36-350: Data Mining

Handout 5
September 10, 2003

Information, interactions, and 20 questions
Last time we set up a game in which we went to a random position in the document and tested for a particular word. This tends to give small expected information, since the answer is usually "no". A different question we could ask is "Is this word present anywhere in the document?" The expected information we get from this question can be computed from a table of wordpresence counts. For example, this is the table for testing if the word "car" is present (in the larger collection of 200 documents):

```
    word
label FALSE TRUE
    auto 47 53
    moto 95 5
```

This table tells you that "car" is present in 58 documents, 53 of which are in the "auto" group, and 5 of which are in the "moto" group. The other column describes the cases where "car" is not present. The expected information is 0.21 bits, compared to 0.0025 for the random-position test.

We can do this computation for all words and sort them, as shown on the next page. Interestingly, "car" is not the most informative. "DoD" is the name of an on-line motorcycle club.

Important words for the large auto/moto collection: (random-position test)

Testing for "is the word present?":

Black means the word favors "auto". Red means the word favors "moto".

So far we've been computing the information content in a single word. Suppose we are allowed to ask another question about the document, after getting the answer to the first question. The best second question is not necessarily the second-best first question. For example, if you know "car" is present, it doesn't help as much to know that "cars" is also present. This effect is called interaction. Whereas correlation and information are properties between two variables, interaction is a property between three variables. Interaction is when measuring one variable changes the importance of another variable.

Measuring interaction
Conditional information is the information x gives about c when a third variable y is already known:

$$
\begin{array}{rlr}
\mathcal{I}(c, x \mid y=\mathrm{y}) & =\mathcal{H}(c \mid y=\mathrm{y})-\mathcal{H}(c \mid x, y=\mathrm{y}) \quad \text { (actual conditional information) } \\
\mathcal{I}(c, x \mid y) & =\sum_{y=\mathrm{y}} p(y=\mathrm{y}) \mathcal{I}(c, x \mid y=\mathrm{y}) \quad \text { (expected conditional information) }
\end{array}
$$

Interaction measures how y changes the information in x :

$$
\begin{aligned}
\mathcal{I}(c, x, y=\mathrm{y}) & =\mathcal{I}(c, x \mid y=\mathrm{y})-\mathcal{I}(c, x) \quad \text { (actual interaction) } \\
\mathcal{I}(c, x, y) & =\mathcal{I}(c, x \mid y)-\mathcal{I}(c, x) \quad \text { (expected interaction) }
\end{aligned}
$$

Expected interaction is symmetric in all three variables: $\mathcal{I}(c, x, y)=\mathcal{I}(c, y, x)=\mathcal{I}(y, x, c)$, etc. A positive interaction means that y makes x more informative about c. A negative interaction means that y makes x less informative about c. For example, suppose c is tomorrow's weather and (x, y) are weather reports from two different stations. Once you get the report from one station, the other report is less useful to you.

These definitions of information and interaction are conveniently visualized with an information graph.

Example: the interaction between the presence of "car" and "cars"

```
, , cars = FALSE
    car
label FALSE TRUE
    auto 35 34
    moto 93 3
, , cars = TRUE
            car
label FALSE TRUE
    auto 12 19
    moto 2 2
\[
\begin{array}{rlr}
\mathcal{I}(l a b e l, \text { car }) & =0.227 & \\
\mathcal{I}(\text { label, car } \mid \text { cars }=F) & =0.233 & \\
\mathcal{I}(\text { label }, \text { car }, \text { cars }=F) & =0.006 & \text { (positive interaction) } \\
\mathcal{I}(\text { label }, \text { car } \mid \text { cars }=T) & =0.004 & \\
\mathcal{I}(\text { label }, \text { car }, \text { cars }=T) & =-0.223 & \text { (negative interaction) } \\
p(\text { cars }=T) & =0.175 & \\
\mathcal{I}(\text { label }, \text { car }, \text { cars }) & =-0.034 \quad \text { (negative on average) }
\end{array}
\]
```

Note that the expected interaction can be zero, even though the actual interactions are nonzero (but of opposite sign).

References

[1] Aleks Jakulin and Ivan Bratko. "Quantifying and Visualizing Attribute Interactions." http://ai.fri.uni-lj.si/~aleks/Int/index.html

