectors




Dimensionality Reduction -

Truncation
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Iterative Multilinear Model

1. Initialize U,°%, U0, ..., U
— Compute Uy, U,, ..., Uy using N-Mode SVD and
— Truncate each mode matrix

2. lterate:

T u
— Ut=Dx, Ut xg =ee xy Upt!

ut=svd( Uy,)
U2‘= D UWIT X U3HT Xy UN”T

U,t= svd( (U )

3. z=bx U1‘Tx2 U2lT Xg *tt Xy UNtT

Person Specific TensorFaces

B =Z X Upeop. X5 Upixels

» Basis spanning one
person’s set of images

llluminations

Iterative Multilinear Model -
Dimensionality Reduction

e= H@ =Zx U x o x U X xy UNH + H%}L” U”U,TI—I‘

« lterative data reduction approach:

n-n

— Optimize mode per mode in an iterative way
— Alternating Least Squares [Golub & Van Loan] improves data fit

Construction of Projection

Basis

» Multilinear decomposition allows for the construction
of different basis depending on the application needs

» Object Specific TensorFaces: person appearance model;
eigenvectors span an individuals set of images

» View Based TensorFaces

» Recognition basis — basis maps an image into people parameter

space, UPeOme

Perspective on
Our Face Recognition Approach

Linear
Models

Our Nonlinear
(Multilinear) Models

2nd -Order Statistics
(covariance)

PCA

Eigenfaces

Multilinear PCA

TensorFaces

Higher -Order
Statistics

ICA

Multilinear ICA

Independent TensorFaces

Vasilescu & Terzopoulos, Learning 2004




pixel 1

D=-USV’ N’ WTsv’

- KC
independent components | | coefficient matrix

Toy Example: Hidden Variables

Hidden Variable Representation

Hidden Varlable 1 Representation:  Hidden Varlable 2 Representation:

« <,

Toy Example: Observed Data

:* population 1, condition 2

population 2, condition 2

-population 1, concll;k}m
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N-Mode ICA

For n=1,...,N, compute matrix U, by computing the SVD
of the flattened matrix D,, and setting U, to be the left
matrix of the SVD. Compute W7 using ICA. Our new mode
matrix is K, n

_ T T -T T
D(n) - UNZ(n)Vn - an Z{n)vn

- K, W'z, VT

(n)

Solve for the core tensor as follows

_ 1 1 . 1
S=D X K x, Ko xeex KT xceex Ky

n

— -T = -T -T
S=Z W x, W, 7 x---x, W, T x---x,, W,



Independent TensorFaces:

Multilinear ICA
+ Multilinear decomposition
+ Encodes higher order statistics

TensorFaces:
Multilinear orthog. decomp#%
Encodes 2™ order statistics




