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ABSTRACT

People leverage situational context when using language.
Rather than convey all information through words, listeners
can infer speakers’ meanings due to shared common ground
[1, 2]. For machines to engage fully in conversation with
humans, they must also link words to the world. We present
a sensorimotor representation for physically grounding ac-
tion verbs, modifiers, and spatial relations. We demonstrate
an implementation of this framework in an interactive robot
that uses the grounded lexicon to translate spoken commands
into situationally appropriate actions.

1. SITUATED SPOKEN LANGUAGE

Speakers use spoken language to convey meaning to lis-
teners by leveraging situational context. Context includes
many levels of knowledge ranging from fine grain details
of shared physical environments to shared cultural norms.
As the degree of shared context decreases between commu-
nication partners, the efficiency of language also decreases
since the speaker is forced to explicate increasing quantities
of information that could otherwise be left unsaid. A suf-
ficient lack of common ground can lead to communication
failures.

If machines are to engage in meaningful, fluent, situated
spoken dialog, they must be aware of their situational con-
text. As a starting point, we focus our attention on physical
context. A machine that is aware of where it is, what it is do-
ing, the presence and activities of other objects and people
which are in its vicinity, and salient aspects of recent his-
tory, can use these contextual factors to understand spoken
language in a context-dependent manner.

A concrete example helps illustrate how a machine can
make use of situational context. Consider a speech interface
to the lights in a room1. If a person simply says, “Lights!”,
the appropriate action will depend on the current state of
the light. If it is already on, the command meansturn off,

1Ignoring, for the moment, the difficult issue of microphone placement
and background noise that would also need attention.

but if it is already off, it means the opposite. In this simple
example, the language understander needs access to a sin-
gle bit of situational context, the current state of the light.
Consider a slightly richer problem, still in the domain of the
light controller. How should the spoken commandsofter
be interpreted by the light? Perhaps the simplest solution
would be to decrease the intensity of the light by a fixed
amount. Although this solution might be functional, it is not
necessarily the most natural. In contrast to a fixed-interval
solution, a person responding to this request would be likely
to decrease the intensity by an amount that is a function of
the intensity of light in the room at the time of the request.
In general, many sources of light (e.g., from a setting sun)
may contribute to the total ambient light in the room. For a
machine to leverage this situational information, we could
add a light sensor to the controller that is able to monitor
ambient lighting conditions. Acontext-dependentinterpre-
tation of “softer” could then be defined.

1.1. Language Grounding

A necessary step towards creating situated speech process-
ing systems is to develop representations and procedures
that enable machines toground the meaning of words in
their physical environments. In contrast to dictionary defini-
tions that represent words in terms of other words (leading,
inevitably, to circular definitions for all words), grounded
definitions anchor word meanings in non-linguistic prim-
itives. Assuming that a machine has access to its environ-
ment through appropriate sensory channels, language ground-
ing enables machines to link linguistic meanings to elements
of the machine’s environment.

From environmentally aware light controllers to car nav-
igation systems that see the same visual landmarks as the
driver, the idea of a context-grounded speech processing is
the tip of a very large iceberg. We believe that a large class
of spoken language understanding applications may benefit
from language grounding. We will refer to this class of sys-
tems as havinggroundedsemantics in light of the explicit
links of semantic representations to the machine’s physical



world.
To create grounded systems, questions of representa-

tion and learning arise. How should the physical environ-
ment of the machine be represented to facilitate semantic
grounding? How can a machine automatically acquire such
knowledge structures? In this paper, we present our ap-
proach to the grounded representation of object properties
(blue, heavy, small, soft), action verbs (lift, move), and spa-
tial phrases (in front of me, to your left). These representa-
tions have been implemented for a small vocabulary speech
understanding system embodied in an manipulator robot that
is able to engage in “face to face” speech mediated interac-
tions with a human communication partner.

2. RIPLEY: EMBODIMENT OF A GROUNDED
DIALOG SYSTEM

For a light controller, it might seem sufficient to represent
the world through a single scalar value that measures am-
bient light. But as suggested above, perhaps the number of
people in the room also matters, including their locations,
what they are doing, what other objects are in the space, and
so forth. A car may need to know even more about its city
if it is to contextualize language. To drive our research, we
have chosen to build conversational service robots, which
gives rise to a wide range of words and speech acts. In
particular, actuated robots force us to confront motor rep-
resentations and active perception, which are crucial to our
definition of virtually all lexical semantics including seem-
ingly non-motor terms such asred (as we shall see, color
terms are with respect to motor procedures used to look at
objects, a precursor to measuring the color of an object).
With a growing interest in domestic robots, conversational
interfaces in this domain may be of practical value. Beyond
robots, we believe that the underlying principles and meth-
ods that we are developing will transfer to other domains of
immediate practical interest as well.

Our current work is based on a robotic manipulator called
Ripley (Figure 1). Ripley has 7 degrees of freedom (DOFs),
enabling it to manipulate objects in a 3 foot radius workspace.
The robot may be thought of as an articulated torso termi-
nating with a head that consists of a “mouth” (a one DOF
gripper), stereo color cameras, microphones, and an inertial
sensor. Ripley’s physical structure provides a foundation for
grounding verbs related to manipulation. The placement of
cameras on the head provides the means for effecting shifts
of visual perspective. Ripley’s perceptual channels enable
grounding of various concepts related to objects, their prop-
erties, and spatial relations. Other concepts, such as those
related to body movement through space, do not arise since
Ripley is not a mobile robot, and are thus not addressed.

Motor control is performed through trajectories of tar-
get joint configurations. An elastic force model is used to

Fig. 1. Ripley hands an apple to its human communication
partner in response to the phrase “Hand me the thing on
your left”.

provide compliant motion [3]. Image processing relies on
color based separation of objects from the background table
on which all objects must lie [4]. The robot’s propriocep-
tion system includes touch sensors that line the tips of the
gripper as well as position and force sensors embedded in
each actuated joint.

3. A MENTAL MODEL FOR OBJECT
PERMANENCE AND PERSPECTIVE SHIFTS

As we move around our direction of gaze, objects come in
and out of sight, but our conception of objects stays stable.
The same is true for Ripley as it moves, since its cameras
are placed on either side of its gripper. A mental model pro-
vides a stable representation of the physical environment
that factors out shifts of perspective (Figure 2) [3]. The
model consists of a Newtonian physics rigid body simulator.
As Ripley moves about its work space, the location of ob-
jects and their properties (currently just size and color) are
relayed to the mental model. A hysteresis function is used
to smooth sensory data. Persistent evidence for the pres-
ence, movement, or disappearance of objects drives updates
in the mental model. Ripley’s own body is also simulated
in the mental model. A face tracker [5] detects and tracks
the location of the human communication partner, whose
location is represented in the simulator using a simple rigid
body model.

By constructing a 3-D model of the environment, Ripley
is able to “imagine” its environment from any point of view,
including the human’s point of view, by moving a synthetic
camera that uses projective geometry to construct an image
of the world from the camera’s perspective. Figure 2 shows
a view using synthetic vision from the human’s perspective
as Ripley looks at two objects on a table.



Fig. 2. Ripley’s mental model from the perspective of its
human communication partner.

4. A GROUNDED LEXICON

We have developed a set of sensorimotor representations
that ground the meaning of a small lexicon. Ripley uses
a standard chart parser to parse spoken input based on this
lexicon and take actions. This section presents the structure
of the lexicon, while the next section describes parsing and
semantic composition.

4.1. Verbs = Sensorimotor Networks

The meaning of manipulation verbs (lift, pick up, touch) are
grounded insensorimotor networks(SN). SNs can be used
to execute actions on the robot (in that sense, they may be
thought of as plan fragments), but they also serve as a rep-
resentational substrate for the semantics of verbs, and as we
shall see, modifiers that are linked to verbs.

A SN is defined by a linked set ofperceptual conditions
andmotor primitives. Figure 3 shows the SN forpickup.
Perceptual conditions are indicated by rectangles, motor prim-
itives by circles. Verbs expect a single argumentx, the pa-
tient of the verb2. The main execution path of this SN is
a single alternating sequence of perceptual conditions and
motor primitives. ThepickupSN may be interpreted as (1)
ensurex is in view, (2) extend head untilx is visually loom-
ing (recall that Ripley’s cameras are mounted next to the
gripper), (3) grasp with the gripper until the gripper touch
sensors are activated, and finally, (4) retract. Errors can be
sensed at each perceptual condition. The default behavior
on all errors is to retry the previous motor action once, and
then give up. All SNs terminate in either asuccessor fail-
ure final state.

2In ongoing work, we are expanding our formalism to accept agents,
instruments, and manner arguments.
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Fig. 3. A sensorimotor network that encodes the semantics
of pickup.

4.2. Modifiers = Sensorimotor Expectations

Modifiers, such as color, shape, and weight, are defined with
respect to an underlying SN. Figure 4 illustrates the rep-
resentation ofheavyand light. This structure captures the
commonsense notion that something is heavy if it is diffi-
cult to lift. The SN (bottom) grounds the meaning oflift .
The dashed line indicates aprojection functionthat projects
the execution of an SN into a low dimensional feature space.
In this case, the projection function accumulates joint forces
during the execution of theretract motor primitive, effec-
tively weighing the patient oflift . The meaning ofheavyand
light are grounded as distributions of expected values with
respect to this projection of the underlying SN. These dis-
tributions are referred to asactivation functions. To deter-
mine how well a word fits an object, the SN underlying that
word must be executed and projected using the associated
projection function. The activation function associated with
the word is evaluated at the projected the point to determine
how well the word fits the object. Since activation functions
are continuous, all scores are continuously graded.

Categorical distinctions (e.g., determining whether an
object is blue or not, as a binary decision) are made using a
simple voting mechanism. Within a feature space, the most
activated function determines the category label of the ob-
ject. This rigid treatment of categorical boundaries is prob-
lematic since in natural language use, boundaries shift as a
function of contextual factors such as other objects present,
the kind of object, etc. In future work, we plan to refine this
aspect of the representation.

The grounding of color terms closely parallels weight
terms (Figure 5). In place oflift , color terms are defined
in terms of the SN associated withlookat, which, when ex-
ecuted, causes Ripley to center the objectx in the robot’s
visual field. The projection function computes the average
value of color in all pixels of the visual region correspond-
ing to the object. Color terms such asgreenandorangeare
defined as two-dimensional Gaussian distributions within
this projected feature space.
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Fig. 4. The meaning ofheavyand light are grounded in
expected resistance measuring while lifting an object.
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Fig. 5. The meaning ofgreenand orangeare grounded
in expected distributions of context-normalized color space
measured by looking at an object.

The representation of color clearly demonstrates a cru-
cial difference between our approach and other representa-
tions that have been proposed for linking vision and lan-
guage. Rather than treat color as a passive perceptual as-
sociation, our approach explicitly links color to the active
methods by which the machine can measure the property.
As we discuss below, these links create the basis for not
only language understanding, but also planning in order to
resolve ambiguities and acquire additional non-linguistic in-
formation to understand language in context.

Shape descriptors are grounded using histograms of lo-
cal geometric feature, described in [6]. The histograms are
generated using a projection function defined in terms of the
same SN as color terms (lookat).

4.3. Spatial Relations and Perspective Shifting

To ground spatial words (e.g.,above, to the left of) in our
past work with two-dimensional virtual worlds (cf. [7]),
we have used Regier’s spatial features [8], which take into
account the relative shape and size of objects. Since Rip-

ley’s mental model is three dimensional, we use projective
transforms to capture 2-D views of the mental model (using
synthetic vision). Regier’s features are then computed on
the 2-D image. In Regier’s models, and our previous work,
the perspective of the viewer has always remained fixed, as-
suming a first person perspective. In Ripley’s mental model,
the synthetic camera can be moved to any 3-D location and
orientation. Using this perspective shift operation, the se-
mantics ofmy leftversusyour leftcan be differentiated by
using the wordmy, in this linguistic context, as a trigger for
positioning the synthetic camera. Ripley’s proprioceptive
system guides the placement of the camera for first person
perspectives, and the face-tracker driven human model en-
ables shifting to the human’s point of view.

This arrangement of perspective shifting enables many
interesting behaviors. For example, Ripley is able to detect
objects that are not in view from the human’s perspective
(due to occlusion from other objects, for example). Al-
though we have yet to make use of this knowledge, one
possible use would be to generate appropriate forms of ref-
erence taking into account points of view.

5. IMPLEMENTATION OF A GROUNDED SPEECH
UNDERSTANDING SYSTEM

Using the SN and projection function representation, we
have encoded a small vocabulary of words that cover verbs
(pickup, touch, etc.), names of objects (apple, beanbag, cup,
etc.), and terms for color, weight, and spatial relations. A
speech recognizer, parser, and semantic composition sys-
tem work together to convert commands into robot actions.
Most aspects of the lexical structures are hand coded. Only
the activation functions (pdf’s) are trained from examples
using standard statistical estimation techniques3.

5.1. Speech Parsing and Semantic Composition

Front end speech recognition is performed using a HMM-
based decoder [9]. The single best word sequence is passed
to a chart parser which serves as the first step of a seman-
tic composition procedure. The composition process is pre-
sented in detail in [10]. In summary, each lexical entry has
a function interface that specifies how it performs seman-
tic composition. Currently, the interface definition consists
of the number and arrangement of arguments the entry is
willing to accept. Semantic type mismatches are handled
during composition rather than being enforced through the
interface. Each entry can contain asemantic composerthat
encapsulates the actual function to combine this entry with
other constituents during a parse.

3Our future plans are to develop structured learning algorithms to ac-
quire both SNs and projection functions.



The system is able to resolve the referent of utterances
with multiple modifiers. To achieve this, virtual objects con-
sisting of one or more actual objects are internally generated
during semantic composition. Consider the spoken com-
mand, “Pick up the large green cup to the left of the blue
plate”. To resolve the reference oflarge green cup, the in-
nermost term,cup is first bound to objects in the robot’s en-
vironment based on the visual shape models associated with
the word. If multiple cups are found, they are grouped into
a virtual object. This virtual object is then composed with
the representation ofgreen, which will threshold and sort
the contents of the virtual object based on greenness, and
pass along the new virtual object tolarge. The landmark
phraseblue plateis processed in the same way, resulting in
a second virtual object. The spatial phraseto the left ofis
used to find the best pair of objects, one drawn from each
of the virtual objects. Finally, the best referent is passed as
an argument to thepickupSN, which actually executes the
action and picks up the target object.

The wordsmyandyourare given special treatment when
adjacent to spatial terms, each triggering an appropriate shift
of visual perspective within Ripley’s mental model. Sub-
sequent spatial terms are evaluated in the shifted frame of
reference.

In situations where no referent matches one or more
word meaning, (recall that a voting scheme is used to deter-
mine categorical boundaries), a null virtual object results.
Ripley’s default response in such cases is to look up at the
person and report, “sorry, not found” using a speech synthe-
sizer.

In situations where multiple referents satisfy a request,
the robot uses a simple template to generate a clarifying
question (e.g., “which red one?” in response to a request
for a red object when multiple red objects are found). The
subsequent description from the human partner (e.g., “The
one on the right”) is parsed and combined with the ambigu-
ous request. If an ambiguity persists, the best matching ob-
ject is selected (for a related approach that addresses dialog
uncertainty in an decision-theoretic framework, see [11]).

A request for objects based on weight (e.g.,Hand me
the heavy one) can lead to particularly interesting behavior.
If Ripley has not lifted an object, it has no way to know the
object’s weight. In order to interpret the meaning of the re-
quest, missing information about the environment must first
be acquired. Weight terms are defined in terms of a projec-
tion of thelift SN. Thus, to acquire the weight of the object,
Ripley executes this SN and makes the requisite measure-
ments (accumulated joint forces) to determine the best ref-
erent for the request.

In summary, Ripley is able to respond to spoken re-
quests using a limited vocabulary of sensorimotor grounded
words. The interaction is fluid and responsive. When insuf-
ficient information is available to act, Ripley may either ask

clarifying questions or actively acquire missing information
in order to take appropriate actions.

6. RELATED WORK

On the surface, our work closely resembles the pioneering
work of Winograd’s SHRDLU system [12]. SHRDLU was
a simulated robot that would accept natural language com-
mands and translate them into actions in a simulated blocks
world. The system demonstrated an impressive range of
language understanding capabilities through rich integra-
tion of language processing with a world model. This work
established the importance of domain knowledge in lan-
guage processing, and introduced procedural semantic rep-
resentations. A fundamental difference between Winograd’s
work (and the body of related work that arose from those
early ideas) and ours is that SHRDLU existed in a con-
structed reality, represented purely through a symbolic rep-
resentation of blocks and their properties. In contrast, our
interest is in building language processing systems that are
physically embodied, and sense the actual context within
which the human partner is co-situated. By pushing seman-
tics into the real world, many of the assumptions built into
SHRDLU and the underlying semantics of the model, such
as noise and ambiguity free world models, are invalidated.
A second significant departure from Winograd’s work, re-
flected in related threads of our work, is that we are devel-
oping grounded systems that learn (cf. [13, 4, 7]).

In the past decade, there have been several significant
advances in linking natural language semantics to sensori-
motor representations. Siskind [14] has suggested that the
meaning of verbs can be represented in terms of force dy-
namics [15] grounded in video. In his approach, Allen re-
lations [16] are used to capture temporal structure. Several
researchers from the Neural Theory of Language group at
Berkeley have proposed visually grounded representations
of spatial relations [8], and sensorimotor inspired procedu-
ral representations of verbs [17, 18].

In our own previous work, we have constructed several
systems that explore the nature of visually-grounded seman-
tics. In [13], we used a mutual information based clustering
technique to acquire a visually-grounded vocabulary from
unannotated speech and video data, resulting in a plausi-
ble cognitive model of infant word learning [19]. We have
also investigated visually-guided grammar acquisition [7]
and speech understanding systems that connect referring ex-
pressions to objects in visual scenes [4, 10].

The approach presented in this paper makes new con-
tributions along three dimensions. First, the use of senso-
rimotor networks provides a link from perceptual concepts
to motor-grounded structures. Second, the introduction of
a mental model enables shifts in visual perspective. In pre-
vious work, the visual point of view of the machine has al-



ways been fixed at a first person perspective. Third, these
representations have been integrated and implemented on a
real-time, interactive, robotic platform.

7. LOOKING AHEAD

We have presented an approach to representing word mean-
ings that enables an interactive robot to respond to a range of
spoken commands. Situational context including the pres-
ence and location of the human speaker, and the presence,
properties, and configuration of objects in a shared space
are used to interpret the meaning of spoken language. The
deep structure underlying word meanings enables the robot
to plan actions such as generating clarifying questions and
triggering active perception to resolve ambiguities. We be-
lieve the underlying principles and methods can be trans-
ferred to a broad range of applications in which situational
context is essential to understanding the intentions of the
speaker.

There are many directions in which we plan to take this
work forward. The vision system is overly simplistic and
relies heavily on controlled backgrounds. We are in the pro-
cess of designing a new vision system that is better suited to
complex visual environments, and also better suited to cap-
turing action-related features of environments. The speech
recognizer in Ripley is capable of producing word lattices,
but currently only the best path is used. For robust perfor-
mance, we plan to parse multiple paths with semantic con-
straints based on the environment. To enlarge the range of
language that Ripley can process, we will explore learning
algorithms that are able to acquire grounded word meanings
within our representational framework.
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