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ABSTRACT
HouseFly is an interactive data browsing and visualization
system that synthesizes audio-visual recordings from mul-
tiple sensors, as well as the meta-data derived from those
recordings, into a unified viewing experience. The system is
being applied to study human behavior in both domestic and
retail situations grounded in longitudinal video recordings.
HouseFly uses an immersive video technique to display mul-
tiple streams of high resolution video using a realtime warp-
ing procedure that projects the video onto a 3D model of the
recorded space. The system interface provides the user with
simultaneous control over both playback rate and vantage
point, enabling the user to navigate the data spatially and
temporally. Beyond applications in video browsing, this sys-
tem serves as an intuitive platform for visualizing patterns
over time in a variety of multi-modal data, including person
tracks and speech transcripts.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—artificial, augmented, and
virtual realities, video; I.4.1 [Image Processing and Com-
puter Vision]: Digitization and Image Capture—camera
calibration, imaging geometry ; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis—sensor fusion,
tracking

General Terms
Design, Human Factors
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Figure 1: A synthesized home environment con-
structed from 11-camera video. HouseFly uses im-
mersive video as a platform for multi-modal data
visualization.
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1. INTRODUCTION
Cheaper digital video recorders, storage, and processors

mean that people will find new reasons to record and access
large collections of audio-video data. Of the possible ap-
plications, our research focuses on how recording technolo-
gies can provide dense observational data on human activity
at such a qualitatively greater scale that it transforms how
research is performed in behavioral and social psychology,
forensics, ethnography, and other fields that rely on human
observation. However, the ability to apply cheap record-
ing technologies to scientific research is currently limited by
the cost of extracting actionable insights from the raw be-
havioral recordings. This cost can be lowered both by de-



veloping better machine perception systems to process data
automatically and by developing better data mining tools
to enable researchers to find patterns of behavior more effi-
ciently. This paper addresses the latter by looking at how
3D graphics techniques can be applied to visualizing and
browsing large audio-video corpora.

This work is motivated by several ongoing research pro-
jects, one of which is Human Speechome Project [15], an
effort to study child language development using quantita-
tive analyses of dense, longitudinal audio-video recordings.
In the first data collection effort for this project, we installed
11 high-resolution cameras with fisheye lenses and 14 micro-
phones throughout the home of a typical child. Data was
collected for three years, resulting in over 90,000 hours of
video recordings that represent roughly 70% of the child’s
waking experience. Several types of information are now
being extracted from the raw audio-video data, including
speech transcripts, person tracks, and interaction events. In
a separate research project, we installed similar recording
systems in several functioning retail service environments
and have collected months of video from a very different
commercial environment. The goal of this project is to com-
bine longitudinal video data (no audio was captured for pri-
vacy reasons) with de-identified electronic transaction data
from the retail service centers to gain new insights into the
relationships between the types of transactions completed
by customers, and how these customers interact with other
people—customers and employees—as a function of the ar-
chitectural design of the retail environment.

In common between these two projects is the nearly com-
prehensive video coverage obtained by using overlapping,
wide-angled cameras. This paper describes a data browsing
system, HouseFly, that takes advantage of that complete-
ness by dewarping, cutting, and stitching back together all
the video streams to synthesize a cohesive 3D reconstruc-
tion of the recorded space, as if the video streams were be-
ing projected onto a 3D model of the environment. House-
Fly utilizes modern rendering hardware technologies so that
multiple streams of high resolution video can be processed
in realtime while remaining responsive and interactive.

The user controls the video playback in a manner simi-
lar to a digital video editing system. Unlike normal video
browsing systems, the user can also navigate through space,
simulating a first person perspective. In the case of the
home environment, where both video and audio recordings
are available, audio can be selected from the nearest micro-
phone so that the user also hears sound that is localized to
the view. The simulation does not necessarily achieve a high
degree of realism as moving objects appear as images pro-
jected against a static surface rather than as full 3D models.
However, we feel that the content of the video remains eas-
ily discernible, and that the fluid navigation and interaction
achieve many of the immersive qualities found in first person
video games.

Watching video in this way can provide a sense of space
and proportion that would be difficult to achieve otherwise.
More significantly, many kinds of data, beyond just video,
can be combined into this framework in ways that can give
a more intuitive, cohesive understanding of the events. We
aim to develop multi-modal visualizations that reveal pat-
terns of behavior and social interaction by exploring the
spatial-temporal relationships between the modes of data.

After describing the core HouseFly framework, this pa-

per will describe several visualizations and application ar-
eas. For the data collected from a home environment, the
applications include observing the evolution of a given word
as used by a child, visualizing word use as a function of loca-
tion, and identifying patterns of child-caregiver interaction.
For data collected from a commercial environment, applica-
tions include visualizing traffic patterns, gaze patterns, and
transaction events.

2. BACKGROUND
One of the central focuses of HouseFly is to generate vi-

sualizations of data that is both time and space dependent.
We build on our previous data browsing interface, TotalRe-
call , also developed for the Human Speechome Project [11].
TotalRecall employed several strategies to summarize both
audio and video streams to aid navigation and transcription
tasks, but used a 2D interface with conventional audio-video
playback. Other visualization systems have displayed syn-
chronized multi-camera recordings alongside an interactive
map of the recorded space in order to aid navigation [6,
7, 4]. The system in [4] additionally displays track data
directly over the raw video, and also provides a simplified
3D view of the recorded space that overlays the segmented
foreground pixels from the video in order to display people
moving through a 3D model. A system built by Kaper and
Wright renders an elevation map in 3D with overlaid path
data, as well as other information, using the z-axis to indi-
cate the time of events [8]. Our system incorporates many
of these ideas for displaying multiple video streams, track
data, event timelines, and other metadata, while attempt-
ing to unify these components further into a single display
context.

The earliest reference to immersive video, in the sense of
generating a fully navigable, 3D environment from multiple
video streams, was produced in 1996 by Moezzi et al. [13].
This work uses recordings of sporting events where most of
the focus is on generating 3D voxel representations of people
captured from multiple angles. In another work, published
later by the same group, more effort was placed on stitching
together video from cameras pointed at different sections of
a shared area to create a more expansive virtual environ-
ment [10].

The results of these efforts were limited by the graphics
technologies available at the time. The concept reemerged
years later as a proposed technique for viewing surveillance
video in similar work performed separately by Sawhney et
al. [16] and Sebe et al. [17]. In the first paper, the authors
demonstrated video being projected live onto 3D model of
an area in a town. The system also implemented dynamic
camera alignment that enabled video from a moving source,
such as from a helicopter, to be projected accurately. This
system was later incorporated into a commercial surveillance
application.

Given the ubiquity of both digital video and of 3D game
engines, there are relatively few other examples of immersive
video. Both of the systems described used video from cam-
eras with standard, non-wideangle perspective. Without a
large field of view, it is difficult to capture a significant por-
tion of a scene without a prohibitively large number of cam-
eras, and in the existing work of which we are aware, only
a small portion of the modeled environment being displayed
may be updated at a given time. Immersive video can be
made more compelling by applying it to video that captures



the scene from all angles such that the user can explore the
environment freely, with minimal consideration for the di-
rection of the cameras. We apply our system to video from
ceiling mounted cameras equipped with 180◦ circular fisheye
lenses, which make it possible to capture nearly everything
within a concave room and generate a fully panoramic en-
vironment with a single camera. Because fisheye video can-
not be projected accurately onto a 3D environment with a
standard homography, it was necessary to adapt previous
rendering methods for HouseFly by making use of the far
greater power and flexibility of current graphics processors.

Methods for projecting wide-angle images are well stud-
ied. Carrol et al. provided a recent account of the standard
projections, which all have advantages and disadvantages [1].
They also describe their own solution, which utilizes limited
information about the spatial content of an image to min-
imize the perceived distortion, at the expense of requiring
user input. Although HouseFly is far more focused on speed
than on image quality, it might be considered an example of
a wide-angle image projection that utilizes a full 3D model.

3. SYSTEM DESCRIPTION
This section first describes the core components of House-

Fly, starting with the 3D representation, video playback,
and a user interface for spatial and temporal navigation.
In the context of this basic framework, other visualizations
for various, individual data types will be demonstrated, in-
cluding audio, transcripts, person tracks, identifications and
classifications, retail transactions, and interest maps. Last,
this section will describe methods for performing selection,
aggregation and retrieval tasks across multiple data types.

3.1 Video Projection
The primary display element of HouseFly is a 3D represen-

tation of the recorded space, which is defined by a polygonal
model. The models used for this work were built manually
with a CAD system, and this work does not address the is-
sue of automatic model acquisition from video. Figure 2(a)
shows one of the models used, representing a home instru-
mented with 11 cameras. While this model is proportionally
accurate to the actual house, the model is relatively unde-
tailed and contains only the floors, walls, and stationary
furniture.

The details of the environment are supplied by using raw
video as textures. Figure 2(b) shows exemplar images from
eight of the cameras. The combination of using overhead
cameras with fisheye lenses helps to reduce occlusions and
minimize the amount of untextured surfaces.

To map the video from the cameras onto the 3D model,
each camera is calibrated such that any given world point
can be mapped onto an image point for that camera. Cam-
era calibration is a routine task and there exist many camera
models and calibration methods. The camera model used for
this work is not notable on its own, but is described here in
full because it satisfies two important conditions: it works
for very wide fisheye lenses, and is efficient enough to be
used for realtime rendering of high resolution scenes. This
model does not account for any lens abnormalities and is
not suited for applications that demand very high accuracy.

Given the use of fisheye lenses, it is easiest to ignore
the lens entirely and instead model the camera sensor as
a sphere. The zenith axis of the sphere, Z, exits the front of
the camera through the lens. The azimuth axis, X, exits the

Figure 2: Creating the environment. From top to
bottom: (a) polygon model of the two story house.
(b) representative images from eight of the cameras
installed in the house. (c) textured model. Bottom
floor not shown.

right side of the camera. Z × X is designated Y and exits
the bottom of the camera, and the center of the sphere is C.
To map a point in world space, P , to an image coordinate,
U , P is first mapped onto the camera axes:

P̃ = [XY Z](P − C) (1)

P̃ is then projected onto the sensor sphere:

θ = cos−1 P̃z

|P̃ | (2)

φ = tan−1 P̃y

P̃x

(3)

where θ is the inclination and φ is the azimuth. Last, (θ, φ)
is mapped into image coordinates, U :

U =

[
Sxθ cosφ+ Tx

Syθ sinφ+ Ty

]
(4)

where Sx and Sy are scaling parameters, and Tx and Ty

are translation parameters. Thus, Equation 4 contains four
scalar parameters, while Equations 1-3 require six scalar pa-
rameters: three to define the center of the sensor, C, and



Figure 3: Calibration interface. A user inputs the
model-coordinates for a set of points on the image
to calibrate one of the cameras.

Figure 4: Video projection samples. From left to
right: (a) Piece-wise linear projection. (b) Per-pixel
projection performed with a fragment shader.

three to define the orientation, [XY Z] (although [XY Z]
forms a 3 × 3 matrix, it is defined as a set of unit-length
axes and can be equivalently represented as a set of Euler
angles: yaw, pitch and roll). Together, these equations de-
fine a mapping function between world points and image
points, f(P : Θ) → U , where Θ represents the ten camera
parameters.

Determining the ten parameters for each camera is per-
formed with a calibration interface shown in Figure 3. Cali-
bration is performed by annotating pairs of correspondence
points (Pi, Ui), where each pair consists of a world-coordinate
point on the surface of the 3D model, Pi, and the corre-
sponding image-coordinate point on the image, Ui. These
correspondence points are used to define an error for a given
set of camera parameters, Θ:

e =
∑
i

|f(Pi : Θ)− Ui|

This error is minimized, as possible, with a non-linear solver
to determine Θ. Our implementation uses the Levenberg-
Marquardt solver provided by the MINPACK library [14].

In addition to determining the calibrations, it must be
determined which surfaces on the 3D model to texture for
each camera. This process is performed by partitioning the
model such that each partition is textured by a single cam-
era. In the case of the home environment, there is generally
one partition for each room. For control reasons, we define

these partitions manually, although it is straightforward to
automatically split and sort each polygon based on its visi-
bility and proximity to each camera.

To render the environment, a frame of video from each
camera is projected onto all of the polygons in the corre-
sponding partition. The simplest strategy is to pre-compute
the image coordinates for each polygon vertex, and then use
linear interpolation to texture each fragment (pixel), just
as texturing is normally performed. However, because of
the non-linearity of the camera model, this results in se-
vere texture tearing unless the polygons are highly tessel-
lated, as shown in Figure 4(a). We found that performing
the texture mapping for each fragment using a fragment
shader yielded better results, as in Figure 4(b). Because of
the widespread support for fast, programmable shaders in
commodity graphics hardware, performing per-pixel map-
ping did not significantly affect rendering speed.

One limitation of this approach is the problem of occlu-
sions, where there exist sections of the 3D model that are
not captured in the video. While these areas might be ren-
dered as a solid color to indicate the missing texture, such
patches would stand out against the surrounding textured
areas. The current system ignores occlusions and projects
video fragments onto multiple polygons where occlusions ex-
ist, resulting, for example, in a patch of floor with the same
texture as an edge of a table that is positioned between the
floor and the camera. While this produces undesired arti-
facts, the problem is largely unavoidable without complete
video coverage of every surface.

Given a fast texture mapping process, performing video
playback can be performed by decoding video separately and
writing each video stream into the same texture buffer used
for rendering. Although outside the scope of this paper,
video decoding is the most significant performance bottle-
neck in this system. All video used in this paper has a
resolution of roughly one megapixel and is compressed with
motion-JPEG, which requires significant processing power
to decode. HouseFly uses a purpose-built rendering engine
that relies on the OpenGL[18] library for hardware acceler-
ated graphics. The performance of HouseFly was tested on
a computer with eight, 2.8 GHz processor cores, 4 GiB of
memory, and a Radeon HD 2600 graphics card. The dis-
play resolution was set at 2560 by 1600 pixels, and we used
the environment shown in Figure 8, which is comprised of
1512 polygons and 18 partitions corresponding to 18 cam-
eras. The system renders at a rate of 52 frames per second
when all video is paused, and 48 frames per second when
6 of the 18 streams of video are playing. However, as ad-
ditional video streams are played, the available processing
resources are eventually exhausted and the frame rate drops
sharply, down to 7 frames per second when playing all 18
video streams. Although still useable, this frame rate results
in significant “choppiness” when navigating and reduces the
responsiveness of the controls. System performance could
by greatly improved by selectively playing only the video
streams currently in view of, or nearby, the rendering cam-
era, although fundamental scalability limits remain for en-
vironments with many cameras.

While many improvements might be made to this pro-
jection strategy, it succeeds in performing accurate, multi-
image projection in realtime, without the need for preproc-
cesing. This makes the system applicable to very large data
corpora, where processing and storing a copy of all the video



Figure 5: Transcript browsing. From left to right: (a) transcripts shown as subtitles. (b) transcripts combined
into word clouds that summarize speech activity and topics in each room of the house.

can be prohibitively expensive in terms of both storage and
logistics. Additionally, the system can easily be adapted to
play live streaming video, or video from moving cameras.

3.2 User Interface
The challenge of designing a user interface for HouseFly

is to provide fluid control over both spatial position (camera
position and orientation) as well as time. Two input schemes
have been implemented, with different properties.

The first of the two schemes utilizes two commercially
available peripherals. A jog-shuttle controller is used for
time navigation, providing controls similar to a digital video
editing application, with fast transitions between video play-
back, skimming, and frame-by-frame jogging. For spatial
navigation, a 3D motion controller is used that provides six
degrees-of-freedom. By pushing and rotating the puck along
any axis, the user simultaneously controls position and ve-
locity. Like the jog-shuttle controller, the motion controller
requires only one hand, such that the user can simultane-
ously manipulate both motion and jog-shuttle controllers.
However, in addition to requiring atypical hardware, this
approach has several disadvantages. We have found that
new users find the motion controller difficult to use at first,
which required the addition of a “novice” mode that lim-
its the degrees-of-freedom of the device, limits sensitivity,
and removes camera roll. But even for experienced users,
the motion controller is suited for adjusting the camera, but
ill-suited for picking tasks—selecting points on the screen—
which is far easier to perform with a mouse.

As a result, HouseFly provides a more conventional key-
board-and-mouse interface that is identical to the setup used
in most first-person shooter video games. In this setup, the
user can “walk” orthogonal to the ground by pressing the
“WASD” keys on the keyboard, and control the pitch and
yaw of the gaze direction with the mouse. This approach re-
quires two hands to control the perspective, making it more
difficult to control time and speed of movement.

One other feature important to the user interface is the
ability to store views, where a view consists of the position
and orientation of the rendering camera. The user can map
the current view to a button on the jog-shuttle controller or
keyboard, and can then press that button at a later time to
quickly return to that view. Similar to the views, a given

point in time may also be stored and retrieved, providing
a bookmarking mechanism for events of interest within the
data.

3.3 Audio
For the data collected from a home environment, audio

recordings were made using 16 microphones installed in the
ceilings. Boundary-layer microphones were used, providing
clear recordings of the speech occurring anywhere in the
house.

While navigating the virtual environment, HouseFly mon-
itors the user’s location and selects the audio stream from
the closest microphone for playback. Audio playback is syn-
chronized to the video, and for faster-than-realtime play-
back, SOLAFS pitch correction is used to enhance compre-
hension [5]. Audio is automatically silenced if playback ex-
ceeds a manually specified speed. In spite of its simplicity,
the use of localized audio greatly enhances the sense of im-
mersion and provides a fuller sensation of the people and
speech in the recordings.

3.4 Transcripts
As part of the HSP effort to analyze language develop-

ment, a large portion of the speech data has been tran-
scribed. At the time of this writing, transcripts have been
produced for approximately eight months of audio record-
ings, or about half of the data collected from the home when
the child was between the ages of 9 and 24 months.

HouseFly incorporates speech transcripts in several ways.
In the most basic application, shown in Figure 5(a), tran-
scripts are displayed as subtitles to aid audio comprehen-
sion. Figure 5(b) shows a word cloud visualization [9] of
frequencies computed directly from the transcripts. House-
Fly assembles and updates these word clouds dynamically,
providing the user with a summary of speech activity in
that room. When skimming the data at very high speeds,
the word cloud representation provides a summary of where
speech is occurring, and indicates the topics about which
people are speaking.

3.5 Person Tracking
In the majority of multi-camera track visualizations, the

tracks are drawn as lines that are either overlaid on a floor



Figure 6: Adding child tracks (red) to caregiver
tracks (green) to expose areas of interaction (yel-
low).

Figure 7: Tracks can be drawn so that they rise ver-
tically as they progress in time to provide a chrono-
logical summary of events.

plan that is separate from the video, or overlaid directly on
individual streams of video in a way that makes it difficult
to understand the patterns of motion at the larger scale as
they occur across cameras. HouseFly provides a natural way
to render track data in 3D space, across multiple cameras,
in the context of the actual video.

Figures 6 and 7 show examples of track visualizations us-
ing approximately half an hour of video data from the home
environment, where the tracks of the parent and shown in
green and the tracks of the child in red. HouseFly does not
perform realtime tracking; the data shown here was gen-
erated with a separate, semi-automatic tracking interface
[2]. When the user enables the track data visualization, the
video is rendered in black-and-white to improve the visibility
of the tracks.

Of particular interest to observing child development are
the instances when the child and caregiver are in close prox-
imity, which indicates that they are more likely to be inter-
acting and the child is attending to the speech and actions

of the caregiver. These areas of overlap are referred to as
social hot spots. By rendering the tracks using an addi-
tive color blend, these spots emerge as yellow areas, as seen
in Figure 6. Visualizing these social hot spots is a way to
enhance the user’s perception of everday interactions. Sec-
tion 3.7 discusses selecting and exploring these interactions
in greater detail, paving the way for their use as defining
features in the study of child language acquisition.

Figure 7 shows the same tracks, but where the vertical
position is determined by each line segment’s place in time
such that the tracks rise from the floor as time moves for-
ward; a technique demonstrated in [8]. This visualization is
intended to give a better sense of the timing of the events;
the user can quickly see that the child and caregiver were
first together in the middle of the room, then moved to the
couch, and then the caregiver began traveling to the kitchen
as the child circled his toy. Although the full structure of the
tracks may not be obvious in this 2D image, the 3D shape
is more apparent as the user navigates the space and views
the scene from the different angles. Additive color blending
is disabled for this view because the variable height of the
tracks results in track segments that overlap on screen but
are not proximate in space.

Figure 9 shows approximately four hours of track data
extracted from video collected at a retail service environ-
ment. This track data was generated with a fully automatic
tracker. Ignoring for a moment the coloring of the tracks,
this kind of visualization might be used in a retail space to
look at overall traffic patterns within the space, to indicate
areas of the store that might be underutilized, and to look
at changes in the usage of the space at different times.

The coloring in this image indicates a classification over
customers (red) and employees (green). This classification
was generated by an automatic process, which starts with a
point discretization step. Given a set of tracks, all the loca-
tion points are collected, without regard to the relationships
between points, and processed by a modified LBG vector
quantization algorithm [12]. The output of the LBG algo-
rithm is a placement of the nodes such that each node has an
approximate number of associated points; thus, areas with
denser traffic have more nodes and sparser areas have fewer.
The total number of nodes can be adjusted as a parame-
ter, and can be thought of as the resolution at which the
discretized track data is realized. The nodes are given ar-
bitrary indices. Writing expressions over these indices then
provides the basis for matching tracks from a corpus to be-
haviors of interest.

A training set was then created by hand-labeling a subset
of the quantized track data. This data was then used to train
a probabilistic model for each the customers and employees.
In addition to the track data, several color histograms were
generated for each target during tracking at different times.
Using the same training set, the color histograms were la-
beled and used to train an SVM. The likelihood scores gen-
erated by both these classifiers were then used as input for
a third and final classifier, which generated the track clas-
sifications shown. Discarding the low-confidence instances,
this classifier achieved over 90% accuracy for leave-one-out
cross-validation.

In addition to using track data as a basis for action clas-
sifications, the retail spaces shown provide additional infor-
mation in the form of de-identified transaction records of the
customers. Figure 11 shows HouseFly as it renders the on-



Figure 8: Retail service environment constructed from 18 cameras installed at a functioning business.

Figure 9: A different retail service environment from the one shown above, this environment is constructed
from 11 cameras. This image also shows several hours of track data that have been classified automatically
as customers (red) or employees (green).

Figure 10: Interest map visualizing the frequency with which people look at different parts of the store.

going transactions as progress bars above each employee. By
itself, merely indicating the occurrence of a given transaction
may be of limited use, but by providing access to such be-
havioral features extracted from multiple sources, HouseFly
provides a framework for combining data types and search-
ing for possible patterns. Transaction events might be com-
bined with any number of features derived from the track
data, such as time spent waiting in line, interactions with
employees, or measurements of the crowdedness of the store,
in order to answer questions about how different aspects of
the environment affect customer behavior.

3.6 Interest Mapping
Gaze direction indicates a person’s attentional focus and

makes a particularly useful feature for behavioral analyses.
For analyzing child behavior, the gaze of a child can indicate
when a child is attending to a caregiver versus a nearby toy.
For commercial spaces, aggregate gaze data can be used to
estimate the areas of interest in a space that receive the
greatest amount of visual attention.

In order to display aggregate gaze information, an inter-
est map visualization described in Farenzena et al. [3] was
adapted for use in HouseFly. Similar to their approach, we



Figure 11: Progress bars show the ongoing transac-
tions between customers and employees.

estimate gaze coarsely by computing the velocity of a person
from the track data and using the velocity as the primary
indication of body orientation. For a given point in time, the
distribution over gaze direction is estimated as a Gaussian
centered on the velocity vector with a falloff that is propor-
tional to the person’s speed; a distribution that assumes a
person moving quickly is more likely to be looking straight
ahead, and that a person standing still is more likely to be
looking around.

This process has not been evaluated, but is being used in
this instance to explore possible visualizations. Figure 10
shows a screenshot of HouseFly displaying an interest map,
where the brightness of each point of the model’s surface is
determined by the gaze estimates and indicates the likeli-
hood that that point is in a person’s field of view.

3.7 Search and Retrieval
This paper has so far enumerated a variety of data types

and visualizations that HouseFly brings together into a sin-
gle display area. While the different visualizations have been
shown as separate elements, they represent shared behav-
ioral events that occur at a given time and place, making it
natural to show them in any number of combinations. Just
as the data types can be displayed together, they can also be
used together for multi-modal retrieval tasks. This section
describes two of the ways in which HouseFly can select and
display subsets of the data.

The first selection mechanism uses the track data to re-
trieve data based on person locations. Earlier in Figure 6,
social hotspots were shown and described as areas in the en-
vironment that a child and caregiver co-occupied for some
period of time. A user that identifies such an area might
want to look more closely at just the data associated with
that interaction. The user can do this by clicking on the
model to place a sphere, and then drag the mouse away to
expand the sphere so that it encapsulates the area of inter-
est. As the user drags the sphere, only the person tracks that
intersect the sphere are rendered, as shown in Figure 12(a).
For a full day of track data collected from one of the more
densely populated retail environments, the time required for
this selection is small compared to the time required to ren-
der the frame, making it possible to respond fluidly to the
user and update the display dynamically as the user per-

forms the selection gesture. When the user releases the
mouse, the system computes the set of time intervals that
contains completely the intersected tracks, essentially using
the track data to map a selected spatial region into a set of
time intervals that define the actual result set.

Figure 12(b) shows HouseFly as it displays a result set.
A timeline at the bottom of the screen indicates the range
of the results, where the red regions indicate areas with se-
lected data and the small, down-pointing arrow indicates the
user’s current time position. In this case, most of the data
selected occurred within the first third of the timeline, al-
though several stray tracks intersected briefly later in time.
Given the result set, the user might browse the contained
audio-video in order to watch the events fully, or might just
look at the word clouds to see a summary of the interaction
speech, also shown in Figure 12(b).

The second selection mechanism is similar to many video
retrieval interfaces that have been designed for television
media, where the first step of a query is often a text search
over the closed-caption data embedded in the video corpus.
The data in this paper includes transcripts for the home en-
vironment, and transaction data for the retail environments,
both of which can be indexed in a similar manner. In the
case of the home environment, a user might want to observe
a child utilizing a single word over time to analyze speech

Figure 12: From top to bottom: (a) The user can
draw a sphere anywhere on the screen to select a
region of space. (b) HouseFly shows a subset of the
data determined by the user’s selection.



development and look for patterns in the child’s usage and
context. The user can perform this by typing in a word of
interest—for example, “ball”—and the system will scan the
transcripts for all instances of that word and collate a result
set containing those instances.

The result set generated by a keyword search is similar to
the result set generated by the location search, except that
each time interval is associated with a location in the house
where the utterance was recorded. As the user browses
the selected segments, HouseFly automatically transitions
the user’s position using the view system described in Sec-
tion 3.2. In either selection process, the user can manually
traverse from one selected segment to the next, or play them
all back sequentially as a montage.

4. CONCLUSIONS AND FUTUREWORK
The primary contribution of this work is to demonstrate

the possibilities for viewing and combining information when
the underlying data is large enough and rich enough to gen-
erate an immersive, virtual world. This paper has shown
numerous visualizations and interface techniques that may
be used within an immersive video environment and that
operate over a diverse assortment of data; from continuous
video recordings to discrete transaction events; individual
utterances to aggregations that span from hours to years.
Rather than develop an interface that creates partitions for
every data type—an area for the floor plan, one for each
video stream, one for transcript summaries, and so forth—
we have attempted to create a multi-modal browsing system
that can combine these elements in a single context.

This is motivated in part by the many kinds of space-
dependent data that fit naturally into a 3D environment,
but also by the patterns that can emerge from bringing dif-
ferent sources of information together. Something as simple
as displaying track data on top of the raw video can be cum-
bersome with multi-camera video, let alone selecting and iso-
lating interactions that occur across multiple rooms. In the
case of the retail service environments, viewing the tracks
in the context of the building reveal not just where people
have been, but which areas and resources in the building are
being utilized. If an interesting or anomalous path through
the space is found, then the user can go back and watch the
underlying raw data to see what happened. Similarly, in
the home environment, the user can quickly skim through
hundreds of instances of speech events, pausing at any point
to look more closely at the context and surrounding events,
and perform additional queries based on spatial position.

A secondary contribution of this paper is the use of House-
Fly to demonstrate the different layers of meta-data that
can be extracted from dense, audio-video recordings, and to
provide a few examples of how this kind of data can drive
behavioral research. The video shown in this paper was
used to produce person tracks, and then person classifica-
tions on top of that. The audio recordings were used to
produce transcripts, which are also being classified in on-
going work and being used to extract prosodic features like
pitch and amplitude. As these processes become more au-
tomated, it becomes more affordable to combine a person’s
identity, movement, speech, tone, actions and interactions to
analyze the fine-grained speech development of an individ-
ual child, or the lunchtime traffic patterns in a busy store,
or any number of aspects of human life that might unfold
over the course of a single minute, or several years.

HouseFly has not been developed to improve the perfor-
mance of some known task, but as an experimental system
to explore new concepts in data browsing. Future work will
need to shift more towards matching and adapting the ca-
pabilities of HouseFly to emerging real world applications,
whether they involve analyzing one of the corpora mentioned
in this paper, or studying data collected from another con-
text for different research goals altogether. It is hoped that
as surveillance recordings become denser and cheaper to ob-
tain, this research will find applications in behavioral ana-
lytics where researchers can benefit from an intuitive, multi-
modal system for navigating dense behavioral data.
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