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Abstract 
Naturalistic longitudinal recordings of child development 
promise to reveal fresh perspectives on fundamental questions 
of language acquisition. In a pilot effort, we have recorded 
230,000 hours of audio-video recordings spanning the first 
three years of one child’s life at home. To study a corpus of 
this scale and richness, current methods of developmental 
cognitive science are inadequate. We are developing new 
methods for data analysis and interpretation that combine 
pattern recognition algorithms with interactive user interfaces 
and data visualization. Preliminary speech analysis reveals 
surprising levels of linguistic fine-tuning by caregivers that 
may provide crucial support for word learning. Ongoing 
analyses of the corpus aim to model detailed aspects of the 
child’s language development as a function of learning 
mechanisms combined with lifetime experience.  Plans to 
collect similar corpora from more children based on a 
transportable recording system are underway. 
 
Index Terms: language acquisition, rich longitudinal data, 
human-machine collaborative analysis, computational models 

1. A New Kind of Data 
Language is one of the defining features of the human species, 
unique in its compositional structure and referential capacity, 
critical for creation and transmission of cultural knowledge, 
devastating to an individual when impaired or lost. For all that 
is at stake, our current understanding of how children learn 
language is grounded in surprisingly incomplete and biased 
observational data. As a consequence, many promising 
theories of language acquisition remain vaguely articulated, 
contradictory, and untested. More precise and empirically 
validated theories would shed light on central aspects of 
human cognition, guide new ways for children to learn, and 
lead to effective treatment of language disorders.  
 
A critical bottleneck in the study of language acquisition is the 
quality of naturalistic observational recordings of child 
development available to researchers. Although young 
children’s language skills change rapidly from day to day, 
typical naturalistic studies of child development are based on 
observations spaced weeks or months apart. Sparse sampling 
leads to a “gallery of before and after snapshots, studio 
portraits of newborns, and fossilized milestones but little 
understanding of the process of development itself” [1].   
 
Furthermore, most home recordings of child development 
consist of speech recordings and/or speech transcriptions but 
lack any record of non-linguistic situational context. Children 
of course learn language by connecting words to the people, 
things, and activities around them. Thus, recording only 
speech produces an incomplete picture. Although researchers 

are increasingly likely to complement audio with video 
recordings, the amount of video recorded tends to be 
exceedingly sparse due to the cost of analyzing video, and due 
to the disruptive observer effects of introducing video 
recording into home environments.  
 
Four years ago my colleagues and I launched the Human 
Speechome Project with the goal of making a comprehensive 
and unbiased record of one child’s (my son’s) development at 
home [2]. The name of the project has two interpretations. 
First, our aim is to study speech in the context of the home, 
hence the combination of “speech + home” to yield the 
invented term “speechome”. Second, this kind of data provides 
a basis for studying the environmental complement of genetic 
influences on language development, hence the naming 
parallel to the Human Genome Project. 
 
We have completed the recording phase of the project yielding 
the Speechome corpus of approximately 90,000 hours of video 
and 140,000 hours of audio recordings spanning my son’s life 
from birth to age three. Observational records of this 
magnitude are now possible due to the ease and affordability 
of technologies for digital data capture and storage. 
 
The nature of recordings in our study has raised a variety of 
engineering, design, and privacy challenges. These have been 
addressed to a sufficient enough degree that I now believe 
ecologically-valid densely sampled observations of this kind 
will become pervasive in the study of child development and 
other areas of human science and design. 
 
The successful completion of the recording phase of the 
Speechome project has motivated the development of new 
ways to analyze and interpret large audio-visual corpora. We 
are developing a human-machine collaborative methodology 
that enables fast yet accurate speech transcription and video 
annotation. Building on this method, we aim ultimately to 
uncover principles of language acquisition through 
computational models that are grounded in human data.  
 
In this paper I bring together elements from a number of our 
previous publications to provide a coherent synthesis (hence 
the high self-citation count that I hope the reader will pardon). 
I will provide some historical perspective on the origins of the 
project, report progress on development of analysis tools, 
preliminary analysis results, and sketch plans for work ahead. 

2. Stepping into the Shoes of a Child 
A fruitful way to study human cognition is to build machines 
that “step into the shoes” of humans and perform selected 
human functions in human-like contexts. This approach forces 
us to take the machine’s point of view and build up whatever 
mechanisms are needed to perform the target function. The 
implementation of mechanisms in humans and machines will 
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of course differ, yet the mechanisms may share functional 
principles that are easier to discover through the design of 
working models rather than analysis of more complex natural 
systems. By analogy, the principles of aerodynamics such as 
lift and drag that underpin current explanations of bird flight 
were discovered – as I understand it – through the trial-and-
error iterative process of aircraft wing design. Similarly, 
principles of cognitive processes in humans may emerge by 
designing cognitive systems and testing them in naturalistic 
environments. 
 
I originally stumbled into this method about 15 years ago in 
what began as an engineering effort to build a robot that could 
learn language in human-like ways. Eventually the tables were 
turned and I used the robot to study child language learning 
[3,4]. My original motivation was dissatisfaction  with 
contemporary AI methods of semantic representation. All of 
the  established  approaches  for  representing  meaning  by 
machines used networks of word‐like  symbols,  leading  to 
systems hopelessly trapped in circular definitions. Inspired 
by what was known of early child language acquisition, I 
developed a robot that could learn from “show-and-tell” 
interactions with a human teacher. Given a number of visual 
presentations of objects paired with spoken descriptions of the 
objects, the robot learned to (1) segment continuous speech in 
order to discover spoken words units, (2) form visual 
categories of object shapes and colors, and (3) learn 
semantically appropriate associations between speech labels 
and visual categories.  
 
Two key principles governed the robot’s learning algorithm. 
The first was sensitivity to temporally local recurrence 
structure of both the visual and speech input streams. The 
second was sensitivity to cross-modal mutual information. 
These two learning biases were coupled with short and long 
term memory systems in the robot. Recurrence analysis 
operated on the contents of a short-term memory system that 
buffered the most recent few spoken utterances and visual 
scenes of the robot’s input stream. Recurrent speech-visual 
tokens were deposited in a long-term memory. At longer time 
scales, mutual information analysis selected semantically 
relevant speech-to-visual-category associations for placement 
into the robot’s acquired lexicon and also drove a “garbage 
collection” process to purge semantically inappropriate 
contents of the long-term memory. 
 
I was able to teach the robot a small vocabulary of shape and 
color words by show-and-tell. This result, however, did not 
seem significant since as the designer of the robot I of course 
knew how to interact with it in order to get it to learn. I could 
ask others to interact with the robot as a form of evaluation but 
essentially the same problem would arise – the robot’s 
performance would depend to a great degree on how well I 
coached others on how to interact with it (this problem seems 
to plague most work in human-robot interaction). And so the 
idea was born to use child data to evaluate the robot. If the 
robot could learn from the same audio-visual input as a child, 
then the robot’s perceptual processing and learning algorithms 
would demonstrate an interesting level of capability.  
 
To test the robot, my colleagues and I made video recordings 
of six mothers and their pre-verbal infants as they played with 
a variety of toys and everyday objects. Audio recordings of the 
mothers’ speech were fed into the robot, aligned with images 
of the objects that the children were playing with as they heard 
the speech. With this simplified form of visual input (the robot 
only saw one object at a time) paired with the child directed 

speech, the robot was able to learn a small vocabulary of 
words such as “ball” and “doggy” grounded in visual 
categories. 
 
Although the original intent of this experiment was to evaluate 
the robot, the more interesting implications of the results 
turned out to be their bearing on the nature of child language 
acquisition. The fact that the robot learned from naturalistic 
child data provided a proof point that the principles of learning 
embodied by the robot – a sensitivity to temporally local 
recurrence and global cross-modal mutual information – were 
a viable strategy that a child may also use to learn words. The 
robot served as a new kind of instrument for studying the word 
learning environment of children. To a limited degree the 
robot stepped into the shoes of six children and let us evaluate 
a computationally precise theory of word learning. Whether or 
not children actually learn according to these principles 
remains an open question. 
 
Three limitations of this early experiment have motivated the 
Speechome project. First, lexical semantics in the robot was 
grounded in perceptual categories yet many basic conceptual 
distinctions such as an object versus its properties cannot be 
represented in strictly perceptual terms. For instance, the robot 
could never in principle learn the difference in meaning of 
“ball” versus “round” since both terms would be grounded in 
terms of the same perceptual category. Clearly even a young 
child has a far richer grasp of word meanings that 
encompasses not only perceptual categories but also 
conceptual knowledge of actions and expected outcomes, 
pragmatic conventions governing word use, syntactic roles, 
and so forth. To complicate matters, some of the most frequent 
words in a young child’s lexicon include indexicals (“that”), 
self-reports (“uh-oh”), “good”, “yeah”, “no”, and other words 
that beg for a richer semantic/pragmatic framework than mere 
perceptual categories. This realization spawned a line of 
research on richer models of embodied/situated meaning that 
focus on action and affordances [5-8]. Although I will not 
delve further into those models here, I expect they will 
eventually shape our approach to modeling language 
acquisition based on the Speechome corpus.  
 
Two further limitations of the early work regard the quality of 
the observational data. The recordings were made in a child 
observation lab, not the natural context of the home. Both 
mothers and children are known to act dramatically differently 
in novel contexts especially where observers are so pointedly 
present. To make the recordings, mothers were provided with 
toys and asked to play naturally. But play makes up only a 
small fraction of everyday life at home. Moreover, each 
mother-child pair was recorded for two one-hour sessions a 
day or two apart. Thus, we only had a snapshot of each child 
as opposed to longitudinal data that could support the study of 
language development.  

3. The Speechome Corpus 
Motivated by the limitations of the earlier experiment, we 
launched the Human Speechome Project. Before the birth of 
my first child, my home was outfitted with fourteen 
microphones and eleven overhead omni-directional cameras. 
Audio was recorded from ceiling mounted boundary layer 
microphones at 16 bit resolution with a sampling rate of 48 
KHz. Due to the unique acoustic properties of boundary layer 
microphones, most speech throughout the house including 
very quiet speech was captured with sufficient clarity to enable 
reliable transcription. Video was also recorded throughout the 



home to capture non-linguistic context using high resolution 
fisheye lens video cameras that provide a bird's-eye view of 
people, objects, and activity throughout the home (Figure 1). 
Recordings were made from birth to the child's third birthday 
with the highest density of recordings focused on the first two 
years (I refer to my son in this context as “the child” reflecting 
the objective stance towards his development that the 
Speechome corpus enables me to take). 
 

  
Figure 1: Sample video frames from the kitchen and baby 
bedroom. 
 
With an initial focus on early language acquisition, our current 
analysis efforts are on the child from 9 to 24 months of age. 
For this age range, the corpus contains 4,260 hours of 
recording time spread over 444 of the 488 days (i.e., no 
recordings were made on 44 of the days across the 16 months) 
for an average 9.6 hours of recordings per day. We believe 
these recordings capture approximately 70-80% of the child’s 
waking hours in the 9-24 month period of life. Audio was 
captured as 14 parallel tracks from each microphone placed 
around the home. The number of video tracks depended on 
which cameras were turned on. Typically 5-6 cameras (main 
living spaces including kitchen and child’s room) were active 
at any given time. 
 
Similar to previous longitudinal case studies, conclusions 
about the general nature of language development that may be 
drawn from analysis of the Speechome corpus are inherently 
limited since the data charts only one child's development. 
However the corpus differs from previous case studies in 
important respects. In contrast to diary studies, which are 
necessarily theory-laden (since the diarist cannot record 
everything, he/she must rely on theoretical biases to decide 
what is noteworthy at the time of observation), the Speechome 
corpus may be re-analyzed multiple times guided by different 
theoretical perspectives. The existence of high-resolution 
video provides opportunities to study the role of various 
aspects of non-linguistic context from joint attention to routine 
activities and beyond.  

4. Analysis / Modeling Framework  
Our guiding framework for analyzing the Speechome corpus is 
to develop computational learning models that, in a limited 
sense, step into the shoes of the child and sequentially 
“experience” what the child experienced. Processing is divided 
into two layers, perception and learning (Figure 2).  
 
The role of perceptual processing is to extract streams of meta-
data from audio and video recordings that encode various 
features relevant for situated language analysis. From audio 
we plan to extract who was saying what and how (e.g., word 
level speech transcription, speaker identification, prosody 
features). From video we plan to encode who was where 
(person tracking and identification), what were they doing and 

how (activity classification, manner analysis), and with what 
objects (object tracking and classification).    
 
The output of the perceptual processing layer feeds into a 
machine learner that embodies a computationally precise 
hypothesis of child language acquisition. The output of the 
learning system may be treated as predictions of what a child 
would learn. These predictions can be compared with what the 
child actually did to evaluate the learning system, and thus the 
viability of the underlying principles of the machine learner as 
being those used by the child. 
 
Perception and learning are not as cleanly separable as the 
figure suggests since acquired knowledge may have “top-
down” influences on perception. We treat this framework as a 
general guide for stages of analysis but are ready to admit 
interactive influences between stages in the course of our 
research. A more complete framework would thus be 
diagrammed to include an arrow from the learner layer back to 
the perceptual layer, however Figure 2 more accurately 
reflects our current plans. 
 
A fundamental limitation of the framework is its implication 
that language learning wholly consists of passively processing 
sensory input. Clearly this is not the case. Language 
acquisition is an interactive process and I believe the most 
promising way to model / explain meaningful language use is 
in terms of interactive processes (e.g., see  [5,6]). The passive 
nature of the analysis framework reflects the inherent 
limitations of working with “dead data” – frozen records of 
human interactions. The limitations of observational methods 
can be complemented by experiments that involve 
interventions in a child’s language learning environment. The 
Speechome methodology may lead to new types of 
intervention studies that are embedded in ecologically valid 
contexts. 
 

 
 
Figure 2: Analysis framework: Machines that step into the 
shoes of a child. 
 
We are working towards instantiations of the complete 
framework that grounds cross-modal machine learning 
systems in both audio and visual data streams. However, most 
of our progress to date has been on the perceptual processing 
layer of the modeling framework leading recently to 
preliminary insights into speech patterns. 

5. Human-Machine Collaboration 
The scale and open-ended nature of the Speechome corpus 
creates serious challenges for analysis. On one hand, the sheer 
volume of data renders purely manual methods using currently 
available tools prohibitively expensive. On the other hand, 
spontaneous conversational speech recordings and video 
recordings of cluttered everyday life with uncontrolled lighting 
result in very high error rates using state-of-the-art 
technologies for automatic speech recognition, visual object 
tracking, and so forth. 
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Our approach to perceptual processing is to combine 
complementary strengths of human analysis and automated 
algorithms. We have selected speech transcription and visual 
person tracking as two key tasks for enabling analysis of the 
corpus. Speech transcripts will serve as a natural index into the 
video corpus given the focus on language acquisition. The 
location and identity of all people provides a basic encoding of 
both social and activity context as we shall see later. We plan 
to transcribe all words heard and produced by the child from 
age 9-24 months – an estimated 10 million words – and to 
annotate the location and identity of all people in the child’s 
vicinity over the same 16-month period (200 million frames of 
video). To achieve these goals in a cost effective way, we have 
developed human-machine collaborative systems for fast 
speech transcription and video annotation. A third tool called 
TotalRecall, provides a global view of the corpus contents 
with support for limited types of speech transcription and 
video annotation. Chronologically, TotalRecall was developed 
first so I will describe it first. 

5.1. TotalRecall: Audio-Visual Browser 

TotalRecall is an audio-video data browser and annotation 
system [9]. As shown in Figure 3, audio is visualized with 
spectrograms. Video is visualized using a technique that 
highlights movement while suppressing static areas of the 
scene. Users can select which of the 25 “channels” of audio 
and video to view, and can change the time scale to view 
periods of data ranging from seconds to years.  

 

 
 
Figure 3: Screen shot of TotalRecall interface showing 
approximately two minutes of data across three video and one 
audio channel. Blue and brown streaks indicate visual 
movement of people within and between rooms of the house. 
 
TotalRecall is used in two ways. First, it provides a global 
view of the corpus indicating when and where recordings were 
made, and the gist of recording contents as indicated by the 
presence of speech and movement activity. Second, the system 
supports limited types of speech transcription and video 
annotation.  
 
Speech transcription for the project was initially done using 
TotalRecall.  A transcriber who also was a caregiver of the 
child used TotalRecall to transcribe a substantial portion of the 
child’s early speech as he transitioned from babble to first 
words – a transcription task that can only be performed by 
caregivers familiar with the child’s idiosyncratic early speech 
patterns. Speech transcription of more mature speech is now 
done by a group of transcribers using a faster tool described 
below.  TotalRecall is also used to annotate the room location 
of the child. This can be done rapidly and precisely with the 
aid of the video visualizations. Annotations of the child’s 

location are used to select which audio channels are analyzed. 
Only speech occurring in the room of the child is selected. We 
call the speech contained in this subset of the data child-
available speech (CAS). In contrast to child directed speech 
(CDS), CAS includes not only CDS but also speech between 
adults that happens to occur in the presence of the child.   

5.2. BlitzScribe: Fast Speech Transcription 

We performed tests of automatic speech recognition on sample 
Speechome recordings and found the word error levels to be 
unacceptably high (well over 75%). Multiple causes led to 
such poor performance including far-field acoustic recording 
conditions, spontaneous speaking styles rife with overlapping 
speakers, and widely variable articulation and prosody ranging 
from barely articulated coordinating speech among adults 
preparing a meal together to hyper-articulated parentese. 
Instead of relying on automatic speech recognition, we have 
used automatic speech processing to help humans transcribe 
more efficiently. 
 
BlitzScribe is a tool for accelerating manual speech 
transcription by a factor of four to six fold compared to other 
available transcription methods [10]. The transcription process 
for unstructured free-running audio recordings may be divided 
into four iterative steps: (1) Find speech (in the Speechome 
corpus we estimate that 25% of recordings contain speech); (2) 
Select a segment of the speech that is to be transcribed; (3) 
Listen to the segment; (4) Type what was heard, and repeat.  
Using currently available transcription tools a significant 
portion of time is spent on Steps 1 and 2, and the coordination 
of these steps with Steps 3-4. BlitzScribe automates Steps 1 
(speech detection) and 2 (speech segmentation) and feeds the 
stream of sound bites into a transcription interface designed 
for speed. The speech segmenter uses pause structure to find 
split points within speech that typically occur at word 
boundaries, and is tuned to produce sound bites that are 
usually short enough to transcribe after hearing only once 
because they do not overwhelm the transcriber’s working 
memory (needing to listen to a speech sample multiple times is 
a major cause of transcription slowdown).  

 

 
 

Figure 4: Screen shot of the BlitzScribe interface with samples 
of actual speech transcriptions.  
 
The BlitzScribe user interface (Figure 4) presents each sound 
bite as a separate row in a scrollable list. Pressing the play 
button on a row causes that speech segment to be played. At 
any time the transcriber can begin typing what they hear. 
When the return key is pressed at the end of transcribing a 

Input Output

Visual FIND

SEGMENT Mouse

LISTENAural

KeyboardTYPE

Figure 1: Functional decomposition of manual transcription.

Safe mode

Fast mode

LISTEN TYPECHECK

Figure 2: User interaction model for BlitzScribe, which breaks
the FSLT cycle and introduces an optional CHECK step.

3. LISTEN to the speech segment.

4. TYPE the transcription for the speech segment.

Figure 1 depicts the FSLT sequence, along with the modality
of interaction at each stage. For example, FIND is primarily a
visual input task. Most transcription tools display a waveform
or spectrogram to facilitate finding speech. The user visually
scans the waveform or spectrogram, essentially querying the in-
terface for the next region of speech. In contrast, SEGMENT
requires output from the user, usually via the mouse. The user
then listens to the segment and types a transcript. Often, a seg-
ment must be replayed to find good segment boundaries. This
FSLT sequence is a reasonable sketch of the transcriber’s task
using either CLAN [8] or Transcriber [4], two popular tran-
scription tools. One criticism of this approach is that it relies
on an inefficient user interaction model – the user constantly
switches between physically separated input devices (keyboard
and mouse). It also requires the user engage in rapid context
switching, altering between visual and aural sensory modali-
ties, input and output subtasks, and interaction modes (textual
vs. spatial). The cost of this cycle both in terms of transcription
time and user fatigue is high.

In stenography, the stenographer uses only a keyboard inter-
face and need not browse an audio stream. In other words, dis-
pensing with the FIND and SEGMENT tasks in Figure 1. Fig-
ure 2 illustrates our design goal – a streamlined system which
focuses human effort where it is necessary, and replaces the
identification and segmentation of speech with an automatic
system. This leads to a simple user interface, eliminating the
need for the mouse and the associated costs of physically mov-
ing the hands between devices.

2.1. The BlitzScribe Transcription System

There are two main components to the BlitzScribe system: an
automatic speech detector and an annotation tool. These two
components are connected via a central database, which stores
the automatically identified speech segments as well as the tran-
scriptions provided by the human annotator.

The system works as follows: the automatic speech detector
processes unstructured audio and outputs a set of speech seg-
ments. For the Speechome corpus, the audio is multitrack (14
channels) so the speech detector must also select the appropri-
ate channel. Speech segments, which are triples of start time,

Figure 3: The BlitzScribe user interface. Here the transcriber is
listening to segment 289, highlighted in green.

end time and channel, are stored in a relational database. Tran-
scription is performed using the BlitzScribe interface, shown in
Figure 3. Graphically, each speech segment is represented by
a text box where the transcriber enters the transcript, and sev-
eral checkboxes for indicating common error types. By using
the arrow keys, or by typing a transcript and hitting “return,”
the user advances through the list. A segment can be replayed
by hitting “tab.” One common error introduced by the speech
detector is the misidentification of non-speech audio as speech.
These errors are handled in a natural way: with no speech to
transcribe, the transcriber leaves the field blank, presses return
to advance, and BlitzScribe marks the segment as “not-speech.”
Both the transcripts and the not-speech labels are stored in the
database, and this information can be used later to improve the
speech detector performance. The transcriber can also provide
feedback on the segmentation quality by marking the segment
as “too long” if it includes non-speech or “cut off” if starts or
ends in the middle of an utterance.

False positives are quickly identified using the BlitzScribe
interface. However, false negatives, or speech that has been
missed by the automatic speech detector, requires a different
approach. To this end, we use TotalRecall [9] to find missed
speech. TotalRecall presents all audio and video channels in a
timeline view, displaying audio using spectrograms. Detected
speech segments are overlaid on top of the spectrogram. Total-
Recall can be used in a special mode that only shows the por-
tions of the spectrogram where speech was not detected. This
reduces the amount of audio to consider and helps to focus the
user’s attention. In this mode, missed speech can be spotted and
saved to the database for transcription. We call transcription
with this CHECK step “safe mode”, and transcription without
this additional step “fast mode.” Figure 2 shows the relationship
between these modes.

In the BlitzScribe system, the human annotator and the au-
tomatic speech detector are intimately linked. Speech found by
the speech detector is presented to the human annotator for tran-
scription. The process of transcribing provides feedback to the
automatic system; each segment is effectively labeled as speech
(if there is a transcript) or non-speech. This new training data is
then used to improve the performance of the automatic speech
detector. Furthermore, by quantifying the human effort asso-
ciated with false positives and false negatives, we can tune the
speech detector to minimize overall transcription time. We elab-



sound bite, BlitzScribe plays the next sound bite 
automatically. The speed of playback effectively tracks the 
speed of the transcriber. In typical use, the transcriber enters 
into a “listen-and-type” work flow akin to a stenographer.  
 
In evaluations, BlitzScribe is at least four times faster than the 
next best speech transcription system without sacrificing 
accuracy [10]. Using the best competing transcription tool that 
we could find, one hour of recordings takes about 6 hours of 
labor. In contrast, the same transcriber takes 1.5 hours using 
BlitzScribe. Our goal is to transcribe 4,260 hours of audio 
covering the 9-24 month age period. We project a reduction in 
transcription time from 25,600 hours to 6,400 hours.  

5.3. Speech Processing Pipeline 

Transcription using BlitzScribe is embedded in a processing 
pipeline with the following steps: 
 
1. Channel selection: The audio channel with the highest 
persistent energy is selected as the source for speech analysis. 

2. Speech detection: A boosted decision tree classifies 30ms 
frames of audio as either speech or not speech.  

3. Speech Segmentation: Pause-separated stretches of speech 
frames are grouped to form speech segments (sound bites) 
using a four-state Markov model.  

4. Child-Availability Filter: The subset of speech segments 
which occurred in the room with the child are selected for 
further processing. The selection is made using the video 
annotations of child position generated by TotalRecall. 

5. Speech Transcription: Speech segments are transcribed 
using BlitzScribe. Transcribers are assigned segments in 
blocks extracted from 15-minute periods of audio. For privacy, 
the order of blocks assigned to each transcriber is randomized.  

6. Speaker identification: Speech segments are automatically 
identified as either the child, one of the three primary 
caregivers (mother, father, nanny), or none of the above using 
a boosted decision tree. 

7. Prosody Analysis: F0 is extracted using Praat , and syllable 
duration is estimated by forced alignment of speech to 
transcripts using Hidden Markov Model Toolkit (HTK). We 
plan in the future to generate normalized energy estimates. 

To date, we have used this processing pipeline to transcribe 
28% of the audio corpus from the 9-24 month period. Of the 
4,260 hours, 1,200 hours have been BlitzScribed yielding 3 
million transcribed words with associated speaker identity and 
prosodic features. In addition to the 3M transcribed words, the 
speech detector found an additional 300K words that our 
transcribers marked as unintelligible.   

5.4. TrackMarks: Fast Video Annotation 

TrackMarks is a tool for tracking the location and identity of 
multiple people and objects across multiple camera zones 
robustly in spite of partial or complete occlusions [11]. Once a 
person’s speech has been indentified (Step 6 of the speech 
pipeline) and the person’s position has also been visually 
identified, speech and video can be linked to each other based 
on identity, opening up interesting cross-modal analyses (e.g., 
see Section 6). The system integrates an automatic object 
tracking algorithm into a human annotator’s workstation. The 
video annotation task is divided into three sub-tasks: (1) 
manual selection and identification of target objects, (2) 
automatic target tracking over time, and (3) manual correction 

of tracking failures. These three sub-tasks are coordinated 
using the TrackMarks interface (Figure 5). The system 
provides an efficient means of reviewing automatic tracker 
output to make corrections, and a “subway map” visualization 
of track data (lower region of interface) to display movement 
of people across camera zones. 
 
Preliminary tests show that the positions of three to four 
people in one hour of video with relatively complex activity 
can be fully annotated in less than two hours by one person. 
We expect the efficiency to increase with design optimization 
of the interface and improvement of the underlying tracking 
algorithm. To date, TrackMarks has only been used for pilot 
annotation tests. We plan to soon deploy it at scale to fully 
annotate the positions and identity of all people in the child’s 
vicinity over the 9-24 month age period.  
 

 
 
Figure 5: The TrackMarks user interface.  
 
There is much more detail available for analysis in the video 
recordings than mere body position. We have, for instance, 
developed automated head orientation trackers [12] and are 
also experimenting with body orientation and gesture 
characterization algorithms. Over time these additional forms 
of human activity features along with object tracking and 
classification will be folded into our analyses. 

6. Early Insights into Word Learning 
Recently we performed analyses of a 400,000 word subset of 
speech transcriptions drawn from 72 days that evenly cover 
the 9-24 month period [13]. Our goal was to gain an initial 
glimpse into the continuous processes of word learning, and 
led to some surprising results 

6.1. Word Births 

We define a word birth as the moment of the first reliably 
transcribed utterance of a new word type by the child. Two 
caveats need to be made about this definition of a word birth. 
First, as we continue to fill in transcriptions of the data, the 
birth of many words will undoubtedly shift forward in time as 
earlier productions are discovered in the data. Second, it is 
well known that children comprehend words before they begin 
using them. Word births as defined here only mark the 
moment of first transcribed use by the child.  
 
A total of 517 word births were found in the 400K word 
sample. Figure 6 shows the number of word births binned by 
month. Although it is widely known that children’s 
vocabularies grow more or less exponentially in this 
developmental period, we found the rate of worth births 
abruptly drops at 20 months leading to a “shark’s fin” curve. 
Note that the child’s cumulative productive vocabulary size 

Figure 1: TrackMarks Interface

mega-pixel resolution. In this image, two bounding boxes
have been superimposed on the video that indicate the po-
sitions of a child and adult. The colors of the boxes indicate
the identity of each person. Video navigation is performed
primarily with a jog-shuttle controller.

The top, left panel displays video thumbnails from the other
cameras in the house. The user selects the video stream to
view by clicking one of these thumbnails.

The bottom panel shows a timeline visualization of the an-
notations that resembles a subway map. This component
summarizes the annotations that have been made, providing
the user with a method of identifying and accessing portions
of the data that require annotation. The horizontal axis rep-
resents time, which consists of approximately 30 minutes of
data in this example. The blue, vertical bar indicates the
user’s position in the video stream. The timeline is divided
into horizontal“channels,” each representing one camera, de-
marcated by the thin black lines. The top channel, colored
gray, represents the “absent” channel that is used to indicate
that a target is not present in any of recordings. Finally,
the thick, colored lines represent the tracklets. As with the
bounding boxes superimposed on the video, the tracklets are
colored to indicate person identity. The vertical placement
of the tracklet indicates the channel, so when a tracklet line
makes a vertical jump to another channel, it indicates that
the target moved to a different camera at that place in time.
As the system generates annotations, the timeline map adds
or extends these tracklet lines and the user can monitor the
progress of the system. Note that each bounding box shown
on the video frame corresponds to a thin slice from one of
the tracklet lines on the timeline view.

2.3 Track Representation
Track data is represented in a hierarchical structure with
three levels: track points, track segments, and tracklets. At
the lowest level, track points correspond to an annotation
associated with a single frame of video. For the instance
of the system described in this paper, all track points con-
sist of bounding boxes. Track points are grouped into track
segments, which represent a set of track points for a contigu-

ous sequence of video frames from a single camera. Track
segments may also indicate that a target is occluded or ab-
sent for an interval of time, and that no track points are
available. Adjoining track segments are grouped into track-
lets. Tracklets specify the identity of the target and combine
the track data for that target across multiple cameras for a
continuous time interval.

Several constraints are placed on the track data to simplify
the system. First, only one annotation may be created for
a given target in a given time frame. It is not possible to
indicate that a target simultaneously occupies more than
one location or camera, and multiple tracklets for a given
target may not overlap. This precludes the use of multiple
hypothesis tracking algorithms or annotating multiple views
of the same object captured by different cameras, but greatly
simplifies interaction with the system because the user does
not need to review multiple video streams when annotating
a given target.

Second, each tracklet has a single key point that is usually
a track point created by the user. The tracklet originates
from the key point, and extends forward and backward in
time from that point. The purpose of the key point is to
simplify tracklet editing. When deleting a track point from
a tracklet, if the track point is defined after the key point, it
is assumed that all of the tracklet defined after the deleted
point is no longer valid and the right side of the tracklet is
trimmed.

2.4 Annotation Process
This section outlines the annotation process from the view
of the human annotator. To begin the process, the user
selects an assignment to work on, where the assignment
defines an objective for the user and a portion of data to
process. The user browses the video and locates a target.
Target identification is performed manually. The jog-shuttle
controller used to navigate the video has nine buttons that
are mapped to the most frequently occurring targets. The
user may quickly select the identity by pressing the corre-
sponding target button, or, more slowly, may evoke a popup
menu that contains a complete list of targets as well as an
option to define new targets. Given the overhead position
of the cameras, it is sometimes necessary to browse through
a portion of the data before an identification may be made.
After identification, the user uses a mouse to draw a bound-
ing box that roughly encompasses the object as it appears
in the video. If the annotation appears correct, the user
commits the annotation.

When the user commits an annotation, it creates a new track
point as well and a new tracklet that consists of only that
point. By default, TrackMarks automatically attempts to
extend the tracklet bidirectionally. This process is described
in Section 2.5. Camera handover is performed manually, and
the user must create annotations at time frames in which a
target enters or leaves a room. Usually, when annotating
a target entering a room, the user defines a tracklet that
should be extended forward in time, but should not be ex-
tended backward because the target will no longer be there.
For this reason, it is also possible for the user to specify that
a tracklet be extended only forward, only backward, or not
at all.



continues to grow since there are new births each month, but 
there is a surprising pivot in the curve at 20 months of age. 
 

 
Figure 6: Number of word births per month over the 9-24 
month period.  
 
We are not certain why this curve has the form that it does. 
One possibility is that in spite of the rate of externally 
observed word births, the child’s vocabulary is continuing to 
grow exponentially but due to Zipf’s distribution, words 
learned later are less likely to be observed in productions. The 
convolution of the exponential vocabulary growth curve and 
the falling tail of the Zipf distribution lead to the shark’s fin 
form. Another contributing factor may be that as the child 
discovered the combinatorial power of multiword utterances, 
he shifted effort from learning and producing new words to 
putting known words together in new sequences. Further 
investigations will aim to explain the shape of the curve. 

6.2. Caregiver Speech and Word Births 

Previous studies have shown that the frequency of a word in 
child directed speech predicts the age of acquisition of the 
word by the child [14]. In agreement, we found a significant 
correlation of -0.29 between the log frequency of words in the 
child’s input and the date of the word birth (Figure 7a), and a 
stronger and significant correlation of -0.54 for nouns [13].  
 

 
 
Figure 7: (a) Words plotted by their date of birth versus the log 
frequency of the word in caregivers’ speech over the 9-24 
period. The best linear fit and r-value are shown in red. (b) 
The combination of how often a word is said and how it is said 
(based on vowel duration) predicts word births better than 
either alone. 
 
The Speechome corpus provides a unique opportunity to study 
the role of prosody in language acquisition. In addition to how 
often a word is said, how it is said may also affect a child’s 
ability to learn it. In our first look at prosody, we asked 
whether emphasis placed on words in caregiver speech as 
marked by syllable duration strengthen our ability to predict 
word births compared to frequency alone [15]. We assigned 
each word type a durational emphasis “score” by extracting 
duration for all vowel tokens, converting these to normalized 
units for each vowel separately, and then measuring the mean 
standardized vowel duration for each word type. The log 
frequency of each word type was combined with the emphasis 
score using a linear factor, alpha. With alpha=0 we obtain 

predictions of word births using frequency alone, and with 
alpha=1 we obtain predictions using durational emphasis 
alone. As Figure 7b shows, the correlation is strengthened 
from -0.29 to -0.33 by combining prosodic and frequency 
measures. This provides modest evidence that the child is 
leveraging both how often words are said and how they are 
said in order to learn words. 
 
The method for evaluating the predictive power of two input 
factors on word births may be extended to include any number 
of additionally hypothesized factors. In Section 7 I sketch our 
plans for using this framework for studying the influence of 
interpersonal distance.  

6.3. Caregivers’ Fine Lexical Tuning 

Vygotsky conceived the zone of proximal development (ZPD) 
as “the distance between the actual developmental level as 
determined by independent problem solving and the level of 
potential development as determined through problem solving 
under adult guidance, or in collaboration with more capable 
peers.” [16] Vygotsky’s view was that the ideal learning 
environment for a child – the ideal social scaffolding for 
learning – is to provide experiences within his/her ZPD. 
 
If we view word learning as a kind of problem solving, a 
period of time leading up to the word’s birth might be 
regarded as the ZPD for that word. A variety of intriguing 
questions arise with this perspective. Do caregivers adjust the 
complexity of their utterances that contain a particular word 
type in a way that is tuned to the word’s moment of birth? 
Might caregivers have a predictive ability in this regard and 
adjust the complexity of their speech in ways that anticipate 
word births?  The 400K sample of the Speechome corpus has 
sufficient density to address these questions. 
 

 
Figure 8: Change in mean length of one caregiver’s utterances 
in relation to word births. Error bars are 95% confidence 
intervals. 
 
We used utterance length, measured in words (not 
morphemes), as an indicator of caregiver utterance 
complexity. For each word type that appeared in the child’s 
productive vocabulary by 24 months, we measured the mean 
length of all utterances each month that contained that word 
type. The result is a time-varying caregiver utterance 
complexity curve associated with each word type. The curve 
for each word type was time shifted so the moment of birth of 
the word type is aligned across curves. The average change in 
complexity curves for one of the three primary caregivers is 
shown in Figure 8. Similar results were obtained for all three 
caregivers [13].  
 
The result shows that caregivers gradually decrease the length 
of their utterances containing a particular word type up to the 
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Figure 5: Mean caregiver MLU across words when the caregiver’s MLU time series are aligned by word birth (zero on the
X axis) and centered at the MLU at birth (zero on the Y axis). Each panel shows a different caregiver. Error bars are 95%
confidence intervals computed by a non-parametric bootstrap and a lowess smoothing line is plotted in red for each curve.

reveals the limitations of even the current dataset. Without
denser data it is impossible to look at coordination in the short
window of time immediately before and after the child’s pro-
duction of a new word, and these short temporal dynamics
may also reveal effects of fine tuning.

Conclusions
The Human Speechome Project represents a novel oppor-
tunity to explore hypotheses about the relationship between
caregivers’ speech and the linguistic abilities of the child. We
found evidence that word frequency in CDS influences the
child’s age of acquisition for those words. We also found
strong evidence for caregivers’ modification of the length and
lexical diversity of their utterances contingent on the child’s
linguistic ability. In addition, we found some support for
a finer level of lexical tuning, the modification of utterance
length on a word-by-word basis according to whether the
child knows that word or not.

More generally, the current analyses constitute only a first
look at an extremely rich dataset. As transcription progresses,
we can look forward to enriching a number of the current
analyses with more accurate assessments of the child’s pro-
ductive vocabulary and the short-term dynamics of care-
givers’ speech surrounding the first use of a word. Further-
more, the visual information contained in our database offers
an unparalleled opportunity to explore more detailed ques-
tions about the interaction between linguistic and physical
context in acquisition. Our hope is that through the power
of this resource we may be able to make new progress on
long-standing questions in child language development.
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moment of birth of that word, and then gradually increase 
complexity. Remarkably, this adjustment of speaking style is 
tuned to the hundreds of individual word types in the child’s 
productive vocabulary across hundreds of thousands of 
caregiver utterances. Even more surprising is that the gradual 
drop in complexity precedes word births by many months 
suggesting that caregivers have long range predictive abilities. 
 
Evidence of fine lexical tuning of caregiver speech revealed in 
this analysis raises questions about how and why fine tuning 
occurs. Perhaps much of the caregiver speech early on is 
between adults and happens to contain words the child will 
eventually learn, and thus reflects the complexity of adult-
adult speech. As the child enters into the language, caregivers 
slowly adjust utterances in recognition of the child’s growing 
lexical abilities, bringing utterance complexity to a minimum 
to meet the child at the moment of birth and gently lifting him 
into more complex uses of each word type. Or perhaps 
children learn words from shorter utterances first and are 
driving the process. Further detailed studies will explore these 
and alternative explanations. 

7. Plans for the Speechome Analysis 
In this section I sketch a few planned directions in our ongoing 
analysis of the Speechome corpus.  
 
We will study the process of grammar development by tracing 
the formation and transformation of grammatical constructions 
over time. We are curious to what degree similar semantic and 
pragmatic contexts predict the use of particular grammatical 
constructions. The shift in degree of context-boundedness may 
provide a useful way to study the child’s acquisition of 
abstract grammatical “rules”. Of special interest in this regard 
is the onset of iterative operations including recursion. 
 
The role of joint attention in language acquisition has received 
significant attention over the past couple of decades (e.g., 
[17]). The behavioral cues of choice tend to be eye gaze and 
pointing gestures. Although head orientation (as a surrogate 
for eye gaze) and gestures may be analyzed in the Speechome 
corpus, the location of people’s bodies provides an equally 
interesting and important lens into patterns of social 
interaction and joint activity, and one that has not been studied 
longitudinally to date.  
 
Figure 9 aggregates the paths of father and child generated 
using TrackMarks over a 60-minute period in the living room. 
This visualization reveals two clusters of intense joint activity 
where the positions of the father and child remain in close 
mutual proximity for a sustained period of time. These “social 
hot spots” occur on the couch near the right of the image and 
near the center of the room on the floor. This structure of 
interpersonal spatial dynamics leads us to ask:  Does the child 
learn words earlier if they are heard more often in the context 
of a social hot spot? We plan an extension of the predictive 
word births analysis (Section 5.2) to answer this question.  
 
Another question guiding our plans is whether the child shows 
identifiable bodily movements that can be used to detect the 
receptive birth of a word type. For example, it might be the 
case that once the child learns to understand a new object 
name (e.g., “ball”), he will often search his environment for a 
referent soon after hearing instances of the word. Although 
there are many other factors that will confound any single 
instance, over thousands of trials (i.e., thousands of times that 
the child hears a caregiver say “ball”) a phase shift in the 

child’s orienting head and body movements might be 
discernable with the inflection point of the phase shift marking 
the receptive birth of the word. In cases where the child orients 
and fixates, we can further analyze the objects in the child’s 
line of sight to verify the presence of semantically appropriate 
referents. We plan to explore this idea using new computer 
vision techniques that are tuned to human orienting behavior. 
 

 
 
Figure 9: Sixty minutes of father (green) and child (red) 
position traces in the living room reveal two social hot spots. 
 
I believe one of the most promising ways to think about the 
holistic process of language acquisition is in terms of 
Wittgensteinian language games as propounded by Jerome 
Bruner [18]. The basic idea is that a child understands how to 
participate in games such peek-a-boo without reliance on, and 
prior to language. Games provides a meaningful context to 
ground the semantics and pragmatics of words and speech 
acts. When mother says, “where’d mommy go? Here I am! 
Yeah!”, while engaged in a round of peek-a-boo, the child is 
able to learn the meaning of these words because of their 
embedding in meaningful joint activity. We can generalize the 
notion of a game from literal games such as peek-a-boo to any 
routine social activity (the game of breakfast, the game of 
taking a bath, etc.) yielding a framework for analyzing a large 
variety of naturalistic data. I envision discovering and 
encoding routine activities in the Speechome corpus using a 
combination of pattern discovery algorithms and human 
annotation. Together with the completed transcription of the 
speech recordings and people’s locations, machine learners 
will process the entire speech stream embedded in 
corresponding activity contexts from which the machine will 
learn mappings from words and phrases to semantically and 
pragmatically appropriate elements of activity structures, 
including reference to objects and people in the environment. 
This would become our first complete instantiation of the 
modeling framework described in Section 3.  

8. Beyond N=1 
An obvious limitation of the Speechome project is its reliance 
on one child’s data. However conclusively we are able to 
study phenomena regarding this child, the generalizabilty of 
results will require data from more children in their natural 
contexts.  With this in mind we have designed a new recording 
device. 
  
The cost and complexity of the original recording installation 
was high for two reasons. First, the goal of the design was to 
conceal all wires and equipment to integrate the system 



seamlessly into the home. To do this, over 3,000 feet of 
concealed wiring was run throughout the house, with holes cut 
into ceilings to mount microphones and cameras. Second, as a 
pilot study, we aimed for comprehensive coverage. Thus, 
every room in the house was instrumented, leading to 11 
cameras and 14 microphones installed throughout the home, 
many of which in retrospect were non-critical.  
 

 
 
Figure 10: The Speechome recorder. 
 
To reduce cost and complexity of naturalistic longitudinal 
recordings, our lab has designed a transportable device called 
the Speechome recorder that captures the same quality data as 
the original corpus from one room, and additionally captures a 
second video stream from child’s eye level to capture details 
of faces and gestures to augment the birds-eye view. The first 
prototype of the device, shown in Figure 10, resembles an 
arching floor lamp. The head of the recorder houses the same 
model of camera and microphone used in my home. All wiring 
runs through the mast to the base of the unit, which contains 
the second camera, disk storage sufficient to hold about 60 
days of continuous recordings, computers for data 
compression, and a touch display controller. The mast can be 
adjusted to fit into most home settings with a ceiling brace for 
safety and stability. The Speechome Recorder can be installed, 
moved, or removed in minutes.  
 
We expect to begin high-density longitudinal recordings in 
several children’s homes in the near future both to increase our 
diversity of data on typically developing children, and also to 
begin studies of children with specific developmental 
disorders that affect communication and social interaction. 

9. Conclusions 
Preliminary analyses of the Speechome corpus have revealed 
new insights into the processes of word learning for one child. 
High density, naturalistic records of child development 
coupled with appropriate analysis and modeling methods 
promise to advance our understanding of language acquisition 
and other aspects of child development in fundamental ways. 
The field is ripe with opportunities to advance our 
understanding of language acquisition through cross-
disciplinary methods that bring together the human sciences 
with computational sciences and design. 
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