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Abstract

Multilinear algebra, the algebra of higher-order tensors, of-
fers a potent mathematical framework for analyzing ensem-
bles of images resulting from the interaction of any num-
ber of underlying factors. We present a dimensionality re-
duction algorithm that enables subspace analysis within the
multilinear framework. This N -mode orthogonal iteration
algorithm is based on a tensor decomposition known as
the N -mode SVD, the natural extension to tensors of the
conventional matrix singular value decomposition (SVD).
We demonstrate the power of multilinear subspace anal-
ysis in the context of facial image ensembles, where the
relevant factors include different faces, expressions, view-
points, and illuminations. In prior work we showed that
our multilinear representation, called TensorFaces, yields
superior facial recognition rates relative to standard, lin-
ear (PCA/eigenfaces) approaches. Here, we demonstrate
factor-specific dimensionality reduction of facial image en-
sembles. For example, we can suppress illumination effects
(shadows, highlights) while preserving detailed facial fea-
tures, yielding a low perceptual error.

Keywords: nonlinear subspace analysis, N -mode compo-
nent analysis, multilinear models, tensor decomposition,
N -mode SVD, dimensionality reduction.

1 Introduction

Natural images are generated by the interaction of multiple
factors related to scene structure, illumination, and imag-
ing. Human perception remains robust despite significant
variation of these factors. For example, people possess a
remarkable ability to recognize faces despite a broad vari-
ety of expressive facial geometries, viewpoints, and lighting
conditions. Our work confronts the challenge of learning
tractable, nonlinear models of image ensembles useful in
image compression and in difficult appearance-based recog-
nition problems [5], such as facial recognition under vary-
ing conditions [1].

We have recently introduced a multilinear approach to
the analysis of image ensembles that explicitly accounts
for each of the multiple factors implicit in image forma-
tion [13, 12]. Our approach is motivated by the observation

that multilinear algebra, the algebra of higher-order tensors,
offers a potent mathematical framework for analyzing the
multifactor structure of the image ensemble. It provides
techniques for decomposing the ensemble in order to dis-
entangle the constituent factors or modes.

The natural generalization of matrices (i.e., linear opera-
tors defined over a vector space), tensors define multilinear
operators over a set of vector spaces. Hence, tensor anal-
ysis, which subsumes linear analysis as a special case, is
a unifying mathematical framework suitable for addressing
a variety of visual problems. In particular, we have intro-
duced algorithms for learning multilinear models of facial
image ensembles, called TensorFaces [13]. In facial recog-
nition scenarios that involve varying viewpoint and illumi-
nation, TensorFaces yield dramatically improved recogni-
tion rates [12] over the linear facial recognition method
known as eigenfaces [10].

This paper addresses subspace analysis within our mul-
tilinear framework, via dimensionality reduction over the
multiple affiliated vector spaces. Multilinear dimensional-
ity reduction generalizes the conventional version associ-
ated with linear principal components analysis (PCA), trun-
cation of the singular value decomposition (SVD), whose
optimality properties are well-known. Unfortunately, opti-
mal dimensionality reduction is not straightforward in mul-
tilinear analysis. For multilinear dimensionality reduction,
we present an N -mode orthogonal iteration algorithm based
on a tensor decomposition known as the N -mode SVD. The
latter is a natural extension to higher-order tensors of the
conventional matrix SVD.

Following a review in Section 2 of the details of our mul-
tilinear approach, Section 3 presents the multilinear dimen-
sionality reduction algorithm. In Section 4, we demonstrate
factor-specific dimensionality reduction of facial image en-
sembles. In particular, we show that we can suppress illumi-
nation effects such as shadows and highlights, yet preserve
detailed facial features, yielding a low perceptual error. Sec-
tion 5 concludes the paper.

2 Synopsis of the Multilinear Approach

A tensor is a higher order generalization of a vector (first
order tensor) and a matrix (second order tensor).
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Figure 1: Flattening a (3rd-order) tensor. The tensor can be flat-
tened in 3 ways to obtain matrices comprising its mode-1, mode-2,
and mode-3 vectors.

2.1 Tensor Fundamentals

Tensors are multilinear mappings over a set of vector
spaces. The order of tensor A ∈ IRI1×...×In×...×IN is N .1

Elements of A are denoted as Ai1...in...iN
or ai1...in...iN

,
where 1 ≤ in ≤ In. In tensor terminology, matrix col-
umn vectors are referred to as mode-1 vectors and row vec-
tors as mode-2 vectors. The mode-n vectors of an Nth or-
der tensor A are the In-dimensional vectors obtained from
A by varying index in while keeping the other indices
fixed. The mode-n vectors are the column vectors of matrix
A(n) ∈ IRIn×(I1...In−1In+1...IN ) that results by mode-n flat-
tening the tensor A (Fig. 1). The n-rank of A, denoted Rn,
is defined as the dimension of the vector space generated by
the mode-n vectors: Rn = rankn(A) = rank(A(n)).

A generalization of the product of two matrices is the
product of a tensor and a matrix. The mode-n prod-
uct of a tensor A ∈ IRI1×...×In×...×IN by a matrix
U ∈ IRJn×In , denoted by A ×n U, is a tensor B ∈
IRI1×...×In−1×Jn×In+1×...×IN whose entries are

(A×nU)i1...in−1jnin+1...iN
=

∑

in

ai1...in−1inin+1...iN
ujnin

.

(1)

1We denote scalars by lower case letters (a, b, . . .), vectors by
bold lower case letters (a,b, . . .), matrices by bold upper-case letters
(A,B, . . .), and higher-order tensors by calligraphic upper-case letters
(A,B, . . .).

The mode-n product B = A ×n U can be computed via
the matrix multiplication B(n) = UA(n), followed by a
re-tensorization to undo the mode-n flattening.2

The scalar product of two tensors A,B ∈ IRI1×...×IN ,
is defined as 〈A,B〉 =

∑
i1

. . .
∑

iN
ai1...iN

bi1...iN
. The

Frobenius norm of a tensor A is ‖A‖ =
√〈A,A〉.

2.2 Tensor Decomposition of Image Ensembles

Image formation is the consequence of interactions among
multiple factors—scene geometry, camera viewpoint, illu-
mination conditions, etc. We formulate the analysis of an
ensemble of images as a problem in multilinear algebra.
Within this mathematical framework, the image ensemble
is represented as a higher-order tensor. This image data ten-
sor D must be decomposed in order to separate and parsi-
moniously represent the constituent factors.

To this end, we subject D to a generalization of ma-
trix SVD. Matrix SVD orthogonalizes the column and row
space, the two associated spaces of a matrix. An order
N > 2 tensor D is an N -dimensional matrix comprising
N spaces. N -mode SVD is a “generalization” of conven-
tional matrix (i.e., 2-mode) SVD. It orthogonalizes these N
spaces and decomposes the tensor as the mode-n product
(1) of N -orthogonal spaces. Thus a tensor can be expressed
as a multilinear model of factors as follows:

D = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N UN . (2)

Tensor Z , known as the core tensor, is analogous to the
diagonal singular value matrix in conventional matrix SVD,
but it does not have a simple, diagonal structure. The core
tensor governs the interaction between the mode matrices
U1, . . . ,UN . Mode matrix Un contains the orthonormal
vectors spanning the column space of matrix D(n) resulting
from the mode-n flattening of D.

The N-mode SVD algorithm for decomposing D ac-
cording to equation (2) is as follows:

1. For n = 1, . . . , N , compute matrix Un in (2) by com-
puting the SVD of the flattened matrix D(n) and set-
ting Un to be the left matrix of the SVD.3

2. Solve for the core tensor as follows:

Z = D ×1 UT
1 ×2 UT

2 . . . ×n UT
n . . . ×N UT

N . (3)

2The mode-n product of a tensor and a matrix is a special case of the in-
ner product in multilinear algebra and tensor analysis. Note that for tensors
and matrices of the appropriate sizes, A×m U×n V = A×n V×m U
and (A×n U) ×n V = A×n (VU).

3For a non-square, m × n matrix A, the matrix U in the SVD
A = UΣVT can be computed more efficiently, depending on which
dimension of A is smaller, by decomposing either the m × m matrix
AAT = UΣ2UT and then computing VT = Σ+UT A or by de-
composing the n × n matrix AT A = VΣ2VT and then computing
U = AVΣ+.

2



Published in the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003.

2.3 TensorFaces

The multilinear analysis of facial image ensembles leads to
the TensorFaces representation. We illustrate the technique
using a portion of the Weizmann face image database: 28
male subjects photographed in 5 viewpoints, 4 illumina-
tions, and 3 expressions. Using a global rigid optical flow
algorithm, we aligned the original 512 × 352 pixel images
relative to one reference image. The images were then dec-
imated by a factor of 3 and cropped as shown in Fig. 2,
yielding a total of 7943 pixels per image within the ellipti-
cal cropping window.

Our facial image data tensor D is a 28×5×4×3×7943
tensor (Fig. 2(c)). Applying multilinear analysis to D, using
our N -mode SVD algorithm with N = 5, we obtain

D = Z×1 Upeople ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (4)

where the 28× 5× 3× 3× 7943 core tensor Z governs the
interaction between the factors represented in the 5 mode
matrices: The 28 × 28 mode matrix Upeople spans the space
of people parameters, the 5×5 mode matrix Uviews spans the
space of viewpoint parameters, the 4×4 mode matrix Uillums

spans the space of illumination parameters and the 3 × 3
mode matrix Uexpres spans the space of expression parame-
ters. The 7943 × 1680 mode matrix Upixels orthonormally
spans the space of images. Reference [13] discusses the at-
tractive properties of this analysis, some of which we now
summarize.

Multilinear analysis subsumes linear, PCA analysis. As
shown in Fig. 3, each column of Upixels is an “eigenimage”.
Since they were computed by performing an SVD of the
matrix D(pixels) obtained as the mode-5 flattened data ten-
sor D, these eigenimages are identical to the conventional
eigenfaces [6, 10]. Eigenimages represent only the principal
axes of variation over all the images. The big advantage of
multilinear analysis beyond linear PCA is that TensorFaces
explicitly represent how the various factors interact to pro-
duce facial images. Tensorfaces are obtained by forming
the product Z ×5 Upixels (Fig. 4(a)).

The facial image database comprises 60 images per per-
son that vary with viewpoint, illumination, and expression.
PCA represents each person as a set of 60 vector-valued co-
efficients, one from each image in which the person appears.
The length of each PCA coefficient vector is 28×5×4×3 =
1680. By contrast, multilinear analysis enables us to repre-
sent each person, regardless of viewpoint, illumination, and
expression, with the same coefficient vector of dimension
28 relative to the bases comprising the 28×5×4×3×7943
tensor

B = Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (5)

some of which are shown in Fig. 4(b). This many-to-one
mapping is useful for face recognition. Each column in the
figure is a basis matrix that comprises 28 eigenvectors. In
any column, the first eigenvector depicts the average person

(a)

(b)
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Views
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m
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io
n

(c)

Figure 2: The facial image database (28 subjects, 60 images per
subject). (a) The 28 subjects shown in expression 2 (smile), view-
point 3 (frontal), and illumination 2 (frontal). (b) Part of the image
set for subject 1. Left to right, the three panels show images cap-
tured in illuminations 1, 2, and 3. Within each panel, images of
expressions 1, 2, and 3 (neural, smile, yawn) are shown horizon-
tally while images from viewpoints 1, 2, 3, 4, and 5 are shown
vertically. The image of subject 1 in (a) is the image situated at
the center of (b). (c) The 5th-order data tensor D for the image
ensemble; only images in expression 1 (neutral) are shown.

. . .

Figure 3: Upixels contains the PCA eigenvectors (eigenfaces),
which are the principal axes of variation across all images.
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Figure 4: (a) A partial visualization of the 28 × 5 × 4 × 3 × 7943 TensorFaces representation of D, obtained as T = Z ×5 Upixels

(only the subtensor of T associated with expression 1 (neutral) is shown). Note that the mode matrix Upixels contains the conventional PCA
eigenvectors or “eigenfaces”, the first 10 of which are shown in Fig. 3, which are the principal axes of variation across all of the images.
(b) A partial visualization of the 28 × 5 × 4 × 3 × 7943 tensor B = Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels (again, only the subtensor
associated with the neutral expression is shown), which defines 60 different bases for each combination of viewpoints, illumination and
expressions. These bases have 28 eigenvectors which span the people space. The eigenvectors in any particular row play the same role in
each column. The topmost plane depicts the average person, while the eigenvectors in the remaining planes capture the variability across
people in the various viewpoint, illumination, and expression combinations.

and the remaining eigenvectors capture the variability over
people, for the particular combination of viewpoint, illumi-
nation, and expression associated with that column. Each
image is represented with a set of coefficient vectors repre-
senting the person, viewpoint, illumination and expression
factors that generated the image. This is an important dis-
tinction that is relevant for image synthesis and recognition.

2.4 Face Recognition Using TensorFaces

We have proposed a recognition method based on multilin-
ear analysis which uses the recognition bases in Fig. 4(b)
(see [12] for the details). In our preliminary experi-
ments with the Weizmann face image database, Tensor-
Faces yields significantly better recognition rates than PCA
(eigenfaces) in scenarios involving the recognition of peo-
ple imaged in previously unseen viewpoints and illumina-
tions.

In the first experiment, we trained our TensorFaces
model on an ensemble comprising images of 23 people,
captured from 3 viewpoints (0,±34 degrees), with 4 il-
lumination conditions (center, left, right, left+right). We
tested our model on other images in this 23 person dataset
acquired from 2 different viewpoints (±17 degrees) under
the same 4 illumination conditions. In this test scenario,
the PCA method recognized the person correctly 61% of

the time while TensorFaces recognized the person correctly
80% of the time.

In a second experiment, we trained our TensorFaces
model on images of 23 people, 5 viewpoints (0,±17,±34
degrees), 3 illuminations (center light, left light, right light)
and tested it on the 4th illumination (left+right). PCA
yielded a poor recognition rate of 27% while Tensorfaces
achieved a recognition rate of 88%.

3 Dimensionality Reduction

Optimal dimensionality reduction in matrix PCA is ob-
tained by truncating the SVD (i.e., deleting eigenvectors
associated with the smallest eigenvalues). Unfortunately,
optimal dimensionality reduction is not as straightforward
in multilinear analysis.

3.1 Mode Matrix Truncation

A truncation of the mode matrices of the data tensor D
results in an approximation D̂ with reduced ranks R1 ≤
R̄1, R2 ≤ R̄2, . . . , RN ≤ R̄N , where R̄n = rankn(D) =
rank(D(n)) = rank(Un) is the n-rank of D for 1 ≤ n ≤ N .
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Figure 5: Data approximation through truncation. The data ten-
sor D can be decomposed into the product of a core tensor Z and
N mode matrices U1 . . .UN ; for the N = 3 case illustrated here,
D = Z×1U1×2U2×3U3. Deletion of the last mode-1 eigenvec-
tor of U1 incurs an error in the approximation equal to σ2

I1 , which
equals the Frobenius norm of the (grey) subtensor of Z whose
row vectors would normally multiply the eigenvector in the mode-
1 product Z ×1 U1.

The error of this approximation is

‖D − D̂‖2 =
R̄1∑

i1=R1+1

R̄2∑

i2=R2+1

· · ·
R̄N∑

iN=RN+1

Z2
i1i2...iN

(6)

The error is bounded by the sum of squared singular values
associated with the discarded singular vectors:

‖D−D̂‖2 ≤
R̄1∑

i1=R1+1

σ2
i1+

R̄2∑

i2=R2+1

σ2
i2+· · ·+

R̄N∑

iN=RN+1

σ2
iN

.

(7)
Note that the singular value associated with the mth singular
vector in mode matrix Un is equal to ‖Zin=m‖; i.e., the
Frobenius norm of subtensor Zin=m of the core tensor Z
(Fig. 5).

3.2 N-Mode Orthogonal Iteration Algorithm

Truncation of the mode matrices resulting from the N -mode
SVD algorithm may yield a good reduced-dimensionality
approximation D̂, but it is generally not optimal. A locally
optimal dimensionality reduction scheme for tensors is to
compute for D a best rank-(R1, R2, . . . , RN ) approxima-
tion4 D̂ = Ẑ ×1 Û1 ×2 Û2 . . . ×N ÛN , with orthonormal
In × Rn mode matrices Ûn, for n = 1, 2, . . . , N , which
minimizes the error function [2, 3, 9]

e = ‖D−Ẑ×1Û1 . . .×N ÛN‖+
N∑

i=1

Λi‖ÛT
i Ûi−I‖, (8)

4This best rank-(R1, R2, . . . , RN ) problem should not be confused
with the classical “best rank-R” problem for tensors [4]: An N th-order
tensor A ∈ IRI1×I2×...×IN has rank 1 when it is expressible as the outer
product of N vectors: A = u1 ◦ u2 ◦ . . . ◦ uN . The tensor element is
expressed as aij...m = u1iu2j . . . uN m, where u1i is the ith component

of u1, etc. The rank of a N th order tensor A, denoted R = rank(A), is
the minimal number of rank-1 tensors that yield A in a linear combination:

A =
∑R

r=1
σru

(r)
1 ◦ u

(r)
2 ◦ . . . ◦ u

(r)
N . Finding this minimal linear

combination for a given tensor A is known as the best rank-R problem.

where the Λi are Lagrange multiplier matrices. To this end,
our dimensionality-reducing N -mode orthogonal iteration
algorithm (a higher-order extension of the orthogonal itera-
tion for matrices) computes D̂ as follows:

1. Apply Step 1 of the N -mode SVD algorithm to D;
truncate each mode matrix Un, for n = 1, 2, . . . , N ,
to Rn columns, thus obtaining the initial (k = 0) mode
matrices U0

1,U
0
2, . . .U

0
N .5

2. Iterate, for k = 0, 1, . . .:

2.1. Set Ũk+1
1 = D ×2 Uk

2
T ×3 Uk

3
T

. . . ×N Uk
N

T
;

mode-1 flatten tensor Ũk+1
1 to obtain the matrix

Ũk+1
1 ; set the columns of Uk+1

1 to an orthonor-
mal basis for the R1-dimensional dominant sub-
space of Ũk+1

1 .6

2.2. Set Ũk+1
2 = D×1 Uk+1

1

T ×3 Uk
3

T
. . .×N Uk

N

T
;

mode-2 flatten tensor Ũk+1
2 to obtain the matrix

Ũk+1
2 ; set the columns of Uk+1

2 to an orthonor-
mal basis for the R2-dimensional dominant sub-
space of Ũk+1

2 .

· · ·
2.N. Set Ũk+1

N = D ×1 Uk+1
1

T ×2 Uk+1
2

T
. . . ×N−1

Uk+1
N−1

T
; mode-N flatten Ũk+1

N to obtain the ma-

trix Ũk+1
N ; set the columns of Uk+1

N to an or-
thonormal basis for the RN -dimensional domi-
nant subspace of Ũk+1

N .

until convergence: ||Uk+1
n

T · Uk
n||2 > (1 − ε)Rn, for

1 ≤ n ≤ N .

3. Set the converged mode matrices to Û1, Û2, . . . , ÛN .
Compute the core tensor Ẑ = ŨN ×N ÛT

N . The rank-
reduced approximation of D is D̂ = Ẑ ×1 Û1 ×2

Û2 . . . ×N ÛN .

4 Dimensionality Reduction in Illumination

To illustrate the dimensionality reduction abilities of the
N -mode orthogonal iteration algorithm presented in Sec-
tion 3.2, we employ from the Weizmann facial image
database an ensemble of images of 11 people, each pho-
tographed in neutral expression from a frontal viewpoint
under 16 different illuminations. Fig. 6(a) shows three of
the 176 original 7943-pixel images for one of the subjects.

5The complexity of computing the SVD of an m × n matrix A (see
Footnote 3) is O(mn min(m, n)), which is costly when both m and n
are large. However, we can compute the R leading singular factors of A
efficiently by first computing the rank-R modified Gram-Schmidt (MGS)
orthogonal factorization A ≈ QR, where Q is m × R and R is R × n,
and then computing the SVD of R and multiplying it as follows: A ≈
Q(ŨΣVT ) = (QŨ)ΣVT = UΣVT .

6We can compute Uk+1
1 as the I1 × R1 matrix whose columns are

the first R1 columns of the left matrix of the SVD of Ũk+1
1 . For greater

efficiency, we can proceed as suggested in Footnote 5.
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Applying the N -mode orthogonal iteration algorithm,
we compute in Step 1 an N -mode SVD of the 11×16×7943
ensemble tensor D and obtain mode matrices Upeople, Uillums,
and Upixels of dimension 11 × 11, 16 × 16, and 7943 × 176,
respectively. We then truncate the illumination mode ma-
trix Uillums from 16 columns to 3, thus obtaining the 16 × 3
reduced-rank matrix Ûillums. We iterate in Step 2, updating
Ûillums along with the other (non-truncated) mode matrices
Ûpeople and Ûpixels, until convergence (3 iterations).

Fig. 6(b) shows illumination-compressed images of the
subject extracted from the dimensionality-reduced multilin-
ear representation D̂ = Ẑ ×1 Ûpeople ×2 Ûillums ×3 Ûpixels. Note
that the 81.25% reduction of the illumination dimension-
ality suppresses illumination effects such as shadows and
highlights, but that it does not substantially degrade the ap-
pearance of the person, since the rank of the person mode
matrix was not reduced. Increasing the illumination dimen-
sionality to 6, the shadows and highlights begin to reappear,
as shown in Fig. 6(c).

Thus, our multilinear model enables a strategic dimen-
sionality reduction, which is more targeted than linear
(PCA) dimensionality reduction. Fig. 7 compares Tensor-
Faces image compression against PCA compression. Ap-
plying PCA compression, we retain in Fig. 7(b) the 11 (out
of 176) most dominant eigenfaces and in Fig. 7(d) the 33
most dominant eigenfaces. Applying TensorFaces, we com-
press the dimensionality of the illumination mode from 16
to 1 (Rillums = 1) in Fig. 7(c) and from 16 to 3 (Rillums = 3) in
Fig. 7(e). Since Rpeople = 11, in the first instance we retain
11 × 1 TensorFaces, while in the second we retain 11 × 3
TensorFaces, each time equaling the number of retained
eigenfaces. Note that the total number of coefficients repre-
senting the compressed images is 11+1 and 11+3, respec-
tively. Interestingly, the root mean squared errors (RMSE)
relative to the original images, which are indicated in the
figure, are higher for the TensorFaces compressions than
they are for the PCA compressions. However, the “percep-
tual error” [8] of the TensorFaces compressions are signif-
icantly smaller, yielding substantially better image quality
than PCA in subspaces of comparable dimension.

5 Conclusion

We have approached the analysis of an ensemble of images
resulting from the confluence of multiple factors related to
scene structure, illumination, and viewpoint as a problem
in multilinear algebra. The ensemble is represented as a
higher-order tensor. This image data tensor is decomposed
into the product of a core tensor and several factor-specific
mode matrices. The core tensor characterizes the interac-
tion between the various factors, each of which is repre-
sented explicitly by a mode matrix whose orthonormal col-
umn vectors are factor-specific basis vectors.

We presented an N -mode orthogonal iteration algorithm
for learning parsimonious, reduced-dimensionality multi-

Original 3 Illum. Dims. 6 Illum. Dims.

(a) (b) (c)

Figure 6: A subject was imaged under 16 different illuminations.
(a) Three original images displaying different illumination condi-
tions. (b) Compression of the images in (a) by reducing the il-
lumination representation from 16 dimensions to 3 (Rillums = 3);
i.e., Ûillums is reduced to a 16 × 3 matrix. This degrades the illu-
mination effects (cast shadows, highlights). Arrows indicate the
shadow cast by the nose in the original images (a) and the atten-
uated shadow in the compressed images (b). The shadow begins
to reappear when the illumination dimensionality is increased to 6
(Rillums = 6) in (c); i.e., Ûillums a 16 × 6 matrix. Image sharpness
and detailed facial features are well-preserved in both (b) and (c).

linear models from raw image data tensors. The algorithm
enables us to reduce the dimensionality (rank) of each mode
matrix selectively. As an illustration of our technique, we
demonstrated its ability to reduce significantly the dimen-
sionality of the illumination subspace while not degrading
other factors, such as facial appearance, preserving detailed
facial features.

Our multilinear formulation accommodates any number
of factors by exploiting tensor machinery. It subsumes as
special cases the simple linear (1-factor) analysis known as
principal components analysis (PCA), as well as bilinear
(2-factor) analysis [7]. We are exploring several applica-
tions of multilinear analysis to computer vision and com-
puter graphics; e.g., the synthesis and recognition of actions
from human motion data [11] and the image-based render-
ing of textured surfaces [14].
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Original PCA TensorFaces PCA TensorFaces
11 Eigenfaces 11 TensorFaces 33 Eigenfaces 33 TensorFaces

RMSE: 14.62 33.47 9.26 20.22

RMSE: 14.33 30.58 7.78 14.69

(a) (b) (c) (d) (e)

Figure 7: The “perceptual error” of TensorFaces compression of illumination is smaller than indiscriminate PCA compression in a sub-
space of comparable dimension. (a) Original images. (b) PCA image compression obtained by retaining the 11 most dominant eigenfaces.
(c) TensorFaces image compression obtained by retaining 11 TensorFaces associated with Ûpeople ∈ IR11×11 and Ûillums ∈ IR16×1, which
reduces the illumination representation from 16 dimensions to 1 (Rillums = 1). (d) PCA image compression obtained by retaining the 33
most dominant eigenfaces. (e) TensorFaces image compression obtained by retaining 33 TensorFaces associated with Ûpeople ∈ IR11×11

and Ûillums ∈ IR16×3, which reduces the illumination representation from 16 dimensions to 3 (Rillums = 3). Compared to the original
images, the root mean squared errors (RMSE) of the PCA-compressed images are lower, yet the TensorFaces-compressed images have
significantly better perceptual quality.
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