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Abstract

Our long-term objective is to develop robots that en-
gage in natural language-mediated cooperative tasks
with humans. To support this goal, we are develop-
ing an amodal representation called agrounded situa-
tion model(GSM), as well as a modular architecture
in which the GSM resides in a centrally located mod-
ule. We present an implemented system that allows of
a range of conversational and assistive behavior by a
manipulator robot. The robot updates beliefs about its
physical environment and body, based on a mixture of
linguistic, visual and proprioceptive evidence. It can an-
swer basic questions about the present or past and also
perform actions through verbal interaction. Most im-
portantly, a novel contribution of our approach is the ro-
bot’s ability for seamless integration of both language-
and sensor-derived information about the situation: For
example, the system can acquire parts of situations ei-
ther by seeing them or by “imagining” them through de-
scriptions given by the user: “There is a red ball at the
left”. These situations can later be used to create men-
tal imagery, thus enabling bidirectional translation be-
tween perception and language. This work constitutes
a step towards robots that use situated natural language
grounded in perception and action.

Robots, Language and Modularity
As robots grow in ability and complexity, natural language
is likely to assume an increasingly central role in human-
robot interaction. Our current work is part of a larger ef-
fort to develop conversational interfaces for interactive ro-
bots (Crangle and Suppes 1994, McGuire et al. 2002, Sofge
et al. 2003, Roy, Hsiao and Mavridis 2004). Robots that
understand and use natural language may find application
in entertainment, assistive, and educational domains. Such
interactive robots are prime examples of systems where in-
tegration of numerous technologies in complex ways is re-
quired, and thus well designed modularity is necessary.

The development of natural language processing (NLP)
technologies and robotics have proceeded with relatively lit-
tle interaction. NLP deals with the discrete, symbolic world
of words and sentences whereas robotics must confront the
noisy, uncertain nature of physically embodied systems with
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sensory-motor grounded interaction. Current computational
models of semantics used in NLP are variants of “dictio-
nary definitions”, essentially structured networks of word-
like symbols. It is impossible to directly apply these NLP
approaches in any principled way to endow robots with lin-
guistic skills since the underlying theories of semantics in
symbol-based NLP provides no appropriate “hooks” for ac-
tion and perception (Roy in press). We posit that an impor-
tant step towards bridging the language-robot divide is to
develop new knowledge representations that facilitate cross-
modal interoperability. Motivated by these concerns, we
have developed agrounded situation model(GSM) which
lies at the center of our proposed modular architecture, and
which fluidly integrates language, perception and action.

Although we may eventually want robots that can con-
verse about a range of abstract topics, a natural starting point
is to develop means for robots to talk about their immediate
physical and social context. This parallels the development
of semantics from concrete to abstract domains in child lan-
guage acquisition (Snow 1972). Consider partners engaged
in a collaborative building task. The partners will often refer
to physical objects that are available to them, their locations,
and their properties. Each person knows about the objects
through perception, can act upon the objects through ma-
nipulation, and can talk about the objects that are present.
Perception, action, and language are aligned by the structure
of the physical environment. When trying to build a conver-
sational robot, we must address a basic challenge: how do
different subsystems such as visual perception, motor con-
trol, and language interface with each other?

Challenges in Cross-Modal Representation
A central problem in connecting language and perception is
the potential for mismatched levels of specificity. For ex-
ample, the descriptive phrase “there is a cup on the table”
and the visual observation of the cup will lead to consistent
knowledge but with very different levels of specificity. The
linguistic description does not provide information about the
size, orientation, and color of the cup, and provides only
bounds on its location (it’ssomewhereon the table). Visual
perception in contrast will provide far more detail. How is
a robot to translate between such varying sources of knowl-
edge? More generally, sensory, motor, and linguistic sources
differ in levels of specificity / ambiguity, yet must be aligned



in order to enable sensory verification, cross-modal belief
propagation, and action.

In our approach, a grounded situation model serves as
a mediating amodal representation that connects sensory-
derived percepts with linguistic structures as well as actions.
The GSM is amodal in the sense of being neither a viewer-
dependent 2D image, nor an absolute 3D spatial model (it
even includes invisibles such as the beliefs of others), nor
an unstructured list of language-like propositions describ-
ing beliefs. It is a representation accumulating information
coming in from multiple modalities (vision, touch, proprio-
ception, language), which has a structure analogous to the
situation the robot is embedded in or is imagining.

The design of our GSM was driven by a set of behavioral
goals for a manipulator robot under development in our lab
(Roy, Hsiao and Mavridis 2004) which we anticipate will
serve as a basis for developing more sophisticated linguistic
abilities in future work. The robot’s world consists of a table
top on which various objects are placed and manipulated.
We set the following behavioral goals for the robot:

Answering questions about the present physical context:
such as, “What color is the one on the left?” (a question
about objects on the table).

Quantifying and expressing confidence in beliefs:Thus,
when asked about the location of an object that it hasn’t
seen for a while, it might answer, “Probably at the left, but
maybe not”, expressing uncertainty since the object might
have been moved while the robot was not looking.

Respond to spoken requests:such as “Look to the left” or
“Hand me the small red one” with situationally appropriate
motor actions.

Imagining situations described through language:so that
the robot can understand commands such as “Imagine an
object at the left”, or descriptions such as “There is a small
object at the right”. Such speech acts must be translated into
representations that may later be related to sensory input.

Remembering and resolving temporal referents:so that
the robot can keep track of salient past events and talk about
them. This would enable the robot to answer questions such
as “What color was the object that was at the center of the
table when the red one appeared?”.

The GSM and associated cross-modal belief update and
language processing algorithms we have developed enable
each of these situationally-grounded linguistic behaviors.

Relation to Previous Work
The notion of a situation or mental model has been proposed
by cognitive psychologists (Zwaan and Randvansky 1998,
Johnson-Laird 1983) in this spirit, but most such work fo-
cuses only on the connection between mental models and
language. For example, Johnson-Laird provides an elaborate
overall account, but mainly focuses on language understand-
ing and inference making. Most behavioral experiments re-
viewed in Zwaan and Randvansky probe the structure of
human mental models, and assess the relevance of their
prime “dimensions” (space, time, protagonist etc.). How-
ever, again most of these experiments involve only language
(story understanding). In our work, in contrast to the above

literature, the processes providing sensory-motor grounding
of situation models are also taken into account.

Below, a short review of existing robots with conversa-
tional abilities is given. The approaches taken towards con-
necting language with perception and action will be briefly
examined, as well as their behavioral repertoires.

In (Crangle and Suppes 1994), the authors propose a
natural-model semantics which they apply to the interpreta-
tion of robot commands, in two robotic aids for the disabled.
As the above robots are not equipped with perceptual sys-
tems, a model of the environment consisting of 3D object
positions and properties is entered manually into a knowl-
edge base. Total confidence and complete knowledge is as-
sumed. In (McGuire et al. 2002), a Bayesian network in-
terconnects visual to verbal information about objects. The
system can interpret gestures, and includes visual attention
mechanisms, but can only handle action requests. In (Sofge
et al. 2003), an occupancy map built by range sensor data
plays part of the role of a GSM. Objects are individuated,
and spatial relations are exploited in answering questions
and interpreting action requests.

Cynthia Breazeal’s Leonardo robot (Breazeal et al. 2004),
is her central experimental vehicle towards building hu-
manoids that can act as cooperative partners for humans.
Leonardo currently uses a cognitive architecture built on top
of the c5 codebase, an extension ofc4(Burke et al. 2001)
A centrally located “Belief system” module interconnects
speech, vision and action. Hierarchical structures called
“percept trees” classify sensory inputs to “snapshots” which
are fed to the belief system, which decides whether to create
or update beliefs about objects and their properties. Also,
the system models human beliefs with representations hav-
ing the same structure, in a similar way that we do using
embedded GSM’s. Furthermore, the system models atten-
tional and referent focus, which our system does not.

Our proposed system has three novel abilities compared
to all of the above mentioned systems. These were already
explicated in the behavioral specification given in the previ-
ous section, under the headings: “Quantifying and express-
ing confidence in beliefs”, “Imagining situations described
through language” and “Remembering and resolving tempo-
ral referents”. Through the second of these, objects instan-
tiated through language can be referred to, acted upon, and
can also be visualised in mental imagery (thus enabling bidi-
rectionality between language and vision). The GSM-based
design has been instrumental in attaining these abilities.

Embodiment
The robot is an arm with 7 degrees of freedom, equipped
with force feedback actuators, a gripper with force-sensitive
touch sensors integrated into each finger tip, joint angle en-
coders, and dual cameras mounted around the gripper.

A layer of low-level software consists of numerous mod-
ules that run on a set of computers running Linux OS and
communicating through a packet-based network protocol.
Front end visual processing is carried out by the following
modules: camera capture, color-based segmentation, face
detection (Viola and Jones 2002), and 2D region detection
and tracking. Currently only one of the robot’s cameras are



used for visual perception. The output of the visual subsys-
tem is a stream of detected faces and regions at 20 frames
per second. Low-level motor control is based on PID con-
trollers. At a higher-level, motor primitives such as “pick
up” have been coded as parameterized action schemas. In
addition to looking at, grasping, and moving objects, the ro-
bot can also characterize object weights by lifting them.

The robot’s environment consists of a table populated by
objects, and a human interacting with the robot and the ob-
jects, who is standing near the edge of the table. The robot’s
purpose is to serve as a “conversational helping hand”.

Grounded Situation Model
The GSM was designed in order to reflect the natural hier-
archy of agents, bodies, body parts, and properties that is
inherent in human languages (Figure 1).

Figure 1: Hierarchical structure of the GSM

At the highest level, the world model consists of agents
and relations among them. Any object can be potentially
agentive. The GSM contains all the information the robot
has acquired about itself and its environment (the human
and the objects on the table). Every agent has a three-part
representation, consisting of the body (physical realm), the
mind (mental realm), and the interface (between physical
and mental). The body consists of simple objects (body
parts) and spatial object relations. The mental realm is rep-
resented by a recursively embedded GSM associated with
each body, enabling the robot to maintain a “theory of mind”
about other entities. The interface consists of the specifica-
tions of contact points between mental and the physical, i.e.,

“sensory entry” and “action output” parameters. At present,
the only element of the mental realm that we have imple-
mented is the ability for the robot to model another agent’s
visual point of view. In this paper, we will focus on only the
physical realm of the GSM since the motivating behaviors
defined earlier deal with physically-grounded semantics. In
future work in which we are planning to develop socially-
grounded linguistic behaviors, the mental realm of the GSM
will become crucial.

Objects in the physical realm bottom out in clusters of
properties. For example, the representation of a ball will
bottom out in a set of properties that model the look, feel,
and location of the ball. Properties are encoded by three lay-
ers of linked representations which are motivated as follows:

Layer 1 (L1) maintains stochastic representations of
properties, suited for sensory measurements. Let us assume
that we have acquired multiple noisy measurements of the
position property of a particular object by computing the
centroid of a tracked visual region over time. We would
like to encode our knowledge of the position in a summary
form, which should give little weight to non-persistent out-
liers, which should not cause any significant loss of mea-
surement resolution, and which should still retain an ability
to remember the spread of sensed values and our confidence
in them. We should also be able to lower our confidence
when measurements become outdated, and furthermore ac-
tively drive the acquisition of more current sensory informa-
tion whenever required. To satisfy the above requirements,
it would be reasonable to represent position property as a
stochastic variable, through a probability distribution (e,g.,
a continuous parametric form, or as we have implemented
it, a discretized histogram).

Layer 2 (L2)maintainscontinuous single-valuedencod-
ings of properties, suited for use as action control parame-
ters. Consider a scenario where we want to execute an ac-
tion which requires the position of the object as a parameter.
For example, we might want to use the object as a target
for a lift motor routine. The stochastic distribution must be
sampled in order to guide action. In our current implemen-
tation, the continuous layer may be generated by selecting
the maximum density point from L1. A second motivation
for maintaining L2 is to support simulation based reasoning.
To simulate interaction of objects over time, a single value
for properties such as size, orientation, and position leads
to computationally tractable physical simulation, whereas
stochastic representations would be far more complex and
time-consuming to manipulate.

Layer 3 (L3)maintainsdiscrete, categoricalencodings of
properties, suited for interfaces with natural language. Con-
sider the scenario of asking the robot where an object is.
To respond, a verbal spatial category must be produced and
communicated by the robot (e.g., “at the left”). We need to
be able to provide a single discrete value corresponding to
the verbal category chosen, or better yet, provide a proba-
bility distribution over multiple spatial categories. This is
what the categorical layer, L3, accomplishes. It represents
a property as a distribution over a number of verbal cate-
gories (while in L1 we had a fine-grained distribution over
sensory-derived measurements). For example, we might



have “left”, “right”, “center” in the case of position, or “red”,
“blue” in the case of color etc. We have suggested that the
categorical layer is motivated by the need for production
of verbal descriptions. It is equally motivated by the con-
verse need, translating from verbal descriptions to property
representations. In that case, the robot might be told that
“there is an object at the center”. If there is total confidence
in the linguistic source, the robot can represent the infor-
mation as a discrete distribution over the categories, with
P (location = center) = 1 and all other probabilities zero.

To summarize, the GSM represents a situation as a hier-
archy of objects in the physical realm linked, optionally, to
a mental realm. The realms bottom out in a linked three-
layered representation comprising stochastic (L1), continu-
ous (L2), and categorical (L3) levels. A particular configu-
ration of the GSM represents amomentin time – a snapshot
of the state of the situation. Aneventis a special structure
providing landmarks on the sequence of moments. It con-
sists of an event class, start and end time indices, and a list
of participants (agents or body parts).

GSM Algorithms
The GSM is used for two basic purposes, belief maintenance
and action control. The constituents of the GSM hierarchy,
and each object’s layered property representation is created
and maintained using update procedures described in this
section. Conceptually, we treat the robot’s external physical
world as a fourth property layer (“L0”) that interacts with L1
via sensory-motor processes. In this conceptualization, per-
ception is seen as a bottom up process caused by the physical
world and propagating through layers of representation and
hierarchical structure. Action, on the other hand, is seen as
top down, starting with encoded new desired states in the hi-
erarchical GSM which are “pushed down” to effect change
in the physical environment to effect desired change.

Situation Model Updating
We will use the updating of an object’s position property as
an illustrative example (Figure 2). We will adopt the nota-
tion Ci/Rj for the columns/rows of this figure. Pseudo-code
is available online at http://www.media.mit.edu/∼nmav.

Sensory information updates of the stochastic layer:
Given no information (sensory or linguistic) about the po-
sition of an object, we are faced with a choice: what should
be the initial probability distribution on positions? In our ro-
bot’s particular case, objects are assumed to be on the table -
thus the object’s location must be bounded in space defined
by the surface of the table. As a first approximation the a
priori probabilities of unseen object positions are spread uni-
formly across the table (i.e., non-informative prior).

Now let us suppose that an estimate of the position of
an object is generated by the visual system. How should
the probability distribution of the stochastic layer be up-
dated? We have chosen to calculate the new distribution as
the weighted sum of the old distribution with a rectangular
envelope centered at the new measurement. In the limiting
case, this envelope consists of only one bin, namely the bin
which contains the new measurement. The weight factor

and the envelope can be adjusted to fit the noise and rate of
change characteristics of the measurement.

As a general rule, we assume that over time, knowledge
becomes less reliable without information refreshing. For
example, let us suppose that sensory information is not cur-
rently available about an object’s position because the robot
is not looking at it. Over time, the robot’s confidence in
knowing the position of the object should decrease (some-
one might move it while the robot is not moving, etc.).
To model this confidence decay in L1, we use a diffusion
process similar to (Isla and Blumberg 2002). The new value
of each element of the position distribution in L1 is given by
the weighted sum of its old value with that of its neighbors
within a pre-specified neighborhood. The expected rates of
change dictate the settings of the weights. Diffusion parame-
ters are set separately for each property modality. Color and
shape beliefs are diffused much more slowly since they are
far less likely to shift over time (but color, will, for example,
shift in perception as lighting conditions change).

For example, in C1 an object has been visible for some
period of time and is still visible. In R2C1, the resulting dis-
tribution has become very sharp after the object was stable
and visible for some time - in fact it consists of a single bin
(under the cross-hair). The robot knows where the object is
with certainty. In contrast, in R2C2 and R2C3, the robot’s
head has looked away, and the object has not been visible
for some time (C2), and even more time (C3). The diffusion
process has taken over and spread out the distribution.

Speech-derived information updating the categorical
layer: The categorical layer consists of a distribution over
a set of verbal positional categories (“right”, “center” etc.)
. If the robot receives information that the property value
“left” was given through speech for the object under con-
sideration, then the robot sets P(“left”) = 1 while the proba-
bility of other categories is set to zero. If such information
is absent, it has two choices. Either the system can assume
an empirical prior over the verbal categories, or it can use
a non-informative uniform prior, and again we have chosen
to implement the latter. In C4, the position is specified by
the verbal information “...at the center”. Thus, in R4C4 we
have P(“center”)=1 while P(other category)=0. In contrast,
when no spatial information is given through speech we get
a uniform P(spatial category)(see R4C5).

The stochastic layer (L1) feeds the categorical layer (L3):
Whenever information enters the GSM (either via L1 or L3)
or when a change occurs due to diffusion, the three layers
must be updated in order to ensure cross-layer consistency.
If the change has occurred at the stochastic layer, then up-
date information feeds the categorical and vice-versa. The
continuous layer is always fed via the stochastic. The sto-
chastic layer contains more specific information than the
categorical, and thus the forward feeding process is many-
to-one and straightforward. Each property has an associated
classifier. The classifier maps continuous sensory-derived
values to categories. The classifier could in principle be
implemented by any algorithm, such as SVM’s, neural net-
works, etc. For simplicity we have implemented nearest
neighbor classification around predetermined centers (for
more refined spatial models, see (Regier 2001). Initially,



Figure 2: GSM layer contents: objects instantiated through vision, persistent objs, objs instantiated on the basis of speech.

all verbal categories are assigned zero probability. Then,
each bin of the stochastic layer is considered. The probabil-
ity of the verbal category associated with the center of the
bin (according to the classifier) is increased by the amount
of probability that corresponds to the bin of the stochastic
layer that is under consideration. As a result, we obtain
probabilities of verbal categories as the sum of the probabil-
ities of their corresponding bins in the stochastic layer. The
narrowly-spread stochastic distribution in C2R2 has created
the narrowly-spread categorical in R4, and the wide-spread
of C3R2 leads to the one in R4.

The categorical layer feeds the stochastic layer:If we try
to invert the previous transformation, a one-to-many map-
ping results. In order to achieve uniqueness, we enforced
the constraint that the stochastic layer bins that correspond
to the same verbal category should be equiprobable. Orig-
inally, the stochastic layer elements are all assigned zero
probability. Each category is considered in turn. The ele-
ments that correspond to the category under consideration
are marked, and the probability of the category under con-
sideration is spread equally among them. In C4, when R4
is fed to R2, the area corresponding to the bins whose cen-
ters would be classified as belonging to the “center” spatial
category is filled with equal probability. In C5, each cate-
gory corresponds to a rectangle such as the one shown in the
C4R2 for “center”, thus the whole of C5R2 is equiprobable.

Translation from the categorical layer to descriptive
speech: Consider the case of R4C1. Unquestionably, as
P(“center”) approaches unity, the robot can describe its po-
sition as “at the center”. But things are less clear in C2 and
C3. There, according to a decision tree created with pre-
set thresholds on the probabilities of the three most highly
probable categories and the entropy of the distribution, nu-
merous different resulting verbalizations occur. For exam-
ple, if P(most likely category)> 0.7 and< 0.9, then we get

“most probably at the<spatial category>” (C2). As a fur-
ther example, when the distribution is almost equiprobable
as quantified by its entropy, then we get “I have no idea”
(C3). The thresholds that were currently arbitrarily set at the
decision tree, but could be empirically learned.

The stochastic layer feeds the continuous layer:Here, we
are seeking a single representative value for the distribution
of the stochastic layer. Here we have chosen the statisti-
cal mean (and not mode), as no bimodals distributions arise.
In our example, all the distributions shown in R2 share the
same mean, i.e. the center of the table. Thus, if the robot
were to look at an object, in both cases the same target fixa-
tion point would selected to guide the motor system.

Temporal model construction
Moments are created in a straightforward manner. The cur-
rent GSM state is copied and time-indexed. In the current
implementation, moments are stored forever. For round-the-
clock operation, some form of memory filter / consolidation
must be added, but this has not been explored yet.

Events are created and continuously updated based on
the current and previous moments, throughevent classifiers.
Events might be instantaneous or optionally encode dura-
tion. For example, when velocity (approximated by posi-
tional differences) rises above a preset threshold, it triggers
the creation of the instantaneous “start moving” event. In
contrast, an event having duration is first created, and then its
end time is continuously updated as long as the event holds
(e.g., the “is moving” event has duration equal to the period
that an object is observed in motion). The event classifiers
are again very simple in this first prototype, and consist of
manually-determined threshold classifiers applied to func-
tions of the contents of L2 across moments. In the future,
richer models based on hidden Markov models and stochas-
tic context free grammars will be explored.



Spoken Language Processing

We use the Sphinx 4 continuous speech recognizer to con-
vert incoming speech into text transcripts. Keyword-based
semantic frames are used to parse speech transcripts.

After passing through the recognizer, utterances are then
classified in terms of their speech act type: questions
(“Where is...”, “What color is...”, etc.), action requests
(“Touch...”, “Look at...”, etc.), information about the situ-
ation (“There is...”), viewpoint-dependent actions (“Touch
the one on my left”, etc.). Tense information (present/past)
is also extracted.

Object reference resolution:Reference to an object can
be resolved to any part of the three main agents of the sit-
uation model: me (robot), you (human partner) and others
(objects on the table). It might be resolved to one, many, or
no such parts. It might be referred to either through “part
names” (my head, your arm) or through “definite descrip-
tions” (the small red one, the large ones at the top). The
simple objects (body parts) of the robot and the user are usu-
ally referred to by part names, while the objects on the table
(others), are referred through attributive descriptions. Con-
sider the question “Where was the blue object when your
head started moving?”. In this case, both part names (“your
head”) as well as attributive descriptions (“blue object”) are
used, one for each object referent. The robot might either
ask a disambiguating question (supplemented with deictic
pointing by the robot) until it narrows down to a single ref-
erent, or it might carry out the requested action in succes-
sion on all the referents fitting the description. The course
of action taken depends on the action requested, on whether
it can accept groups of objects as arguments, and also on
whether plural or singular was used. For example, assume
that three objects are on the table - a small red sphere, a large
red sphere, and a blue sphere. If the human requests “Touch
the red one!”, the robot will answer “do you mean this one or
that one?” while pointing to the two red spheres in succes-
sion. Then, the human can narrow down by saying “Touch
the small red one”. Else, if the human had requested “Touch
the red ones!” then the robot would touch both red spheres
in succession. These behaviors are selected via a decision
tree which is driven by the number of matching referents,
the plural or singular number, and the possibility or not of
carrying out the specified action with multiple referents.

Temporal reference resolution:In the case of questions
or actions involving the past, temporal references must also
be resolved. Their existence is detected through the keyword
“when”. After “when”, an event description involving object
referents should follow. Consider the meaning of the phrase
“when your head started moving”. This amounts to going
back in time until a matching event is found, and resolving
to the time of this event. The referrable event classes can
be found in the appendix. The participants are either the
objects, the user, or the robot itself. In the case multiple
candidate events are found, only the most recent is reported.
If the requested action is not a question, then one further
condition should hold: the referred object should still exist,
so that it can be acted upon.

Modular Implementation Architecture
The software implementation of the GSM and its associated
algorithms is organized around a set of modules (Figure 3):

Situation Model:the module holding the current state of
the GSM. This module broadcasts its contents to other mod-
ules over network connections, and processes requests for
object creation/deletion/updates from the modality-specific
modules in order to maintain the GSM object hierarchy.

Visor, Proprioceptor, Imaginer (modality-specific mod-
ules):Each of these modules propose changes to the current
GSM state, which is broadcast from the Situation Model.
Visor listens to the visual stream, while Proprioceptor con-
nects to the robot’s position and force encoders. Imaginer
processes linguistic descriptions about real or imaginary sit-
uations. Via the imaginer, the situation model can now be
fed not only through the senses but also through linguistic
descriptions, and be later updated by either.

Inquirer: Provides the capability of answering simple
questions about the present, such as “What color are the ob-
jects at the left?”, and also of acting on objects described
through the present: “Touch the blue one”. Carries out ob-
ject referent resolution, and requests appropriate actions.

Rememberer:Through this module, the past becomes ac-
cessible. It uses the “event” lists in order to resolve tempo-
ral referents such as “when the red one appeared” etc. Then,
and after also having resolved the object referents at the right
times, it feeds the appropriate “moments”.

Figure 3: Modular implementation architecture.

The primary data structure that is exchanged among mod-
ules is the present state of the situation. Changes to this
are proposed by the various sensory-specific modules (visor,
imaginer etc.), which then drive both language and motor ac-
tions (through the inquirer and the rememberer). Moments
and events are only held in the rememberer.



Current Performance
The implementation of the GSM and its associated algo-
rithms may be evaluated at various levels. Although none
of the conversational robotics papers that we refer to in-
clude quantitative evaluations, we could attempt quantifying
the performance of our system’s components (accuracy of
speech recognition/parsing, reliability of vision etc.). How-
ever, the main focus of this paper has been the design of the
representations, the algorithms and the architecture to opera-
tionalize the GSM concept for a robot. To evaluate this more
holistic goal, we believe a functional (behavioral) evaluation
of the complete system is more appropriate.

One approach to such behavioral evaluation is to use stan-
dard language comprehension tests administered to children.
For example, the Token Test (DiSimoni 1978) is commonly
used to assess language skills of young children who ex-
hibit language acquisition difficulties. To administer the
test, the evaluator arranges a set of physical tokens on a
table and asks the subject to perform various manipulation
tasks (“When I touch the green square, you take the white
one”, etc.). The Token Test is an ideal evaluation for our
system since it evaluates basic language-to-world mapping
skills and does not rely on social or cultural knowledge.

The Token Test is divided into five parts ordered in in-
creasing difficulty. Using the GSM based system we have
described, our robot is now able to pass the first two parts.
For example, it responds appropriately to requests such as:
“Touch the large red circle!”. As a whole, the robot might
make some errors due to failures of various subsystems.
Speech recognition errors or visual processing errors are two
most common causes since the dialog structures are quite
simple. But the main point we would like to emphasize is
that the GSM and related algorithms provides our robot with
thecapacityfor passing two of five parts of the test. Below,
we suggest next steps for tackling the remaining parts.

However, our implementation based on the GSM can
achieve more than simply respond to Token Test style re-
quests. A human communication partner can also ask ques-
tions about what it sees, knows, and remembers about its ta-
ble top world. Furthermore, the human can describe parts of
the environment that the robot can’t see, causing our robot’s
imagination module to instantiate categorical beliefs which
can be verified and enriched by consequent perception.

Detailed Example of Performance
In this example, a user informs the robot that “there is a blue
object at the left” (which is fed to the imaginer). Thus, the
categorical layers are filled with the values corresponding to
the verbal categories given, i.e. “left” for position, “blue”
for color, and all categories equiprobable for size. Thus, if
the robot is asked “What color is the one at the left?” it will
answer “blue”, even though it has never seen the object yet,
and doesn’t know exactly what shade of blue it is. However,
when the robot is asked “How big is the one at the left?”
it promptly responds “I have no idea” given that this infor-
mation was not linguistically transmitted and that all size
categories are a priori equally likely for blue objects at the
left. Later, when it will see the object, it would answer “It is
small”, as it has captured adequate sensory information.

Figure 4: GSM contents after the robot is told that, “There
is a blue object at the left”.

In Figure 4, the robot has already seen a red and a green
object, as can be seen in the GSM. Furthermore, the user
has informed the robot that “there is a blue object at the
left”, and the robot has created a representation for it. No-
tice that the left area of the table is not currently visible due
to the field of view of the robot. Thus, the blue object that
was described through language has not been seen yet. At
the “stochastic position” window, the blue rectangular area
corresponds to the position values classified as belonging
to the spatial category “left”. Notice how this differs from
the single-point distribution for the green object (which is
currently visible by the robot’s camera as seen in the “dis-
play” window). Also, notice how it differs from the cloud-
like distribution for the red object, that hasn’t been seen for
a while (and thus its distribution has diffused, as it might
have moved in the mean time). At the “stochastic radius”
window, the area between the inner and outer blue circles
correspond to the possible radii the blue object might take.
Notice how the radius of the green is already determined
by previous observations, and thus the inner and outer green
circles coincide (similarly for the red). Thus, when the robot
is asked “How big is the blue one?” it responds with “I have
no idea”, while if it is asked “How big is the green one?” it
gives a specific answer, i.e. “small” in this case.

In Figure 5, the robot has now moved its head, and the
blue object that it had previously imagined (after “there is a
blue object at the left”) has now been seen. Compare to Fig.
4: At the “stochastic position” window the blue rectangular
area in Fig. 4 has shrunk to a single point (the point under the
leftmost cross in Fig. 5). Thus, the robot doesn’t only know
that the blue object is somewhere at the left, but is much
more certain about exactly where it is. At the “stochastic
radius” window, the outer and inner blue circles that existed
in Figure 4 have shrunk and expanded in order to coincide
with each other, and their current radius happens to be within
the “small” category. Thus, when the robot is now asked
“what size is the blue one?” it will respond with “small”
(and not “I have no idea” as it would before seeing the blue
object and after hearing “there is a blue object at the left”).

A video demonstration of the capabilities of the system is
available at: http://www.media.mit.edu/∼nmav. All behav-
ioral goals listed earlier have been satisfied, and a summary
of all implemented behaviors is given in the appendix.



Figure 5: GSM contents after the robot has moved its head
and seen the blue object.

Future Directions
Our current work is focused on three main objectives. First,
we aim towards enabling the system to handle richer rep-
resentations of object shapes, acquired through multiple
views, integrated in an active-vision framework. Richer
shape capabilities will enable the incorporation of richer
spatial relations, such as containment and support, which in
turn figure prominently in natural language semantics.

Second, we are enhancing the representation of other
agents (i.e. the human user), in order to include not only
their viewpoint towards the world, but also a complete em-
bedded GSM ascribed to the other agent. Using embedded
GSMs, it will be possible for the robot to encode differences
in beliefs it holds from those it believes its human partner
holds. Language planning can then take into account agent-
dependent GSM contents to choose appropriate words.

Our third objective is behavioral: to develop the GSM to
a stage that enables the robot to pass all five sections of the
standard Token Test for Children (DiSimoni 1978). The pre-
requisites for passing the test would include the handling of
conjunctions, conditionals, extending the current spatial and
temporal relations, and basic turn taking procedures. We
think that these extensions can be designed atop of the cur-
rent GSM-based architecture in a principled way.

Conclusion
We believe that the primary obstacle towards effective
human-machine communication in natural language lies in
the traditional separation of language from sensing and act-
ing. Our main thesis is that amodal knowledge structures are
needed as representational bridges. We have presented the
design and implementation of a grounded situation model
that serves as a bridge for an interactive conversational ro-
bot, and is realized as a centrally located module in our ar-
chitecture. The robot is currently able to pass the first two
parts of the Token Test, a standard test used to assess early
situated language skills. The robot is also able to answer
questions about the present and past, act on objects and lo-
cations, and integrate verbal with sensory information about
the world. We believe that the GSM architecture, with its in-
tegration of hierarchical object structures and layered prop-
erty representations, is a viable approach to endowing robots
with physically and socially grounded language skills.

Appendix: Current Behavioral Repertoire
The system responds to the following utterance classes:
1. Questions (present/past):
<question> is/are the<obj des>
<question> was/were the<obj des> when<event des>
2. Action requests (referent description in present/past):
<action> the<obj des>
<action> the<obj des> when<event des>
3. Imaginer request:Imagine/There is a<obj des>
4. Location-centered “look at”:Look at<location>
5. Viewpoint:<action> the one on my/your left/right
6. Basic mode switching:
Wake up, sleep, relax, look at me/the table
Types:
<question> belongs to{where, how big, what color}
<action> belongs to{touch, pick up, hand me, look at}
<obj des> contains<size> <color> <object> <locus>
<event des> contains<actor> <event type>
<size> belongs to{small, medium, large}
<color> belongs to{red, green, blue}
<locus> belongs to{center, left, right, top, bottom}
<actor> is either an<obj des> or <agent part>
<agent part> belongs to{my, your} × {head, arm}
<event type> belongs to{appeared, disappeared, started
moving, stopped moving, came in view, came out of view}

References
Breazeal, C., et al. 2004. Humanoid Robots as Cooperative
Partners for People.submitted to IJHR.
Burke, R., et al. 2001. Creature Smarts.Proceedings Game
Developers Conference.
Crangle, C.; and Suppes, P., 1994.Language and Learning
for Robots.Stanford, CA: CSLI Publications.
DiSimoni, F. 1978.The Token Test for Children.DLM
Teaching Resources, USA
Isla, D.; and Blumberg, B. 2002. Object Persistence
for Synthetic Creatures.Proceedings of the IJC on Au-
tonomous Agents and Multiagent Systems.
Johnson-Laird, P. N. 1983.Mental Models.Cambridge,
MA: Cambridge University Press.
McGuire, P., et al. 2002. Multi-modal human-machine
communication for instructing robot grasping tasks.Pro-
ceedings IEEE/RSJ IROS2:1082-1088.
Regier, T.; and Carlson, L., 2001. Grounding spatial lan-
guage in perceptionJ. Experim. Psych.130(2):273-298
Roy, D.; Hsiao, K.; and Mavridis, N. 2004. Mental Imagery
for a Conversational Robot.IEEE SMC B34(3):1374-1383.
Roy, D. (in press). Grounding Language in the World:
Schema Theory meets Semiotics.Artificial Intelligence.
Snow, C. 1972. Mothers’ speech to children learning lan-
guage.Child Development43:549–565.
Sofge, D., et al. 2003. An Agent-driven Human-centric In-
terface for Autonomous Mobile Robots.Proceedings SCI.
Viola, P.; and Jones, M. J., 2004. Robust real-time face de-
tection,IJCV57(2):137–154
Zwaan, R. A.; and Radvansky, G. A., 1998. Situation Mod-
els in Language Comprehension and Memory.Psychologi-
cal Bulletin123(2):162–185


