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ABSTRACT
Although the availability of large video corpora are on the
rise, the value of these datasets remain largely untapped due
to the difficulty of analyzing their contents. Automatic video
analyses produce low to medium accuracy for all but the
simplest analysis tasks, while manual approaches are pro-
hibitively expensive. In the tradeoff between accuracy and
cost, human-machine collaborative systems that synergisti-
cally combine approaches may achieve far greater accuracy
than automatic approaches at far less cost than manual.
This paper presents TrackMarks, a system for annotating
the location and identity of people and objects in large cor-
pora of multi-camera video. TrackMarks incorporates a user
interface that enables a human annotator to create, review,
and edit video annotations, but also incorporates tracking
agents that respond fluidly to the users actions, processing
video automatically where possible, and making efficient use
of available computing resources. In evaluation, TrackMarks
is shown to improve the speed of a multi-object tracking task
by an order of magnitude over manual annotation while re-
taining similarly high accuracy.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software; H.5.2 [Information Interfaces and Pre-
sentations]: User Interfaces

General Terms
Performance, Human Factors, Design

Keywords
video annotation, multiple camera, object tracking, human-
machine collaboration

1. INTRODUCTION
The ubiquity of digital video cameras coupled with the

plummeting cost of storage and computer processing enables
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new forms of human behavioral analysis that promise to
transform forensics, behavioral and social psychology, ethnog-
raphy, and beyond. Unfortunately, the ability for state-of-
the-art automatic algorithms to reliably analyze fine-grained
human activity in video is severely limited in all but the most
controlled contexts. Object tracking represents one of the
most active and well developed areas in computer vision, yet
existing systems have significant difficulty processing video
that contains adverse lighting conditions, occlusions, or mul-
tiple targets in close proximity. During the 2007 CLEAR
Evaluation on the Classification of Events, Activities, and
Relationships[10], out of six systems applied to tracking per-
sons in surveillance video, the highest accuracy achieved was
55.1% as computed by the MOTA metric[2]. While higher
accuracy systems may exist and clearly progress will con-
tinue to be made, the performance gap between human and
machine visual tracking for many classes of video is likely to
persist into the foreseeable future.

While automated processing may be sufficient for some
applications, the focus of this paper is to investigate the use
of tracking algorithms for applications that demand a level
of accuracy beyond the capability of fully automatic anal-
ysis. In practice today, when video data is available but
automatic analysis is not an option, manual analysis is the
only recourse. Typically, the tools for manual annotation of
video are extremely labor intensive barring use in all but the
most resource-rich situations. Our aim is to design human-
machine collaborative systems that capitalize on the com-
plementary strengths of video analysis algorithms and deep
visual capabilities of human oversight to yield video tracking
capabilities at a accuracy-cost tradeoff that is not achievable
by full automation or purely manual methods alone.

The human-machine collaborative approach to informa-
tion technology was first clearly articulated by J. C. R. Lick-
lider[6] as a close and fluid interaction between human and
computer that leverages the respective strengths of each.
He envisioned a symbiotic relationship in which computers
could perform the “formulative tasks” of finding, organiz-
ing, and revealing patterns within large volumes of data and
paving the way for human interpretation and judgment. As
computers have proliferated over the past fifty years, in-
stances of what Licklider might consider collaborative sys-
tems have become pervasive, from the computerized braking
and suspension in modern cars that help the driver stay on
the road to the spell checkers that review each word as the
user types it. While human-machine collaboration is now
implicit in many fields, the conceptual framework still pro-
vides insight when addressing the problem of video annota-



tion. Given that humans can perform visual tasks with great
accuracy, and that computers can process video with great
efficiency, finding an effective bridge between the two may
yield an annotation system that process performs with much
greater efficiency than manual annotation while making few
concessions to accuracy.

In this paper, we present TrackMarks, a human-computer
collaborative system designed to annotate large collections
of multi-camera video recordings. Specifically, this paper
will describe TrackMarks as applied to annotating person
identity and location, although the system may be adapted
to other video analysis tasks. When using TrackMarks, the
human annotator begins the process by providing one or
more manual annotations on single frames of video. The
system then attempts to extend the user annotations into
tracklets (partial track segments), filling in any sections of
the data that are not completely annotated. To organize
this process, the system maintains a prioritized list of anno-
tation jobs and dynamically assigns these jobs to tracking
agents (computer processes that perform tracking). A sin-
gle user can trigger a larger number of parallel tracking pro-
cesses. As the system generates tracklets, the user may shift
to a verification and correction role. To support this role,
the system supports interactive visualization of tracklets as
they are being generated tightly integrated with the ability
to issue corrections or additional annotations. With Track-
Marks, users can fluidly interleave annotation, verification,
and correction.

The development of TrackMarks was motivated by the
video analysis challenges posed by the Human Speechome
Project (HSP)[8]. The project is an attempt to study child
language development through the use of very large collec-
tions of longitudinal, densely-sampled, audio-video record-
ings. In a pilot data collection, 11 ceiling-mounted fish-eye
lens mega-pixel cameras and 14 boundary-layer microphones
were installed in the home of a child. From the child’s
birth to three years of age, approximately 90,000 hours of
14 frames-per-second video recordings were collected, cap-
turing roughly 70% of the child’s waking experience at home
during this period. In theory, given such a corpus, a scien-
tific researcher should be able find and analyze events of
interest to identify patterns of physical and social activity,
compute aggregate statistics on aspects of behavior, or val-
idate computational models of behavior and development.
All of these tasks pose significant problems involving audio-
video indexing, retrieval, and analysis. TrackMarks is an
attempt to dramatically reduce the cost of preprocessing
such video collections so that they may be used for scientific
investigation.

There are existing systems that perform video annotation
in a collaborative manner. Perhaps the one most similar to
our own is described by Agarwala et al. in [1]. They de-
scribe a system for rotoscoping in which the user annotates
object contours for two keyframes, the system interpolates
the contours for the frames in between, after which the user
can review and correct the generated annotations. This sys-
tem provides a more simple interaction in which the system
performs one tracking job at a time and the user reviews the
results when the job is completed. In contrast, TrackMarks
focuses on running multiple trackers at once and enabling
the user to interact with the tracking processes while they
are running.

Other approaches to tracking have included “two-stage

tracking” systems, where the first stage involves the genera-
tion of high confidence tracklets, and the second stage deter-
mines how to aggregate the tracklets into longer tracks. In
[9], the tracklets are combined automatically with a global
optimization algorithm. In [5], Ivanov et al. describe a sys-
tem that performs tracklet aggregation interactively with
a human operator, which they refer to as “human guided
tracking.” In this system, tracklets are first generated from
motion sensor data and the system aggregates the tracklets
from multiple sensors as fully as it can. When the system
cannot identify the correct tracklet sequence with sufficient
confidence, such as when two objects come too close together
to be disambiguated from the motion data, it presents the
user with relevant video recordings and the user indicates
which tracklets belong to a given target. While these sys-
tems may require far less manual labor than TrackMarks,
they rely more on automatic tracking and require high con-
fidence tracklets. TrackMarks has been developed to ad-
dress worst case scenarios, in which sections of data may
need to be annotated precisely, frame-by-frame. The more
automatic systems still inform the future directions of Track-
Marks, and possibilities for combining more automatic ap-
proaches will be discussed in Section 4.1.

2. THE TRACKMARKS SYSTEM

2.1 Design Goals
The purpose of TrackMarks is to identify and track mul-

tiple people from recordings taken from multiple cameras
placed in connected visual regions, but was also designed
around several additional objectives:

• Make annotation as efficient as possible while allowing
the operator to achieve an arbitrary level of accuracy.

• Annotate camera handovers (when a person moves out
of view of one camera and into view of another), oc-
clusions, and absences. (Absent events are defined as
cases in which a known target is not in view of any
camera.)

• Provide an interface that is responsive enough to sup-
port fluid interaction between the operator and sys-
tem. It is important that the automatic processes not
impede the operator’s ability to navigate and anno-
tate the video. This requires that the response time
for frequent operations remain under a few hundred
milliseconds.

• Management for video collections larger than 100 TB.
This affects database management, but also, for large
corpora, it is unlikely that a present day computer will
be able to access all of the data locally. When video
data must be accessed over a network, it poses addi-
tional problems in maintaining responsiveness.

2.2 User Interface Overview
Figure 1 shows a screenshot of the TrackMarks interface.

The top, middle panel shows a typical frame of video in full
mega-pixel resolution. In this image, two bounding boxes
have been superimposed on the video that indicate the po-
sitions of a child and adult. The colors of the boxes indicate
the identity of each person. Video navigation is performed
primarily with a jog-shuttle controller.



Figure 1: TrackMarks Interface

The top, left panel displays video thumbnails from the
other cameras in the house. The user selects the video
stream to view by clicking one of these thumbnails.

The bottom panel shows a timeline visualization of the
annotations that resembles a subway map. This component
summarizes the annotations that have been made, providing
the user with a method of identifying and accessing portions
of the data that require annotation. The horizontal axis rep-
resents time, which consists of approximately 30 minutes of
data in this example. The blue, vertical bar indicates the
user’s position in the video stream. The timeline is divided
into horizontal“channels,” each representing one camera, de-
marcated by the thin black lines. The top channel, colored
gray, represents the “absent” channel that is used to indicate
that a target is not present in any of recordings. Finally,
the thick, colored lines represent the tracklets. As with the
bounding boxes superimposed on the video, the tracklets are
colored to indicate person identity. The vertical placement
of the tracklet indicates the channel, so when a tracklet line
makes a vertical jump to another channel, it indicates that
the target moved to a different camera at that place in time.
As the system generates annotations, the timeline map adds
or extends these tracklet lines and the user can monitor the
progress of the system. Note that each bounding box shown
on the video frame corresponds to a thin slice from one of
the tracklet lines on the timeline view.

2.3 Track Representation
Track data is represented in a hierarchical structure with

three levels: track points, track segments, and tracklets. At
the lowest level, track points correspond to an annotation
associated with a single frame of video. For the instance
of the system described in this paper, all track points con-
sist of bounding boxes. Track points are grouped into track
segments, which represent a set of track points for a contigu-
ous sequence of video frames from a single camera. Track
segments may also indicate that a target is occluded or ab-
sent for an interval of time, and that no track points are
available. Adjoining track segments are grouped into track-
lets. Tracklets specify the identity of the target and combine
the track data for that target across multiple cameras for a
continuous time interval.

Several constraints are placed on the track data to simplify

the system. First, only one annotation may be created for
a given target in a given time frame. It is not possible to
indicate that a target simultaneously occupies more than
one location or camera, and multiple tracklets for a given
target may not overlap. This precludes the use of multiple
hypothesis tracking algorithms or annotating multiple views
of the same object captured by different cameras, but greatly
simplifies interaction with the system because the user does
not need to review multiple video streams when annotating
a given target.

Second, each tracklet has a single key point that is usually
a track point created by the user. The tracklet originates
from the key point, and extends forward and backward in
time from that point. The purpose of the key point is to
simplify tracklet editing. When deleting a track point from
a tracklet, if the track point is defined after the key point, it
is assumed that all of the tracklet defined after the deleted
point is no longer valid and the right side of the tracklet is
trimmed.

2.4 Annotation Process
This section outlines the annotation process from the view

of the human annotator. To begin the process, the user
selects an assignment to work on, where the assignment
defines an objective for the user and a portion of data to
process. The user browses the video and locates a target.
Target identification is performed manually. The jog-shuttle
controller used to navigate the video has nine buttons that
are mapped to the most frequently occurring targets. The
user may quickly select the identity by pressing the corre-
sponding target button, or, more slowly, may evoke a popup
menu that contains a complete list of targets as well as an
option to define new targets. Given the overhead position
of the cameras, it is sometimes necessary to browse through
a portion of the data before an identification may be made.
After identification, the user uses a mouse to draw a bound-
ing box that roughly encompasses the object as it appears
in the video. If the annotation appears correct, the user
commits the annotation.

When the user commits an annotation, it creates a new
track point as well and a new tracklet that consists of only
that point. By default, TrackMarks automatically attempts
to extend the tracklet bidirectionally. This process is de-
scribed in Section 2.5. Camera handover is performed man-
ually, and the user must create annotations at time frames in
which a target enters or leaves a room. Usually, when anno-
tating a target entering a room, the user defines a tracklet
that should be extended forward in time, but should not
be extended backward because the target will no longer be
there. For this reason, it is also possible for the user to spec-
ify that a tracklet be extended only forward, only backward,
or not at all.

While tracking is being performed, the operating may
skim the video stream and verify the generated annotations.
If a mistake is found, the user may click on the incorrect
track point and delete it, causing the tracklet to be trimmed
back to that point, or may choose to delete the tracklet alto-
gether. More commonly, the user may draw a new bounding
box around the target and commit the correction, causing
the incorrect annotation to be deleted and restarting the
tracking process for the target at that frame.

In addition to making position annotations, the user may
indicate that a target is occluded or absent. Occlusions and



absences are indicated in an identical process, and both are
referred to as occlusion annotations. Unlike the position an-
notations that are associated with a single frame, occlusion
annotations may cover an arbitrary period of video. Rather
than require the user find both the beginning and end of the
annotation, which might require searching through a great
deal of video and disrupt the user’s workflow, the user marks
each end of the annotation separately. Assuming that the
user is navigating forward through a video stream and iden-
tifies the first time frame where a target becomes occluded,
the annotator selects the target identity and presses a button
on the jog-shuttle controller that indicates the selected tar-
get is occluded from that frame onward. This creates a new
tracklet that starts from the user’s time frame and extends
as far as possible without overlapping existing annotations
for the same target. When the user reaches the later time
frame where the target becomes unoccluded, he can create
a new annotation at that frame, effectively trimming the
original occlusion annotation. In the timeline view shown in
Figure 1, occlusion tracklets are distinguished from normal
tracklets by using hollow lines.

2.5 Tracking Agents
While there are many possibilities for improving annota-

tion efficiency through faster hardware or improved track-
ing algorithms, our work focuses on improving performance
through structured collaboration. Having an efficient tracker
implementation is still important, but large gains can be had
by scheduling the tracking processes intelligently to mini-
mize redundant operations, to provide rapid feedback to the
user so that errors are corrected quickly, and to prevent the
sizable computational resources required for object tracking
from interfering with the interface. The key optimization
made by TrackMarks, then, is the tracking agent subsystem
that manages and executes tracking tasks.

The tracking process may be broken into four steps, in
which tracking jobs are defined, prioritized, assigned, and
executed. This is not a linear process; jobs may be revised
or cancelled at any time. The tracking agent subsystem that
handles this process consists of four levels: a job creator, a
job delegator, job executors, and trackers.

The job creator receives all requests to expand tracklets
and defines a job for each request. For convenience, the
backward time direction is referred to as left, and the forward
as right. Each job is associated with a tracklet ri, where
the purpose of the job is to add annotations to expand the
tracklet in either the left or right direction, di ∈ {0, 1}. The
left and right edges of the tracklet occur at times ti,0 and
ti,1, respectively, and the job is complete when the edge ti,di

is extended to a goal time, ti,di = t̃i.

The main parameter to compute is the goal time. t̃i is
selected such that the tracklet is extended as far as possible
without overlapping existing tracklets with the same target.
Assuming tracklet ri is being extended to the right di = 1,
the job creator finds the first tracklet rj that exists to the

right of ri and shares the same target. If there is no such rj ,
then t̃i may be set to the end of the available video stream.
If rj does exist, then t̃i is set to the left edge of that tracklet
t̃i ← tj,0.

In the case where rj is being extended backwards by an-
other job, then the goal time of both jobs is set to the time
half way between ri and rj , splitting the remaining load
between the two jobs, t̃i, t̃j ← 0.5(ti,1 + tj,0).

Tracklets may be created and altered while tracking oc-
curs. The job creator is notified of all such events and re-
computes the goal times t̃ for all jobs that might be affected.
If the operator deletes an annotation that was created by a
job that is still being processed, that job has failed and is
immediately terminated.

All existing jobs are given to the job delegator, which
schedules jobs for execution. In the case of TrackMarks, the
time required to perform person tracking is a small frac-
tion of the time required for retrieving and decoding the
video. Subsequently, the greatest gains in efficiency result
from tracking as many targets as possible for each frame of
video retrieved. The job delegator exploits this by mapping
all jobs into job sets that may be executed simultaneously
by processing a single contiguous segment of video, priori-
tizing each job set, and assigning the highest priority sets to
the available executors.

The process of grouping jobs into sets can be formulated as
a constraint satisfaction problem. Each job bi is associated
with a segment of video to process, defined by a camera
ci and time interval ri. For forward jobs with di = 1, the
interval is si = [ti,r, t̃i]. For jobs with di = −1, si = [t̃i, ti,0].
Each job set, B, is must meet three constraints:

• Forward and backward tracking jobs cannot be com-
bined, nor can jobs that access video streams generated
from different cameras. ∀bi∈B∀bj∈Bdi = dj ∧ ci = cj .

• Jobs with non overlapping intervals cannot be pro-
cessed together. The union of time intervals for all
jobs in a set ∪i,bi∈Bsi must be interval.

• A job cannot belong to a set if the tracklet edge being
extended by that job is too distant from the other jobs
in the set. ∀bi∈B∃bj∈B |tri −trj | < τ , where τ is a chosen
parameter.

When a job bi is first created, the delegator attempts to
locate an existing job set, B, to which the job may be added
without violating any constraints. If no such set can be
found, a new set is created containing only one job. Each
time a job as added or otherwise altered, the constraints are
reapplied, causing job sets to be split and joined as needed.
The algorithm used to solve this constraint problem involves
implementation details and is of less interest than the for-
mulation of the problem itself.
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Figure 2: Tracking Agent Subsystem. The job cre-
ator manages individual tracking jobs. The dele-
gator organizes the jobs into sets. Each executor
processes one set of jobs, feeding video frames to
one tracker per job.

Each time a job set is altered, the job delegator recom-
putes a priority for that set. The priority is based first on
processing jobs sets such that they are likely to reach an-
other job set, allowing them to merge and thus reduce com-
putational load. Second, higher priority is given to job sets
that are processing data at earlier time frames, encouraging
tracking to be performed from left to right. This criteria
helps to reduce the fragmentation of tracklets, and reduces
the amount of time the user expends reviewing video. Other
criteria might also be incorporated at this stage. Giving
greater priority to the recency of the jobs might help to
place trackers near the locations that the user is annotating,
improving the perceived responsiveness of the system.

After the job sets are prioritized, the top n sets are as-
signed to job executors. The parameter n thus determines
the number of tracking threads running at any point in time,
and the portion of resources allocated to tracking. Each ex-
ecutor runs in an isolated thread, executing all jobs in the
set bi ∈ B simultaneously. The executor initializes a tracker
for each job. Job sets may be altered while the executor is
running and not all jobs in the set are necessarily aligned.
For forward tracking job sets, ∀bi∈Bdi = 1, the executor
always retrieves the earliest frame of video to be processed
by any job, tf = minbi∈Bti,1, passing that frame to each
tracker that has not already processed it. The resulting be-
havior is that the executor may sometimes “jump backward”
in the video stream and reprocess a segment of video until
the earliest job catches up to the others.

The trackers are then conceived as passive components
that produce one track point that indicates the location
of one target for each video frame provided. The position

tracker used is built on the mean-shift tracking algorithm
[4]. Mean-shift tracking is performed by adjusting the size
and location of a bounding box to maintain a consistent dis-
tribution of color features within the box. This algorithm
was chosen partially for its relatively fast speed. However, it
was also chosen over motion-based algorithms because it was
predicted that people in a home environment would spend
much more time sitting in place, as compared to people in
a public space that might spend more time traveling. Addi-
tionally, when tracking a child being held by a caregiver, the
two targets may be separated more reliably by color than by
motion. While the implementation used relies more strongly
on color features, motion features were not discounted en-
tirely, and the tracking algorithm does incorporate a fast
foreground-background segmentation step to improve per-
formance for targets in motion.

The end result of the tracking agent system is a structured
but fluid interaction between the user and system. As the
user creates annotations, TrackMarks propagates them to
create a set of tracklets that cover the full range of data for
all targets. As it performs tracking, TrackMarks attempts
to reduce the fragmentation of the data, combines tracking
jobs when possible to greatly reduce the computation time
required, and continuously indicates tracking progress in the
user interface. When the user makes a correction, the track-
ing agents remove any jobs that are no longer useful and
creates new jobs to propagate the correction. The tracker
agents afford the user flexibility in annotating the data. In
difficult cases where the tracking fails often, the user primar-
ily focus on reviewing and correcting annotations. In other
instances, the user may skim through the video and provide
a few annotations, and return later to review the results. In
the worst cases in which tracking fails completely, the user
still has the ability to annotate manually.

3. EVALUATION
To test the efficiency of TrackMarks, three hours of multi

channel video recordings were selected from the speechome
corpus for transcription. The selected data was broken into
six, 30 minute assignments. To select assignments of interest
that contained high levels of activity, the data was selected
from the 681 hours of data for which speech transcripts were
available, allowing the activity levels of the assignments to
be estimated by examining the amount of speech activity.
The data from this subset was collected over a 16 month
period, during which a child and family was recorded while
the child was between the age of 9–24 months. The 1362 as-
signments were ordered in a list according to a combination
of activity level and distribution of collection dates, and a
sequence of six assignments was selected from near the top
of that list (positions 18–24). Figure 3 shows several video
frames taken from the transcribed data.

Annotators were given the same objective for all assign-
ments: to fully annotate the position and identity of the
child for the entire assignment, and to annotate all other
persons within sight of the child’s position, including persons
visible to the child through open doorways. The annotators
were instructed to fix all incorrect annotations. Annotations
(drawn as bounding boxes) were deemed correct if the box
contained at least half of the target object, and that it would
not be possible to reduce the area of the bounding box by
half without also removing part of the object. Targets were
marked occluded if less than half of the target object was vis-



Figure 3: Example Annotations

mean min max std
A1 time (minutes) 64.1 31.0 106 27.1
A2 time (minutes) 44.2 22.5 62.7 14.8

Strict IAA MOTA 88.1% 77.4% 98.7% 7.11%
IAA MOTA 97.3% 86.3% 99.9% 5.40%
IAA MOTP 12.3px 8.33px 17.2px 3.52px

Object Count 47,482 15,381 71,320 20,277
Objects Per Frame 1.88 0.610 2.83 0.805

Manual Annotations 316 181 466 117
Forced Errors 65.7 38.0 90.0 18.9

Unforced Errors 250 143 376 98.4

Table 1: Annotation Trial Results

ible, and absent if the target was not present in any rooms
being recorded.

The evaluation was performed by two annotators. Anno-
tator A1 (first author) had previously annotated approxi-
mately five hours of video with TrackMarks. Annotator A2
was given two warmup assignments that are omitted from
the evaluation. Results are shown in Table 1.

The first two rows present the annotation time required
by both annotators, A1 and A2. The speed of the annota-
tors fell between 28.3% and 133% of the speed required to
annotate the data in realtime, with a overall mean of 55.4%.
That is, 108 minutes of labor was required on average to
annotate 60 minutes of recordings.

Rows three through five present the inter-annotator agree-
ment computed with the CLEAR MOT metrics[10]. The
MOT metrics provide a standardized method for computing
the accuracy (MOTA) and precision (MOTP) of multi object
tracking systems. The MOTA score indicates the percent of
correct matches, taking into account the number of misses,
false positives, and target mismatches. The MOTP score
indicates the average error for all correct matches. These
metrics are designed to be generalized to a wide range of
tracking tasks, and require an application specific error func-
tion to compute the error between two data points in a given
time frame. The error function used for this evaluation con-
siders two data points, bounding boxes p1 and p2, to be a
match if p1 intersects p2. If p1 and p2 match, then the error
between them is defined as the Euclidean distance between
their respective centroids. In standard applications of the
MOT metrics, one set of tracks must be provided as ground
truth and another set for evaluation. To adapt the metrics
for inter-annotator agreement, we compute the scores twice,
each time using the data provided from a different annotator
as the ground truth, and average the results. Additionally,
because only the child target was required to be annotated
completely and there was greater flexibility for annotating
the other targets, we compute inter-annotator agreement
only on the tracks associated with the child target.

The Strict IAA MOTA figures, computed as defined above,

show the accuracy of one annotator compare to the other,
where the average was 88.1%. The primary source of dis-
agreement was in the determination of whether a target was
visible, occluded, or absent. While the evaluation task de-
fined that an object could be marked occluded if less than
half of the object was visible, this rule proved difficult to ap-
ply in practice. For example, for approximately 15 minutes
of the evaluation data, the child target was in a crib and
was only visible through the slats of the crib. Other por-
tions of data contained the child repeatedly covering and
uncovering his head with a blanket in both walking and ly-
ing positions, making it unclear whether the blanket should
be considered an occlusion or clothing. Most of all, if the
automatic tracking was performing well despite significant
occlusions, annotators did not consistently mark the occlu-
sion since that would mean deleting otherwise valid position
annotations. Another source of disagreement was in deter-
mining the exact point of camera handoff, since the system
forces the annotator to associate a given target with at most
one camera at one time.

To get another sense of accuracy, the second IAA MOTA
figures were computed on only the time frames where both
annotators agreed that the child target was visible. Further-
more, the accuracy was not computed for time frames that
occurred within five seconds of a camera handover. The re-
sulting accuracy of 97.3% shows that the majority of the
disagreement was caused by the added ambiguity of explic-
itly marking occlusions and camera handovers. On average,
this processed culled 39% of the annotations, which might
be expected for a child target that is often being held or
occluded by the environment, but indicates that more strin-
gent guidelines are needed to annotate multi-camera video
consistently.

The IAA MOTP shows that the average distance between
annotation centroids was 12.3 pixels; approximately 1.3% of
the 960 by 960 pixel video frames. Because the video was
recorded with a fish-eye lens, the distance represented by
12.3 pixels varies considerably depending on the pixel posi-
tion, room geometry, and pose of the target. Because pre-
cision is computed only between correct matches, the preci-
sion scores computed for the strict agreement had very small
deviation from those reported.

Referring back to Table 1, the bottom five rows contain
statistics for the assignment tasks, all of which are aver-
aged across the results from both annotators. Object Count
refers to the total number of objects annotated for the entire
assignment, not counting occluded and absent annotations.
Objects Per Frame indicates the average number of objects
occurring for each time frame. Because the cameras used
were not synchronized at a per frame level, the number of
time frames in one half hour was approximated as 25,000.

Manual Annotations indicates the total number of man-
ual annotations created by the annotator for an assignment.
Each manual annotation may be thought of as system er-
rors, in which the system was unable to produce a correct
annotation and required human intervention. We define two
kinds of errors: forced and unforced. Forced errors occur
on camera handovers and object transitions between visible,
occluded, and absent. These errors are considered forced be-
cause the system is not designed to identify these events, and
even with perfect tracking, they would still require manual
intervention. The number of forced errors, then, is the the-
oretical minimum number of manual annotations required



if perfect, single-camera tracking were available. Unforced
errors occur when the automatic tracking fails on a frame
containing a visible target and requires manual correction.
These are errors that might be reduced with a better tracker.
In this evaluation, annotators were instructed to achieve ac-
curacy and speed, not to minimize the number of annota-
tions made. Subsequently, the number of unforced errors
can only be roughly estimated by subtracting the number
of forced errors from the total number of annotations. Al-
though the unforced error figures are less certain than the
others, they suggest that the amount of human intervention
could be greatly reduced by more accurate tracking.

In the second evaluation, we compare the efficiency of
TrackMarks to a fully manual approach. A simple system
was constructed that provided an extremely simplified pro-
cedure for manual annotation. The system presents one
frame of video to the annotator, the annotator locates and
draws a bounding box around the child target, and the sys-
tem presents the next frame of video. The video frames are
presented in sequence, so the primary limit was the speed
of physically drawing the bounding box. In one ten minute
trial, an annotator (first author), working at a rapid but
comfortable pace, produced annotations for 846 objects. In
the evaluation of TrackMarks, each 30 minute assignment
contained an average of 47,482 objects, suggesting that the
minimum time needed to annotate such an assignment man-
ually would be 561 minutes; about 10.4 times as much hu-
man labor as required by TrackMarks. While there are
many possibilities for expediting manual annotation, it is
an inherently tedious task, both physically and mentally. A
more comprehensive analysis would likely need to include
estimates for the amount of rest annotators require between
sessions, and adjustments to the pay needed to retain an-
notators. Even in the absence of such an evaluation, we
strongly believe that manual approaches will be limited to
a fraction of the efficiency of human-machine collaboration,
and that the difference will grow rapidly as technologies im-
prove.

Last, we compare the accuracy of TrackMarks to that of
a fully automated tracker. The automatic tracker evalu-
ated was implemented with SwisTrack[7], an open source
software package containing many commonly used tracker
components. Out of several configurations, we achieved the
best results by detecting objects using motion templates[3]
and combining the objects into tracks with a nearest neigh-
bor tracker. 140 hours of single channel video taken from the
speechome corpus was processed with the automatic tracker.
The half-hour block that contained the greatest number of
identified objects was selected and annotated using Track-
Marks. The MOT metrics were again used to determine ac-
curacy and precision. In this evaluation, the TrackMarks an-
notations were used as ground truth. The annotations pro-
duced by TrackMarks consist of bounding boxes mi around
an object, while the tracks from the automatic tracker con-
sist of points ni that represent object centroids. Because
of this discrepancy, an error function was used that differs
from that used in the first evaluation. If mi is a truth an-
notation, and ni is a test annotation occurring in the same
time frame, then ni is considered a match to mi if ni is con-
tained by mi scaled by 1.5 about its center, and the error
between mi and ni is the Euclidean distance between ni and
the center of mi. The performance of the automatic tracker
is shown in Table 2.

MOTA 48.0%
MOTP 32.8 px

Objects 67,231
Matches 37,323

Misses 29,908
False Positives 4,634

Mismatches 470

Table 2: Automatic Tracker Performance

The performance of the automatic tracker was compara-
ble to other multi-object tracking systems applied to similar
tasks[10]. The overwhelming cause of errors was misses,
at 29,908, followed by false positives at 4,634, and then
mismatches at 470, where mismatches were defined as in-
stances where the generated tracklets switched from follow-
ing one target to another. The MOTA achieved by the
automatic tracker, 48.0%, is 49.3% lower than the inter-
annotator MOTA achieved by TrackMarks, and 40.1% lower
than the strict inter-annotator MOTA. The average error be-
tween matches was 32.8 pixels, compared to 12.3 pixels for
the inter-annotator precision of TrackMarks.

4. DISCUSSION
For tracking tasks that require low to moderate accuracy,

automatic tracking is still the most cost effective solution.
However, high error rates severely limit the usefulness and
possible applications for video analysis. On the other ex-
treme, manual annotation requires a great deal of labor,
limiting this approach to projects that can absorb the high
cost of human annotators.

We have established TrackMarks as a viable approach to
annotation that achieves a balance between cost and accu-
racy that creates new possibilities for video analysis. Track-
Marks provides a level of accuracy far closer to manual an-
notation than automatic, while providing efficiency that is
an order of magnitude greater than fully manual process-
ing. Furthermore, TrackMarks makes it efficient to explic-
itly mark object occlusions and absences, providing an ad-
ditional layer of information that can be used for analysis
when more descriptive annotations cannot be created. In-
deed, this feature was an important objective for the behav-
ioral analysis research for which TrackMarks was developed.

While we have focused on person tracking as an example
of video processing that can benefit from human-machine
collaboration, we believe this approach will become increas-
ingly more valuable as video analysis becomes feasible for
a growing number of applications. Even as object track-
ing algorithms improve, new applications will arise that will
make use of increasingly detailed information, such as head
or hand pose. Researchers and analysts will require human
vision faculties to process video for the foreseeable future,
which may establish an important niche for human-machine
collaborative systems like TrackMarks.

4.1 Future Directions
This research has focused more on the interaction between

the computer and human, and has tried to maximize the
usefulness of a relatively modest object tracker. The most
obvious improvements involve increasing the accuracy and
speed of the tracker processes to reduce the time and ef-



fort required of the human operator. Trackers that pro-
duce reliable confidence scores introduce a whole range of
possibilities for more intelligent tracklet editing. Identify-
ing segments of data that have a high probability of errors
provides a way to bring the human’s attention where it is
needed most, reducing the time spent on reviewing data.
Confidence also provides methods for automatically joining
or splitting tracklets, In the current implementation, remov-
ing one incorrect annotation causes the entire tracklet to be
trimmed to that point, the assumption being that it is more
efficient to reprocess the segment of video than to require the
user to find all subsequent errors in the tracklet. In many
cases, cutting the tracklet based on confidence may prevent
redundant processing.

However, there may be much larger gains to be found by
focusing on the higher level tracking logic. This includes
introducing automatic person detection, enabling the sys-
tem to perform more tracking operations without manual
initialization. In the case where the camera positions are
well known, this leads naturally to automatic camera han-
dover. As tracking performance improves, much of the pro-
cessing could be performed offline, before the human an-
notator looks at the data, similar to the two-level tracking
systems referred to in Section 1. In the case where the video
contains longitudinal recordings of a limited number of tar-
gets, more detailed target models may be learned that help
classify identity based on both appearance and behavioral
routines.
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