36-315: Statistical Graphics and Visualization

Lab 6

Date: February 18, 2003 Due: end of lab

Interspersed throughout this lab are some useful thought questions. You will be asked about them at check-off.

- 1. Download the files for this lab from the course web page.
- 2. Open a Word document to record your work.

Start R

- 3. Start -> Programs -> Class software -> R 1.5.1
- 4. Set the working directory to My Documents:

```
File -> Change dir...
```

5. Load the special functions for this lab:

```
source("lab6.r")
```

Load the data

6. ozone = read.csv("lab6.csv")

ozone is a matrix with three variables:

day Day of measurement (day 1 was May 1, 1974)
ozone.stamford Ground-level ozone (ppb) in Stamford, Connecticut
Ground-level ozone (ppb) in Yonkers, New York

Stamford ozone

7. Extract just the matrix pertaining to Stamford, as follows:

```
frame = ozone[,1:2]
frame = na.omit(frame)
```

The last step was to remove days with missing values.

- 8. Using frame, make a simple scatterplot of ozone versus day. What structure can you make out in this plot, specifically regarding trend, oscillation, and outliers?
- 9. Make a new plot using vertical lines. This is done by giving plot the optional argument type="h". This plot may suggest to you that the aspect ratio is too large (narrow). Try making the window short and wide. What structure do you see now?

- 10. Make a third plot using connected dots. This is done by giving plot the optional argument type="o". This and all further plots should be made with a good choice of aspect ratio. Does this plot help your perception of the structure?
- 11. Use predict.plot to make a scatterplot of dots with a prediction line. Use a span of 10/153. This function can set the aspect ratio for you, by giving it the optional argument asp="auto". (Is it similar to the aspect ratio you chose by hand?) Does this plot help your perception of the structure?
- 12. The prediction line made by predict.plot can be accessed using the function smooth:

```
fit = smooth(ozone.stamford~day,frame,span=10/153)
```

Use this to add new columns representing the prediction line and the residuals from it:

```
frame = extend.with.fit(frame,fit)
```

Type frame [1,] to see what columns were added.

13. Make a plot of the residual versus day, using vertical lines. What outliers stand out in this plot?

Are they the same as the outliers you identified in the previous plots?

Stamford versus Yonkers

14. Now let frame be the full dataset:

```
frame = ozone
```

- 15. For each place, fit a prediction line and add new columns to frame. (Just repeat the commands above for ozone.stamford and ozone.yonkers.)
- 16. Extract a matrix of the smoothed ozone levels, as follows:

```
m = frame[,c("ozone.stamford.smooth","ozone.yonkers.smooth")]
m = as.matrix(m)
```

- 17. Using the preceding matrix, make a line chart of the smoothed ozone levels, with time as the horizontal axis. Is there a correlation between the ozone levels at Stamford and Yonkers?
- 18. Make a growth chart of the smoothed ozone levels:

```
growth.chart(t(m))
```

This allows you to compare the height of the oscillations, as a percentage of the starting value. Does ozone oscillate in the same way between the two cities?

19. Show us your graphs.