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Abstract

This dissertation will examine what a first person viewpoint means in the 
context of data visualization and how it can be used for navigating and 
presenting large datasets. Recent years have seen rapid growth in Big Data 
methodologies throughout scientific research, business analytics, and online 
services. The datasets used in these areas are not only growing exponentially 
larger, but also more complex, incorporating heterogeneous data from 
many sources that might include digital sensors, websites, mass media, 
and others. The scale and complexity of these datasets pose significant 
challenges in the design of effective tools for navigation and analysis.

This work will explore methods of representing large datasets as physical, 
navigable environments. Much of the related research on first person 
interfaces and 3D visualization has focused on producing tools for expert 
users and scientific analysis. Due to the complexities of navigation and 
perception introduced by 3D interfaces, work in this area has had mixed 
results. In particular, considerable efforts to develop 3D systems for more 
abstract data, like file systems and social networks, have had difficulty 
surpassing the efficiency of 2D approaches. However, 3D may offer 
advantages that have been less explored in this context. In particular, data 
visualization can be a valuable tool for disseminating scientific results, 
sharing insights, and explaining methodology. In these applications, clear 
communication of concepts and narratives are often more essential than 
efficient navigation. 

This dissertation will present novel visualization systems designed for 
large datasets that include audio-video recordings, social media, and 
others. Discussion will focus on designing visuals that use the first person 
perspective to give a physical and intuitive form to abstract data, to combine 
multiple sources of data within a shared space, to construct narratives, and 
to engage the viewer at a more visceral and emotional level.
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1 Introduction

As this dissertation was being written, researchers at CERN an-
nounced the confirmation of a subatomic particle likely to be the 
Higgs boson. Confirming the particle’s existence to a significance 
of 4.9 sigmas involved the analysis of about 1015 proton-proton 
collisions [Overbye, 2012] using sensors that record over one pet-
abyte of data each month [CERN, 2008]. When the Large Syn-
optic Survey Telescope begins operation in 2016, it is expected to 
record image data at a rate of over one petabyte per year [Ste-
phens, 2010]. Increasingly, scientific research is turning to massive 
datasets that no one person could hope to view in a lifetime, and 
that require dedicated data centers and processing farms just to 
access, let alone analyze. 

Two years ago, the term “Big Data” entered our lexicon to refer 
to the growing trend of data analysis at very large scales, a trend 
that extends also to areas far beyond the hard sciences. Advances 
throughout information technologies have made it practical to 
collect and analyze data at scale in many areas where raw data was 
previously limited or prohibitively expensive. In particular, the 
explosion of online populations and communication devices, as 
well as digital sensors that are inexpensive enough to stick on ev-
erything, have made it possible to collect data from vastly distrib-
uted sources at little cost. The result has been a surge of interest in 
addressing a diverse range of problems, new and old, by applying 
massive amounts of computing to massive amounts of data.

The Santa Cruz Police Department has recently begun using 
crime pattern analysis tools to plan daily patron routes for officers 
[Olson, 2012]. Tools have been built to analyze large corpora of 
legal documents in order to predict the outcome of patent litiga-
tion and to aid in case planning [Harbert, 2012]. Several com-
panies are developing commercial tools to optimize retail spaces 
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using data collected from in-store cameras, point-of-sale data, 
RFID tags, and others. 

The most visible practitioners are the Internet companies: 
Google, Facebook, Amazon and others. These companies col-
lect click-stream data, online transactions, communications, user 
generated content, and anything else that might be used to drive 
services for advertising, retailing, social networking, and general 
information retrieval. Nearly every person with a computer or 
phone is both a frequent contributor and consumer of informa-
tion services that fall under the umbrella of Big Data. 

Facebook alone counts about one-sixth of the world’s population 
as its active users, who upload 300 million photographs every day 
[Sengupta, 2012]. Users of YouTube upload over ten years of 
video every day [YouTube, 2012]. These social networking sites 
are now a significant part of our global culture, and offer some of 
the most extensive records of human behavior ever created. One 
of the most fascinating examples of data mining comes from the 
online data site, OkCupid, which has a corpus of the dating habits 
of around seven million individuals. Using this corpus, they have 
published findings on ethnic dating preferences, the interests that 
most strongly differentiate between heterosexuals and homosexu-
als, and the seemingly random questions that best predict if a per-
son might consider sex on a first date (“In a certain light, wouldn’t 
nuclear war be exciting?”) [Rudder, 2011]. The growing corpora 
of personal data offer new ways to examine ourselves.

And so the motivations for Big Data analysis are many, from 
scientific research, to mining business intelligence, to human cu-
riosity. In turn, there are also many motivations to communicate 
effectively about Big Data, to explain what all this data is, dis-
seminate scientific results, share insights, and explain methodol-
ogy. These are all motivations behind the work described in this 
document, which will examine approaches to data visualization 
that make the analysis and communication of complex datasets 
clear and engaging.
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1.1 Challenges

The datasets that will be examined in this document, like many of 
the datasets just described, pose several challenges to visualization.  

First, they are far too large to view completely. They generally 
require ways to view and navigate the data at multiple scales. 

Second, they are heterogeneous, comprised of multiple kinds of 
data collected from many sources, where sources might be defined 
at multiple levels as people, websites, sensors, physical sites, tele-
vision feeds, etc. Drawing out the relationships between multiple 
sources of data often requires finding effective methods of synthe-
sis. 

Third, they are usually unique in structure. The more complex 
the dataset, the less likely it is to resemble another dataset collect-
ed in any other way. This places greater need to develop special-
ized visualization tools that work with a particular dataset. 

There are many ways of distilling a dataset, and for very large 
datasets, any visualization will involve significant compression. 
The structure of the database might be viewed diagrammatically. 
Large portions of data can be reduced to statistical summaries, in-
dexes, or otherwise downsampled. Fragments can be shown in de-
tail. Different sources or relationships can be viewed in isolation. 
But looking at only one such view can only show a small part or 
single aspect. Forming an understanding of the whole must be 
done piece-by-piece, and through the exploration of broad sum-
maries, details, components, relationships, and patterns.

1.2 Approach

The approach this document takes towards visualization is to rep-
resent large datasets as physical environments that provide a con-
crete form to abstract and complex data, that can be explored and 
seen from multiple viewpoints, and that bring multiple sources of 
data into a shared space. 
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The goal is not just to show such an environment, but to place 
the viewer inside of it and present data from a first person per-
spective. The intent is to tap into the viewers’ physical common 
sense. When confronted with a physical scene, we have powerful 
abilities to perceive spatial structures and information that 2D or 
schematic representations do not exploit. We can reason about 
such scenes intuitively and draw many inferences about physical 
relationships pre-attentively, with little or no conscious effort. 
Our ability to remember and recall information is also influenced, 
and often enhanced, by spatial context. Last, a first person per-
spective can provide a more vivid sense of being somewhere that can 
help to create more engaging graphics.

This dissertation will:

Define what a first person viewpoint means in the context of data 
visualization. 

Present a body of visualization work that demonstrates tech-
niques for establishing a first person viewpoint, and how those 
techniques can be put into practice.

Examine the response received from exhibition of the work and 
provide critique.

1.3 Applications

The bulk of this dissertation is comprised of visualizations that 
use first person to address challenges encountered in real applica-
tions. Much of the work began with developing tools for retrieval 
and analysis, created for use in my own research in areas of com-
puter vision and cognitive science, or by other members of the 
Cognitive Machines research group. Much of the work has also 
been created or adapted for use in presentations to communicate 
research methods and results.

One of the most widely seen exhibitions of the work occurred 
at the TED 2011 conference. Deb Roy gave a 20-minute talk on 
research from the Media Lab and from Bluefin Labs, a data ana-
lytics company of which Roy is cofounder. The majority of the 
visual content consisted of data visualizations, created primarily 
by myself and Roy, that were intended to explain the research to 
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a general audience. A video of this event was made publicly avail-
able shortly after the talk, has been seen by millions of viewers, 
and has generated discussions on numerous high-traffic websites.  
Some of the critique received from these discussions will be ex-
amined in Section 5 in evaluation of the work. 

Other work has been created for use on US national broadcast 
television, which will be discussed in Section 4.2.

1.4 Terminology

The terms data, data visualization, information, information visualiza-
tion, and scientific visualization are not always used consistently. 
This document adopts several working definitions to avoid poten-
tial confusion.

Most important is the distinction between data and information. 
For the purposes of this document, data is like the text in a book, 
and information is what is communicated through the text. A 
person who cannot read can still look at the text and perceive the 
data, but does not derive the information. Similarly, a bar chart 
maps quantities, data, to the size of bars. What the bars represent 
and the inferences drawn from the chart are information. 

Unfortunately, this distinction between data and information has 
little to do with extant definitions of data visualization and informa-
tion visualization. [Card et al., 1998] offer a definition of visualiza-
tion as “the use of computer-supported, interactive, visual repre-
sentations of data to amplify cognition.” They further distinguish 
between scientific and information visualizations based on the type 
of data. Scientific visualization refers to representations of spatial 
data, such as wind flow measurements. Information visualization 
refers to representations of abstract data, data that is non-spatial or 
non-numerical, and that requires the designer to choose a spatial 
mapping. However, these definitions are ambiguous when work-
ing with heterogeneous data.

[Post et al., 2003] define data visualization as including both scien-
tific and information visualization. For simplicity, this document 
uses data visualization exclusively to refer to any visual representa-
tion of data.
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2 The First Person

What does a first person viewpoint mean in the context of data visu-
alization? For software interfaces, a first person viewpoint implies 
a navigation scheme in which the user moves through a virtual 
environment as if walking or flying. And while we refer to such 
systems as first person interfaces, our categorization of viewpoint 
also include many elements beyond 3D navigation. Furthermore, 
a data visualization might not be interactive at all, but an image or 
animation. The concept of first person extends to all of these me-
diums, as it does to cinema, painting, video games, and literature.

Defined broadly, the first person depicts a world from the eyes of 
a character that inhabits and participates in that world. The third 
person depicts a world from the viewpoint of a non-participant, 
a disembodied observer. To extend the terminology, the term ze-
roth person will refer to a representation that establishes no sense 
of a world or characters at all, as in an abstract painting or instruc-
tion manual. Most data visualizations, like bar charts, also fall into 
this category1.  

The distinction between viewpoints is not always clear. Whether 
a representation presents a world and characters, and whether the 
viewpoint represents that of an inhabitant or of no one, may all 
be ambiguous. Furthermore, the criteria used to make such judg-
ments depend on the properties and conventions of the medium.

In video games, the distinction between first and third-person 
shooters is based on a slight shift in camera position. Figure 1 
shows a first-person shooter, where the player views the world 

1  Second person is conspicuously omitted here due its infrequent use. The sec-
ond person is looking at yourself through someone else’s eyes. This is simple to 
accomplish linguistically with the word you. Representing the viewer visually 
is more difficult, but might include looking at a photograph or video record-
ing of yourself, or the rare video game in which the player controls a character 
while looking through the eyes of an uncontrolled character, as seen in the first 
boss fight of the NES game Battletoads.
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from the eyes of his character. Figure 2 is from a third-person 
shooter, where the camera is placed a few feet behind the char-
acter. In either case, the player identifies with the character in 
the game and views the environment from a perspective very 
close to that of the character. Our categorization of viewpoints 
is not something that is defined absolutely, but relative to the 
norms of the medium. In the medium of 3D-shooter video 
games, Figures 1 and 2 represent the narrow range of view-
points normally found, and so we call the one that is slightly 
closer from the character’s perspective first person.

Categorization of viewpoint may be more ambiguous for im-
ages, which provide less obvious cues as to whether or not the 
image represents the viewpoint of some character. An interest-
ing example of viewpoint in painting is provided by Michel 
Foucault in The Order of Things [Foucault 1970]. In the first 
chapter, Foucault meticulously examines Diego Velázquez’s Las 
Meninas and the different ways it relates to the viewer. At first 
glance, the viewer might see the 5-year old princess standing 
in the center of the room and the entourage surrounding her. 
These characters  occupy the center of the space and initially 
appear to be the focus of attention in the painting, providing 
a typical third person view in which the viewer, outside the 
painting, views a subject of interest within the painting.

 On closer inspection, many of the characters are looking out 
of the painting fairly intently, including a painter, Velázquez 
himself, who appears to be painting the viewer. A mirror in the 
back of the room also reveals the royal couple standing in the 
position of the viewer. These elements give the viewer the role 
within the scene, as a person being painted, possible the king or 
queen. The center of focus is not the princess, but rather, the 
princess and entourage are there to watch and perhaps entertain 
the royal couple as they pose for a portrait. The focus is on the 
viewer. A first person view.

Foucault also describes the dark man hovering at the door in the 
back. Compositionally, he mirrors the royal couple, but stands 
behind the space of the room while the royal couple stand in 

Figure 1. A first person shooter.

Figure 2. A third person shooter.

Figure 3. Diego Velázquez. Las Meninas.  
1656.
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front of it. The historical identity of this character is known, but 
Foucault suggests that it might double as a representation of the 
viewer, as someone who has happened into a scene and pauses to 
look in. A second person view.

Intruding into the left of the painting and occupying nearly 
the entire height is a canvas on which the represented artist is 
painting. To give so much prominence to the back of a canvas is 
unusual, and Foucault theorizes it may be intended to guide the 
viewer’s thoughts away from the representation and towards the 
physical canvas that he is looking at in reality, which, too, has 
nothing behind it. The painting is not a scene, but just a canvas. A 
zeroth person view.

What we consider to be a first person viewpoint is not defined by 
any single element, and as discussed in the Velázquez example, 
different elements within a representation can support contrast-
ing interpretations. What the elements of a first person viewpoint 
have in common is that they establish some form of egocentric 
relationship with the viewer, where the viewer does not perceive 
the representation as a configuration of light and symbols, but as a 
physical world that includes them, that the viewer might interact 
with, or where the world might affect the viewer in some way. 
Viewpoint is associated most strongly with visual perception, 
where first person is the viewpoint that most strongly creates a 
sense of perceived immersion, of the viewer perceiving a scene as sur-
rounding himself. However, the purpose of the Velázquez exam-
ple is to show that viewpoint also occurs at a cognitive level. The 
different viewpoints presented in the painting all come from the 
same visual stimuli, but differ in how that stimuli is interpreted.

The work shown in this thesis will not attempt to manipulate 
viewpoint as subtly as this painting, but will approach viewpoint 
as something that extends beyond perception and that includes 
this kind of psychological engagement. Colin Ware authored In-
formation Visualization [Ware 2004], which focuses on the percep-
tion of visualizations. In the book, Ware includes a brief discus-
sion on the topic of presence:

“One of the most nebulous and ill-defined tasks related to 3D 
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space perception is achieving a sense of presence. What is it that 
makes a virtual object or a whole environment seem vividly 
three-dimensional? What is it that makes us feel that we are 
actually present in an environment?

Much of presence has to do with a sense of engagement, and 
not necessarily with visual information. A reader of a power-
fully descriptive novel may visualize (to use the word in its 
original cognitive sense) himself or herself in a world of the 
author’s imagination—for example, watching Ahab on the 
back of the great white whale, Moby-Dick.”

A viewer is more likely to feel immersed and engaged in a rep-
resentation that “feels” like a physical environment, and so the 
concept of presence is at the core of what a first person viewpoint 
means within this document. As Ware notes, the concept is not 
well defined, and within the book, he does not attempt to delve 
much deeper into the subject. There is still much to explore in 
what defines presence, how to establish it, and how it might be 
applied to data visualization.

Establishing a sense of presence involves more than just represent-
ing a 3D space. Any 3D scatter plot can easily be explored using 
a first person navigation scheme, but even so, the representation 
may not provide a sense of being in a physical environment. A 
representation of flying through a nearly empty space, populated 
sparsely by intangible floating dots, is perceptually unlike any 
view of the real world we are likely to encounter, and more to the 
point, unlikely to evoke a similar experience. 

Our minds learn to recognize particular patterns of visual stimuli 
and, through experience, associate them with patterns of thought 
and reasoning, described by Mark Johnson as image schemata 
[Johnson, 1990]. When looking at the small objects on top of a 
desk, we are likely to perceive the support structures of stacked 
objects, how we might sift through the objects to find a paper, or 
how a coffee mug will feel in our hand. When we look around 
from the entrance of building, we are likely to draw inferences 
about the layout of the building, where we might find an elevator, 
and how we can navigate towards it. One way to define presence 
is to say that representations with presence more strongly evoke 

Figure 4. A typical scatter plot may be 
navigated in the first person, but does 
not provide a sense of physical engage-
ment.



23

the image schemata we associate with physical environments, and 
lead to similar patterns of thought and engagement. 

There are many individual techniques that might be used in visu-
alization design to establish presence to varying degrees: creat-
ing a sense of depth and space, representing data in the form of 
a familiar object or structure, emulating physical properties like 
gravitational acceleration and collisions, emulating physical navi-
gation and interaction, rendering naturalistic details and textures, 
or providing the viewer with a clear sense of position and scale. 
The rest of this document will provide more concrete examples 
of these approaches, and will examine how to establish presence 
and first person engagement for both photorealistic and non-pho-
torealistic environments.
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3 The Human Speechome Project

In 1980, Noam Chomsky proposed that a developing child could 
not receive and process enough stimulus from his environment to 
account for learning a complex, natural language. The theory fol-
lowed that, if true, then part of language must be accounted for 
by biology, and aspects of language are hard-wired in the brain 
[Chomsky, 1980]. This argument is widely known in linguistics 
as the poverty of stimulus, and through several decades and into 
the present day, a central challenge in this field has been to iden-
tify the aspects of language that are innate, the aspects that are 
learned, and the relationship between the two.

Language might be viewed as the product of two sets of input, 
genetics and environment. Of the two, genetics is the simpler to 
quantify. The human genetic code is about 700 megabytes, and 
several specimens are available for download. But the environ-
ment includes all of the stimulus the child receives throughout 
development, including everything the child sees and hears. One 
of the difficulties in responding to the poverty of stimulus argu-
ment is that it is difficult to produce an accurate figure for the 
amount of environment data a child actually receives or how 
much might be useful. But the number is certainly greater than 
700 megabytes, and likely lies far in the realm of Big Data. 

Capturing the input of a child is a difficult and messy task. Stan-
dard approaches include in vitro recording, in which the child is 
brought into a laboratory for observation. In vivo recording is 
usually performed by sending scientists into the home environ-
ment for observation, or with diary studies in which a caregiver 
records notable events throughout the a child’s development. In 
vivo methods provide more naturalistic data collected that comes 
from the child’s typical environment, with in vitro methods only 
observe the child’s atypical behavior in an unfamiliar laboratory. 
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However, all of these approaches suffer from incompleteness and 
capture only a tiny fraction of the child’s input. As a result, each 
time the child is observed, he is likely to have developed new 
abilities during the time between observation, making it difficult 
or impossible to determine how those abilities were acquired. 

Other researchers have lamented that the lack of high-quality, 
longitudinal data in this area is largely to blame for our poor 
understanding of the fine-grained effects of language on acquisi-
tion [Tomasello and Stahl, 2004]. A more complete record might 
answer numerous questions about what fine-grained vocabulary 
actually looks like, the influence of different environmental fac-
tors on development, and the patterns of interaction between 
children and caregivers that facilitate learning.

The poverty of environmental data was one of the motivations 
behind the Human Speechome Project (HSP). Speechome is a 
portmanteau of speech and home, meant also as a reference to the 
Human Genome Project. Where the Human Genome Project cre-
ated a complete record of a human’s genetic code, HSP intended 
to capture the experience of a developing child as completely as 
possible with dense, longitudinal audio-video recordings. Recent 
advances in digital sensors and storage costs offered an alterna-
tive solution to the problem of observing child development: to 
install cameras and microphones throughout the home of a child 
and simply record everything. Of course, recording the data is 
the comparatively easy part. The difficult task that HSP set out to 
address was how to develop methodologies and technologies to 
effectively analyze data of that magnitude.

3.1 Setup

I began working on HSP shortly after its conception in 2005. The 
family to be observed was that of my advisor, Deb Roy, and his 
wife, Rupal Patel, a professor of language-speech pathology at 
Northeastern University. Roy and Patel were expecting their first 
child, and initiated the project several months into the pregnancy. 
This provided enough time to instrument the house, develop 
a recording systems, and construct a storage facility before the 
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child arrived. Eleven cameras and fourteen microphones were 
installed in ceilings throughout most rooms of the house. Video 
cameras were placed near the center of each ceiling looking 
down, and were equipped with fisheye lenses that provided an 
angle-of-view of 185 degrees, enabling each camera to capture 
an entire room from floor to ceiling. The audio sensors were 
boundary layer microphones, which sense audio vibrations from 
the surface in which they are embedded and use the entire ceil-
ing surface as a pickup. These sensors could record whispered 
speech intelligibly from any location in the house.

The goal of recording everything was not entirely pos-
sible, and over the course of three years, the participants 
would require moments of privacy. Participants in the 
home could control recording using PDAs—an older 
type of mobile device that resembles a smart phone 
without the telephony—that were mounted in each 

room. Each panel had a button that could be pressed to toggle 
the recording of audio or video. Another button, the “oops” 
button, could be pressed to delete a portion of recently recorded 
data. And last, an “ooh” button, could be pressed to mark an 
event of interest so that the event could be located and viewed at 
a later time.

Recording began the day the child first came home from the 
hospital, and completed after the child was three years old and 
speaking in multi-word utterances. The corpus from this project 
includes 80,000 hours of video, 120,000 hours of audio, and 
comprises about 400 terabytes of data. This data is estimated to 
capture roughly 80% of the child’s waking experience within 
the home, and represents the most complete record of a child’s 
development by several orders of magnitude. A more detailed 
account of the recording methodology and system can be find in 
[DeCamp, 2007].

Compared to what the child actually experienced, this record is 
certainly not complete. It does not contain recordings of smell, 
touch, taste or temperature. It is limited to audio-video from a 
set of fixed perspectives, and does not show things in the same 
way the child saw them, or with the same resolution. Yet, nearly 

Figure 5. The HSP recording site.

Figure 6. A camera and microphone 
mounted in ceiling. The microphone is 
the small silver button near the top.

Figure 7. One of the recording control 
panels mounted in each room.
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every aspect of the child’s experience is represented, in part, with-
in the data. What the child said and heard, his interactions with 
others, his patterns of sleep and play, what he liked or disliked, are 
all forms of information contained in the audio-video record. But 
the analysis of any such information is predicated on the ability to 
extract it. 

3.2 The Data

The audio-video recordings are referred to as the raw data. Most 
analysis requires extracting more concise forms of data from the 
audio-video, like transcripts of speech, person tracks, prosody, 
and others, which are referred to as metadata. Extracting useful 
metadata from audio-video at this scale can be difficult. Auto-
matic approaches that rely on machine perception are cheapest, 
but available technologies limit the kinds of information can be 
extracted automatically and the accuracy. Manual approaches 
that require humans to view and annotate multiple years of data 
can be extremely expensive, even for relatively simple annotation 
tasks. And in between are human-machine collaborative ap-
proaches, in which humans perform just the tasks that cannot be 
performed automatically. 

At the inception of HSP, it was unclear what information could 

 2005/07/29 12:13 PM 
The Child Arrives

 2005/07/29 05:03 AM 
Myself, exasperated, trying to get the record-
ing system to work hours before the arrival.
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be extracted using available tools, what new tools could be devel-
oped, and what information would be economically feasible in 
the end. So the project did not begin with a specific set of ques-
tions to answer, but rather a range of inquiry about language and 
behavior. An exploratory approach was taken towards choos-
ing paths of research that balanced the relevance of potential 
results against the expected cost of mining the required data. 
Although the ultimate goal of the project was to develop a model 
of language acquisition grounded in empirical data, many of the 
significant contributions came from the methodologies research-
ers developed to extract relevant behavioral information from raw 
data.

Linguistic analysis required transcripts of the recorded speech. 
A key goal of the project was thus to transcribe all speech that 
occurred in the child’s presence during his 9th to 24th months, 
representing the period just before he began to produce words, 
and ending after he was communicating in sentences and multi-
word utterances. Current speech recognition technologies were 
unable to transcript the speech with any reasonable accuracy. The 
audio recordings contain unconstrained, natural speech, includ-
ing significant background noise, overlapping speakers, and the 
baby babble of a child learning to talk. Furthermore, although the 
audio quality was relatively high, recordings made with far-field 
microphones still pose problems for the acoustical models used in 
speech recognition. Brandon Roy led efforts to develop an effi-
cient speech transcription system that uses a human-machine col-
laborative approach. Roy’s system locates all audio clips contain-
ing speech and identifies the speaker automatically, then organizes 
the audio clips into an interface for human transcription [Roy and 
Roy, 2009]. As of this writing, approximately 80% of the speech 
from the 9 to 24 month period has been transcribed, resulting in a 
corpus of approximately 12 million words.

Person tracking, or identifying the locations of the participants 
within the video, was required to analyze interactions, spatial 
context, and often as a starting point for more detailed video 
analysis. Person tracking in a home environment requires fol-
lowing people moving between rooms, severe lighting contrasts 
between indoor lights and the natural light entering windows, 
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and attempting to track a child that was frequently carried by a 
caregiver. George Shaw developed an automatic, multi-camera 
tracking system used to extract much of the track data that will be 
shown in this document [Shaw, 2011].

Many other forms of data have been extracted to varying degrees 
of completeness. Most of these will play a smaller role in the 
following discussion,  but may be of interest to those developing 
methods of analyzing human behavior from audio-video record-
ings. A few of these include:

Prosody: The intonation of speech, including pitch, duration, 
and intensity for individual syllables. Many aspects of caregiver 
prosody have turned out to be significant predictors of vocabulary 
developing in the child [Vosoughi, 2010].

Where-Is-Child Annotations (WIC): Annotations describing the 
room in which the child was at any given point in the recorded 
data, and whether the child was awake or sleeping. This metadata 
was largely used to quickly locate the child within the data, both 
for data navigation tasks, and to reduce unnecessary processing of 
data irrelevant to the child’s development.

Head Orientation: Head orientation is a useful indicator of gaze 
direction and attention, what the participants are looking at, if the 
child is looking at a care giver directly, or if the child and caregiv-
er share joint-attention within an interaction [DeCamp, 2007].

Affect Classification: The emotional state of the child during dif-
ferent activities [Yuditskaya, 2010]. 

Sentiment Classification: The attitude or emotional polarity of a 
given utterance. For example, “Awesome!” has a positive senti-
ment and, “Yuck!” a negative sentiment.

Taking the raw data together with the metadata, the HSP cor-
pus is large, contains multiple forms of interrelated data, and is 
unique.
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3.3 TotalRecall

After the recording process began, the immediate question be-
came how to look through the data, verify its integrity, and find 
information of interest. Skimming through just a few hours of 
multi-track audio-video data can be time consuming, let alone 
finding specific events or interactions. This led to the develop-
ment of TotalRecall, a software system designed for retrieval and 
annotation of the HSP corpus. This interface did not use any 3D 
graphics or address issues of viewpoint, but serves here as a base-
line for a more conventional approach.

The TotalRecall interface provides two windows. A video win-
dow that displays the raw video, with one stream at full resolution 
and the other streams displayed at thumbnail sizes on the side. 
The timeline window provides visual summaries of the audio-
video recordings. The horizontal axis represents time, and can 
be navigated by panning or zooming in and out of different time 
scales. Each horizontal strip represents one stream of audio or 
video.

The audio data is represented with spectrograms, a standard 
visualization of the audio spectrum over time. Users can skim 
spectrograms to find areas of activity within the audio. With 
some practice, users can learn to quickly separate different types 
of audio. Human speech contains formant structures that gener-
ate zebra stripe patterns. Doors and banging objects, like dishes, 
produce broad spectrum energy bursts that appear as sharp verti-

Figure 8. The TotalRecall interface used for browsing the HSP data.
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cal lines. Running water and air conditioners produce sections of 
nearly uniform noise.

Summarization of the video was more challenging. The standard 
method used in most video editing and retrieval interfaces is to 
show individual frames, often selecting frames scene boundar-
ies or points of significant change. This approach works poorly 
for the HSP video, which contains no scene changes or camera 
motion. Most rooms are unoccupied, and where there is activity, 
it comprises only a small portion of the image. Consequently, 
identifying the differences between video frames requires close 
attention and more effort relative to edited video.

However, the consistency of the video offers other advantages. 
Most of the content of a given stream is already known. The liv-
ing room camera will always show the same of the living room, 
and the portions of greatest interest are changes in the fore-
ground. Rather than try to show the whole contents of the video 
frames, an image stack process was used to transform each stream 
of video into a video volume, a continuous strip that depicts only 
the motion within the video.

The process begins with a stream of raw video.

The per-pixel distance between adjacent frames. The distance map 
generated for each frame is then used to modulate the alpha chan-
nel, such that dynamic pixels are made opaque and unchanging 
pixels are made transparent.
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These images are then composited onto a horizontal image strip, 
with each subsequent frame of the video shifted a few more pixels 
to the right. This maps the vertical position of motion onto the 
vertical axis of the image, and maps both time and horizontal 
position onto the horizontal axis. 

The result transforms moving objects into space-time worms, 
where each segment of the worm represents a slice of time. More 
generally, the process converts continuous video into a continu-
ous image. Similar to spectrograms, users can view a set of video 
volumes for  all the streams of video and, with minimal training, 
quickly identify where and when there was activity in the home. 
By itself, this was of great value in searching through hours or 
months of 11-track video. With additional experience, viewers 
may quickly learn to identify more specific patterns as well. From 
the number of worms, users can identify the number of people 
in a room, and from the size, differentiate between child and 
caregivers. The level of intensity indicates the amount of mo-
tion, with the limitation that people at complete rest may nearly 
disappear for periods of time. The coloration provides informa-
tion about lighting conditions, and can be used to follow some 
brightly colored objects, including articles of clothing and certain 
toys. Some activities also produce noticeable patterns, including 
instances when the child was in a bounce chair or playing chase 
with a caregiver.

A similar image stack process for visualizing video was described 
previously in [Daniel, 2003]. In this work, Daniel et al. render the 
video as an actual 3D volume. Our application for video volumes 
was different in that it we needed to view longitudinal, multi-
track video. Consequently, we adapted the approach by flattening 
the image stack into a flat, straight rectangular strip in order to 
make it more suitable for display on a multi-track timeline.

Rony Kubat developed the main window of TotalRecall, with 
Brandon Roy, Stefanie Tellex, and myself. I developed the video 
window, along with all audio-video playback code. This video 
volume technique was developed by Brian Kardon, Deb Roy, and 
myself. A more detailed account of the system can be found in 
[Kubat, 2007].
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3.4 Partitioned Views

One of the choices made in the design of TotalRecall was to 
present different source of data separately, each in its own parti-
tioned view. An advantage of this approach is that it presents each 
source accurately and simply, and makes explicit the underlying 
structure of the corpus. However, this partitioning obscures the 
relationships between sources of data. The representation of the 
data is partitioned rather than composed.

In particular, there is a strong spatial relationship between all the 
sensors in the house that has been largely omitted. Consequently, 
viewing a person moving between rooms, or viewing a caregiver 
speaking to the child in the dining room, can require some effort 
to follow. In these cases, the user must watch an event multiple 
times from multiple views, repeatedly finding the desired track of 
audio or video out of the many presented, and to mentally com-
pose that information to gain a complete picture of the activity. 
Similarly, the interface does not provide a clear overview of the 
whole environment, the spatial layout and the participants present 
at a point in time. 

A partial solution may have been to include a map view that 
presents the space as a whole. For example, Yuri Ivanov et 
al. developed an interface similar to TotalRecall for a dataset 
containing multi-camera video, person tracks, and motion 
sensor data. As seen in Figure 9, one view displays the video, 
another the timeline with annotations, and another the map 
of the space with overlaid motion data. 

The addition of the map view is useful in understanding the 
spatial arrangement of the environment and interpreting 
motion data. However, it does little to combine the differ-
ent types of data, and the spatial data is still separate from 
the video. As with TotalRecall, gaining an understanding of 

the environment from the visualization is not a simple perceptual 
task, but requires the user to cross-reference a spatial view, tem-
poral view, and video view. 

Figure 9. An interface for audio, video and 
motion data created by Ivanov et al.
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Both the Ivanov interface and TotalRecall present data in the as a 
set of multiple, mostly abstract views. Again, this approach was 
likely suitable for their respective purposes as browsing interfaces 
for expert users. However, even for us “experts,” comprehend-
ing and navigating video across cameras was difficult. And for an 
untrained user, a first glance at TotalRecall does not reveal much 
about what the data represents. When using the system to explain 
the Human Speechome Project, it required around 10 minutes to 
explain how to interpret the different visual elements, much as it 
was described here, and what they reveal about activities within 
the home. In the end, the audience may still only have a partial 
picture of what the data contains as a whole.

In motivating HSP, a narrative frequently told in demonstrations 
was that we had captured an ultra-dense experiential record of a 
child’s life, which could be used to study how experience affected 
development and behavior. While many found this idea compel-
ling, skeptical listeners would sometimes argue that while a great 
amount of data about the child had been recorded, it did not 
capture much of what the child experienced. It was easy to un-
derstand the skeptics because they were presented with a disjoint 
set of data that bore little resemblance to their own experiences of 
the world. 

While the data is far from a complete experiential record, part of 
the issue is literally how one looks at the data. In the next ex-
ample, the same set of data will be presented in the first person as 
a way that more clearly evokes the subjective experiences of the 
participants.

3.5 Surveillance Video

The raw video of the HSP corpus is surveillance video, which, 
taken by itself,  is not always the most engaging or cinematic view 
of an environment. The video does not focus in on any particu-
lar area of interest, and any activity is usually limited to a small 
region of the total image. This emphasizes the setting and de-
emphasizes the people within it. Furthermore, it provides a third 
person viewpoint where the overhead angle forces the viewer to 
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look down into the scene from above, rather than a more typical 
eye-level shot as if the viewer were actually within the scene. 

In cinema, shots of surveillance or CCTV footage are usually 
diagetic, indicating that a character is being recorded within the 
narrative. This device has been notably used in films like The Con-
versation, Rear Window, and The Truman Show. These shots often 
have ominous or lurid undertones, and tap into a cultural uneasi-
ness surrounding the proliferation of surveillance and loss of 
privacy [Levin, 2006]. And indeed, although the HSP participants 
were aware of being recorded and in control of the system, this 
discomfort with the idea of constant surveillance surfaced fre-
quently in discussion of the project, with terms like “Big Broth-
er” voiced more than occasionally. Although this does not detract 
from any information in the video, it can give the viewer of the 
system the sense of being an eavesdropper. And in presentations, 
this can be a distraction in the scientific intent of the project.

One HSP researcher, Kleovoulos Tsourides, performed a clever 
experiment by first tracking a person within a clip of video, then 
using the track data to reprocess the video, zooming into the 
region containing the person and rotating each frame to maintain 
a consistent orientation. This virtual cameraman system made 
the video appear as if shot by a cameraman following the per-
son using a normal-angled lens. This system was not completely 
developed and had few opportunities to be demonstrated, and it 
may be that for people unfamiliar with the data, the effect may 
not have seemed markedly different. But for those of us working 
on the project that had been viewing the surveillance video for 
several years, the transformation was remarkable. It replaced the 
impression of surveillance video with the impression of cinematic 
video, and gave the impression that the video contained substan-
tially more information and detail. Of course, the process only 
removed information, but by removing what was irrelevant made 
the relevant information that much greater.

Figure 10. A man under surveillance 
in The Conversation.
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3.6 HouseFly

In addressing some of the limitations of TotalRecall, I created a 
new interface for browsing the HSP data called HouseFly. Rather 
than partition the sources of data, HouseFly synthesizes the data 
into a 3D simulation of the home. The user can navigate this 
environment in the first person and watch events with a vivid 
sense of immersion. Because of the density of the HSP data, the 
system can render the entire home in photographic detail, while 
also providing rapid temporal navigation throughout the three 
year recording period. HouseFly also serves as a platform for 
the visualization of other spatio-temporal metadata of the HPS 
corpus, combining multiple types of data within a shared space 
for direct comparison. As a tool for communication,  the system 
makes the data immediately accessible and engages the viewers in 
the recorded events by bringing them into the home. 

Figure 11. The HouseFly system showing an overhead view of the recorded home.

Figure 12. Raw video used to con-
struct the 3D model below.
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3.7 Related Work

The virtual reconstruction of physical locations is a general one, 
with broad applications in the visualization of spatial environ-
ments. One of the most visible examples is Google Maps, which 
includes a StreetView feature that provides a street-level, first-
person view of many cities. For general path planning, conven-
tional maps may be more efficient, but the first-person view 
provides additional information on what a location will look like 
when the traveler is present, and can be used to identify visible 
landmarks for guidance or find specific locations based on appear-
ance [Anguelov et al., 2010]. Google Maps and similar services 
provide coverage of very large areas, but primarily as snapshots in 
time, with limited capabilities for viewing events or for temporal 
navigation. As a web interface, spatial navigation is also highly 
constrained, and the user must navigate rather slowly between 
predefined locations.

Sawhney et al. developed the Video Flashlights system for con-
ventional video surveillance tasks, which projects multi-camera 
video onto a 3D model of the environment. This system does not 
rely on static cameras, and uses a dynamic image registration to 
automatically map the video data to the environment. It can also 
present track data within the environment [Sawhney, 2002]. The 
flashlight metaphor of Video Flashlights is one of using video data 
to illuminate small regions of the model. It places the video in a 
spatial context and combines connects recordings to each other 
and to the environment, but the range of exploration is limited to 
localized areas. 

HouseFly builds on these technologies and uses more recent 
graphics capabilities to to perform non-linear texture mapping, 
allowing for the use of wide-angle lenses that offer much more 
coverage. But the most significant advantages of HouseFly are 
provided by the data. The HSP corpus provides recordings of a 
complete environment, in detail, and over long periods of time. 
This led to the design of an interface that provides freer explora-
tion of the environment and through time.

Figure 13. Google Earth 3D. 

Figure 14. Google StreetView. 

Figure 15. Video Flashlights.
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3.8 Constructing the Environment

The first step in developing HouseFly was the creation of a spatial 
environment from the data. The environment has three compo-
nents: a 3D model of the house that provides the geometry, video 
data used as textures, and a spatial mapping from the geometry to 
the textures.

The model of the house is a triangular mesh, created in Google 
SketchUp. The model is coarse, containing the walls and floors, 
doorways, and using simple boxes to represent fixtures and large 
furniture. This model was partitioned manually into zones, where 
the geometry within each zone is mapped to a single stream of 
video. Generally, each zone corresponds to a room of the house.

Creating a spatial mapping for each stream of video requires a 
mathematical model of the camera optics and a set of parameters 
that fit the model to each camera. The extrinsic parameters of 
the camera consist of the camera’s position and orientation. The 
intrinsic parameters describe the characteristics of the lens and 
imager.

Given the use of a fisheye lens, it is simpler to ignore the lens itself 
and instead model the imager surface as a sphere. The zenith axis 
of the sphere, Z, exits the front of the camera through the lens. 
The azimuth axis, X, exits the right side of the camera. Z x X is 
designated Y and exits the bottom of the camera. The center of 
the sphere is C.

To map a point in world space, P, to an image coordinate, U, P is 
first mapped onto the axes of the camera:

(1)

is then projected onto the sensor sphere:

(2)

(3)

Figure 16. Partitioning of the envi-
ronment geometry into zones, each of 
which is textured by a single camera.
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Camera Calibration

Finding the ten parameters for each camera comprises the calibra-
tion process. This is performed by first finding a set of correspon-
dence points, which have position defined in both image and world 
coordinates. For each correspondence point, the image coordi-
nates are specified by clicking directly on the video frame. World 
coordinates are extracted from the 3D model in Sketchup and 
entered manually into the calibration interface. Given a sufficient 
number of correspondence points, a Levenberg-Marquardt non-
linear solver was used to fit the parameters. 

where    is the inclination, and     is the azimuth. Last, (   ,    ) is 
mapped into image coordinates:

(4)

where Sx and Sy are scaling parameters, and Tx and Ty are transla-
tion parameters.

Thus, Equation 4 contains four scalar parameters, while Equations 
1-3 require six scalar parameters: three to define the center of 
the sensor, C, and three to define the orientation as a set of Euler 
angles: yaw, pitch, and roll. Together, these equations define a 
mapping function between world coordinates and image coordina
tes,                              , where      represents the ten camera param-
eters.

Figure 17.The interface used 
for camera calibration. Rony 
Kubat developed the interface, 
and I developed the camera 
model and parameter solver.
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Texture Mapping

Figure 20 shows the simplified geometry for one zone of the 
partitioned environment model, and below shows the texture 
used for that region. Normally, with a rectilinear lens, the texture 
can be mapped to the geometry at the vertex level. That is, the 
camera model defines a function that maps a world coordinate to a 
texture coordinate, and that function is applied once for each ver-
tex of the model geometry. With a rectilinear lens, the texture for 
each point of the triangle can be computed accurately by linearly 
interpolating the texture coordinates of its vertices.

However, the fisheye lenses are not modeled well with linear 
functions. Note that in Figure 20, although the geometry above 
is rendered from an angle to approximately align with the texture 
below, the match is not very accurate. The edges between the 
floor and walls are straight on the geometry, but appear curved in 
the texture, leading to distortion. This distortion grows greater 
towards the edges of the texture as it becomes more warped and 
non-linear. Figure 18 shows the result of using a piece-wise lin-
ear, per-vertex mapping, where distortion becomes increasingly 
severe as the model approaches the edges of the texture.

Subdividing the geometry produces a finer mapping and reduces 
distortion, but requires far more video memory and processing. 
Beyond a certain threshold, when the vertices of the subdivided 
geometry no longer fit in memory, the geometry must be loaded 
dynamically according to the user’s current position, greatly in-
creasing the complexity of the renderer.

Figure 18. Per-vertex mapping. Figure 19. Per-fragment mapping.

Figure 20. Partitioning of the 
environment geometry into 
zones, each of which is tex-
tured by a single camera.
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Fortunately, modern GPUs feature programmable shaders that 
can perform non-linear texture projection. Instead of mapping 
each vertex to the texture, the renderer loads the camera model 
onto the graphics card, which then computes the correct texture 
coordinate for each pixel at every render pass. Unless the graphics 
card is being taxed by other operations, per-fragment incurs no 
detectable performance penalty while eliminating completely the 
non-linear distortions, as in Figure 19.

Rendering

Given the spatial model, textures, and mapping, the house can be 
rendered in full. Each zone is rendered separately. For each zone, 
the associated texture object is bound, the camera parameters are 
loaded into the fragment shader, and the geometry is sent to the 
graphics card for rasterization and texturing.

A benefit of this approach is that any frame of video may be 
loaded into the texture object and will be projected onto the envi-
ronment model without any preprocessing. As a result, animation 
of the environment is just a matter of decoding the video streams 
and sending the decoded images directly to the texture objects. In 
this document, all the video is prerecorded, but in future applica-
tions, live video streams may be viewed just as easily.

Controls

HouseFly provides fluid navigation of both time and space. The 
user may go to any point in time in the corpus and view the envi-
ronment from any angle.

Temporal navigation is very similar to conventional interfaces for 
multi-track video playback. A collapsible timeline widget displays 
the user’s current position in time, and may be clicked to change 
that position. Using either a keyboard or a jog-shuttle controller, 
the user may control his peed along the time dimension. The data 
can be traversed at arbitrary speeds, and the user may watch events 
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in real-time, thousands of times faster, backwards, or frame-by-
frame.

HouseFly was designed to create a similarly first-person view-
point into the data. It supports two primary schemes for spatial 
navigation, both of which follow a metaphor of moving through 
the environment rather than moving the environment.

First, navigation can be performed with a keyboard and mouse 
using the same controls as a first-person shooter. The WASD keys 
are pressed to move forward, left, backward, and right, and the 
mouse is used to rotate. The Q and E keys are pressed to increase 
or decrease elevation. The drawback to this scheme is that it 
requires both hands, making it difficult to simultaneously control 
time.

Second, navigation can be performed using a SpaceNavigator 
input device. This device consists of a puck mounted flexibly 
on a heavy base, where the puck can be pushed-pulled along 
three axes, and rotated about three axes, providing six degrees-
of-freedom. Navigation with the SpaceNavigator provides full 
control over orientation and position using only a single hand. 
The drawback is that this device requires significant practice to 
use effectively.

Audio

For audio, one stream is played at a time. The system dynamically 
selects the stream of audio recorded nearest the user’s location. 

While this simple approach does not capture the acoustic varia-
tion within a room, it does capture the variations between rooms. 
When the user is close to people in the model, their voices are 
clear. When the user moves behind a closed door, the voices from 
the next room become accurately muffled. When the user moves 
downstairs, he can hear the footsteps of the people overhead. 
Such effects may not draw much attention, but add greatly to the 
immersiveness of the interface.

Figure 21. SpaceNavigator and jog-
shuttle controller used for time-space 
navigation.
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When playing data forward at non-real-time speeds, SOLA-FS 
is used to correct the pitch of the audio [Hejna, 1991], which 
improves comprehension of speech [Foulke 1969].

Implementation

HouseFly was developed in the Java programming language. 3D 
graphics were produced with OpenGL using the Java bindings 
provided by the JOGL library. Shader programming was done in 
GLSL and Cg. Functionality that required significant optimiza-
tion, like video decoding, was written in C. C was also necessary 
for interfacing with input devices, including the SpaceNavigator 
and jog-shuttle controller. 

The graphics engine developed for HouseFly is similar to a 3D 
game engine, with similar techniques used to manage assets, script 
events, and handle user input. This engine was used for most of 
the original visualizations in this document.

Roughly, the hardware requirements of HouseFly are below that 
of most modern first-person shooter games. The system runs 
smoothly, between 30 and 60 frames-per-second, on personal 
computers and newer laptops. More specific figures depend great-
ly on how the software is configured and the data being accessed.

The most significant bottleneck of the system is video decoding. 
First, due to the size of the corpus, the video must be pulled from 
the server room via Ethernet. Network latency is largely miti-
gated through aggressive, predictive pre-caching. Alternatively, 
if not all the data is required, a subset may be stored locally for 
better performance.

Second, video decoding is currently performed on the CPU. The 
HSP video is compressed using a variant of motion JPEG with 
a resolution of 960 by 960 pixels at 15 frames per second. On a 
laptop with a two-core 2.8 GHz processor, the system can replay 
four streams of video without dropping frames. On an eight-core 
2.8 GHz processor, frame dropping becomes noticeable at around 
eight streams of video.
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However, it is not always necessary to decode many streams of 
video. For most viewpoints within the house, only three or four 
rooms are potentially visible. To improve performance, HouseFly 
dynamically enables or disables playback of video streams based 
on the location of the user.

Baseline Summary

The tools provided by HouseFly encourage the exploration of 
the data as a whole environment rather than as individual streams. 
The user can navigate to any point in time within the corpus and 
view it as a rich 3D environment, filled with objects and people 
that move, speak, and interact with the environment. The user 
can move closer to areas of interest, pull out to look at multiple 
rooms or the entire house, and follow events fluidly from one 
room into the next. Rather than looking down into the scene, the 
user can look from within, gain a clear sense of the spatial context 
that connects both data and events, and receives a much closer ap-
proximation of what the participants saw, heard, and experienced.

The system still has significant limitations in its ability to recon-
struct the environment. The people and objects do not actu-
ally stand up and occupy space, but are projected flatly onto the 
surfaces of the environment. There is no blending between zones, 
so when a person walks to the edge of one zone towards the next, 
the person is chopped into two texture pieces recorded from two 

Figure 22. Examples of the home environment as rendered in HouseFly.
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different viewpoints. Also, many parts of a given room are not 
visible from the camera, and there is no data available for textur-
ing areas under tables and behind objects. Just filling these blind 
areas with black or gray made caused them to stick out conspicu-
ously next to the textured areas. Instead, the video data is project-
ed onto these areas regardless of occlusions, and the area under-
neath a table is given the same texture as the top of the table.

Surprisingly, though, many viewers tend not to notice these is-
sues. In demonstrations, listeners frequently asked how the people 
are rendered into the environment, and only realized that the 
people were not 3D models but flat projections after the camera 
was moved to floor.

Most methods of acquiring geometry from video are far from 
tractable, and even if applicable to the HSP video, would produce 
numerous artifacts and draw more attention to the limitations 
of the representation. So while the model HouseFly provides is 
coarse, there is enough detail within the video to provide a vivid 
depiction of a naturalistic, 3D environment.

3.9 Visualizing Metadata

In addition to the audio-video, the HSP corpus contains many 
forms of metadata. HouseFly provides several ways to incorporate 
metadata into the scene, combining it with other data and plac-
ing it in context. In turn, the metadata also provides methods for 
searching and navigating the corpus, greatly improving the acces-
sibility of the data.

Much of the metadata used for temporal navigation is placed on 
the timeline widget, shown in Figure 23. The timeline displays 
the user’s place in time, and can be expanded to show an index of 
the audio-video recordings organized by room. The green bars 
represent audio recordings and the blue bars represent video re-
cordings. Clicking on a room within the timeline moves the user 
temporally to that place in time and also moves the user spatially 
to an overhead view of the selected room.
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The orange and yellow bars are the Where-Is-Child annotations, 
showing the room in which the child is located. The bar is or-
ange if the audio for that period has been transcribed, and yellow 
otherwise, where transcripts will be discussed later. The viewer 
can then browse through the timeline to quickly determine the 
location of the child at a given point in time, and view the child 
by clicking on the bar.

The small flags at the bottom of the timeline are bookmarks. The 
user can create a bookmark associated with a point of time, and 
may optionally associate the bookmark with a room of the house 
or a specific camera position.

As described earlier, the PDA devices mounted in each room 
as control panels also contained an “ooh” button that could be 
pressed to mark significant moments. These events were incor-
porated into the system as bookmarks, represented here by the 
pink flags. The user may browse these bookmarks to view events 
like the child’s first steps and many of his first words. One ooh 
event was made after describing the recording system to the child, 
explaining that years later, the child would be able to go back and 
find that moment in the data.

Figure 23. The timeline in HouseFly.
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Transcripts

Transcripts of the speech are used in several ways. Most directly, 
the transcripts can be rendered as subtitles, similar to closed-
captions. This is helpful in revealing verbal interactions when 
skimming the data, and also aids comprehension of the language, 
where the child speech in particular can be difficult to understand.

The transcripts are fully indexed and searchable. The user can 
query transcripts by typing in a word or phrase. All the matching 
instances will be selected, and are placed on the timeline, where 
the user can browse through the selected instances one by one. 
The color of the transcript as it appears on the timeline indicates 
the speaker, where green represent caregiver speech, and red rep-
resents child speech.

Any given word can be used as a lens to explore patterns of lan-
guage development. By typing in any given word, the user can 
quickly find the child’s first use of that word. By browsing sub-
sequent instances, the viewer can hear how that word developed 
over time. By also viewing the context in which the word was 
used, the user can determine if the child was using the word accu-
rately, if he was requesting an object or merely identifying it, or 
if the child over or under-generalized the meaning of the word. 

Figure 24. Summarization of transcripts as tag clouds.
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HouseFly also summarizes the contents of transcripts, display-
ing a distribution over word types in each room as a tag cloud. 
By default, turning on tag clouds shows the word type distribu-
tion from the previous 30 minutes of data. If any data has been 
selected and placed on the timeline, the word clouds will display 
a summary of all selected data. For example, after performing a 
transcript search for the word “fish,” the timeline will contain 
the set of the thousands of transcribed utterances containing that 
word, and the tag clouds will display the distribution of words 
that co-occurred with “fish.” This enables the user to rapidly 
view the linguistic context of that word. The user may compare 
how the word was used in the child’s bedroom, which contained 
fish magnets and a fish mobile, next to how the word was used in 
the kitchen, where fish was something to eat. Arbitrary segments 
of data may also be selected from the timeline and similarly sum-
marized.

Tracks

Person tracks were generated by identifying and following blobs 
of motion or color through each video stream. The resulting 
track data was mapped into the coordinate space of the environ-
ment using the same camera models that HouseFly uses for tex-
ture mapping. Extracting accurate 3D coordinates from 2D video 
is a difficult problem and is not addressed in this work. Instead, 
the mapped track data assumes a fixed elevation of one meter 
from the floor for all objects. Objects are frequently visible from 
multiple cameras simultaneously, particularly around doorways 
and the edges of rooms, which produces multiple, overlapping 
tracklets, or partial tracks. After the tracklets were mapped into a 
unified coordinate system, the tracklets that overlapped and were 
thought by the tracking system to correspond to the same object 
were merged, resulting in a set of full tracks that extend across 
multiple rooms. This is a quick overview of what is a complicated 
and messy process, which is described in greater detail in [Shaw, 
2011].

An advantage of the spatially consistent view provided by House-
Fly is that the multi-camera tracks can be rendered directly in 
the same environment model. When track rendering is enabled, 
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HouseFly renders the video in grayscale to make the tracks more 
visible, while still enabling the tracks to be viewed in context. 
Figure 25 shows 30 minutes of track data. The red tracks indicate 
the child, and the ring structure in the upper-right surrounds the 
child’s walking toy intended for the child to walk around. The 
green tracks represent the caregiver, who made several trips into 
the kitchen via the dining room on the left, as well as one trip to a 
computer in the lower-right hand corner. The yellow spot in the 
center of the room resulted from both child and caregiver occu-
pying the same location.

HouseFly can also render tracks by mapping time to elevation, 
such that the tracks begin on the floor and move upward as time 
progresses. For small amounts of track data, this can better reveal 
the sequence of events, as illustrated in Figure 26. However, the 
3D structure can be difficult to perceive from a 2D image. While 
the structure is made more evident in the interface through mo-
tion parallax, improving the legibility of the 3D tracks remains 
a challenge for future work. This technique has previously been 
explored in [Kapler and Wright, 2004].

The selection of what track data to render uses the same selection 
mechanism as the tag clouds. When track rendering is enabled, 
whatever time intervals have been selected in the timeline de-

Figure 25. 30 minutes of track data rendered into the environment. The green represents the caregiver, the red the adult.
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termines the track data that is shown. When track rendering is 
enabled, any data that the user traverses is automatically selected, 
so that the user may simply skim or jump through the video and 
the corresponding tracks will appear. If the user searches the tran-
scripts for all instances of car, then those instances will be selected, 
and all available track data that co-occurred with that word can be 
viewed.

The tracks also provide a way to make spatial queries of the data. 
The user may click on any area of the environment, drag out a 
sphere, and the system will locate all tracks that intersect with 
that sphere and select the corresponding intervals of time, as in 
Figure 27. The user can then browse all data that contains activity 
in a particular region of the house, or enabled tag clouds to get a 
summary of what people said in different locales.

Queries

The different kinds of metadata are all linked together using a 
shared selection mechanism, which provides the user with great 
flexibility in how to query the data. If the user is interested in the 
spatial distribution of a given word or phrase, he can query the 

Figure 26. The time of track points mapped to vertical height to show sequence of events.

Sitting on floor together

Father moving to child

Sitting on couch together

Child using walking toy

Father walking to and from kitchen

Figure 27. A spatial query performed 
by selecting a region of the environ-
ment, shown as a sphere.
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transcripts to retrieve the corresponding track data. If the user is 
interested in the patterns of speech that occur by the kitchen sink, 
he can begin by selecting that spatial region and view a summary 
of the words produced there. If he wants to view the activities of 
a given day, he can select that region of time and view the tracks 
and transcripts from that period. In any of these queries, the user 
can easily retrieve the raw audio-video data and view specific 
events in detail. Each form of metadata provides an index over the 
entire corpus.
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3.10 Presenting HSP to an Audience

One benefit of HouseFly is that it shows many streams of data in 
a way that is immediately recognizable. Even for those completely 
unfamiliar with the project, viewing HouseFly clearly depicts the 
observed environment and the scope of the recorded data. This 
has made HouseFly useful as a communication tool for presenting 
the HSP project to new audiences.

For the TED presentation, HouseFly was used to give an over-
view of the home environment, the data recorded, and the impli-
cations for behavioral analysis.

The visualization begins with an overhead shot of 3D 
model constructed from the recorded video.

The camera swoops into the child’s bedroom, revealing 
that the model is an explorable environment. By the stan-
dards of current computer graphics, this may not seem to 
particularly impressive. Yet, in the majority of demon-
strations, including TED, this moment draws an audible 
response of excitement from the audience. This might be 
due to first presenting an graphic that appears to be an 
image and then defying those expectations, or perhaps 
the novelty of exploring actual video recordings in the 
same way as a video game.

The guest bedroom is shown from the inside.
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The camera then goes through the door and flies down 
the hallway. 

The camera moves a short ways down the stairs and 
peeks into the first floor of the house, showing that the 
lower level is there as well.

The camera then goes into kitchen and performs a full 
turn, showing the completeness and detail of the model.

The next shot presents an example of a typical caregiver-
child interaction. The camera moves into the living room, 
where the child sits on the floor and the nanny on the 
couch. The audio and video begin to play, bringing the 
model into motion. The nanny asks the child to find a 
fire truck, and the child walks to the shelf to find it, and 
selects an ambulance instead. The camera follows the 
child, showing the ability to look closely at areas of inter-
est. Subtitles of the speech are shown at the bottom of the 
screen to improve speech comprehension.
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The next shot is to explain person tracking. The camera 
moves to an overhead view of the living room, and the 
time of the video shifts to a point at which the child and 
father are sitting on the floor.

The video transitions to grayscale, and as the father and 
child move about, their paths are rendered on screen, the 
child in red and father in green. This is the data generated 
by the video tracking system.

Time speeds up, indicated by both the speed of the video 
and a clock in the upper-right corner, until approximately 
half an hour of video has been played. As the camera 
pulls up, the tracks can be seen to extend to other rooms, 
and that the caregiver has made several trips through 
the dining room and into the kitchen. The child’s tracks 
circle around a point in the floor, where the underlying 
video shows the child’s walking toy.

To make the sequence of events more evident, the time 
of the track data is mapped to the elevation of the tracks, 
such that the earliest tracks begin at the floor and rise into 
the air as they move forward in time. For this, the camera 
moves nearer to the floor, almost level with the tracks, 
before the tracks spread vertically into this 3D structure.
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Viewing the tracks again shows that the father and son 
began in the center of the room, moved to the couch for 
a while, and then split up, with the father going to and 
from the kitchen, while the child walked around his toy.

Video 1. Browsing recordings of a home environment in HouseFly.
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3.11 Wordscapes

One of the key goals of HSP was to study language within con-
text. The context of language contains innumerable factors and 
can be difficult to model in great detail, but one salient factor that 
can be extracted efficiently from video is the locations of the par-
ticipants within the home. Different locations are correlated with 
different types of activities, and thus different patterns of speech. 
Speech in the kitchen often involves words about eating and 
cooking, while speech in the living room contains more words 
about toys and books. The HSP corpus contains many thousands 
of such spatial-linguistic correlations, some predictable, and some 
not. By analyzing these correlations, we hoped to identify the 
roles that different activities play in language development. 

Linguists make a distinction between word types and tokens. Every 
instance of the word green in this document is a distinct token, but 
all the tokens belong to the same green type. The starting point of 
the analysis was to construct a spatial distribution of each word 
type learned by the child that described how likely a word type 
was to be produced at any location in the house. For each type, 
all tokens were extracted from the transcripts. For each token, the 
locations of all participants in the home were extracted by ap-
plying a person tracking system to a 20 second window of video 
centered on that token. 

The result of this process was a set of 2D points for each word. 
Figure 28 shows the set of 8685 points found for water. The diffi-
culty when plotting so many points directly is that there is a large 
amount of overlap between them, making it hard to accurately 
gauge density. The points can be made smaller  to reduce overlap, 
but this makes them more difficult to see at all in sparsely covered 
regions. 
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To provide a more consistent view of the density, the points were 
converted into a continuous distribution function using a kernel 
density estimation process described in [Botev, 2010]. Figure 29 
shows a heatmap of this distribution. This avoids issues of over-
lap, although, as is a problem with all heat maps, our quantitative 
judgment of color is not very accurate. 

In this case, where the domain of the function is small relative to 
the inflections of the function, a 3D surface plot might be more 
accurate. But in this application, a disadvantage of using either 
a heatmap or a surface plot is that they obscure the underlying 
samples and no longer appear as an aggregation. And none of 
these methods provide a clear sense of the physical space being 
examined or the scale at which these patterns of activity occur. 
This motivated me to develop a new kind of plot that would bet-
ter communicate what this data represented and the amount of 
processing required to produce such a glimpse into the use of a 
single word.

Figure 30 presents a different view of the data as a Wordscape. 
Instead of representing the samples as dots or representing the 
distribution as a smooth contour, each sample is rendered as 20 
seconds of track data. The representation uses a physical metaphor 
of rendering the tracks as ribbons that, as they are added to the 
scene, lay on top of one another to form a topographic distribu-
tion.  

In creating this visualization, each track is first modeled as a finely 
segmented, planar line strip. As each vertex of the line strip is 
added to the scene, a height table over the discretized space is 
checked to determine how many segments have already been 

Figure 28. 8685 utterances of water spoken through-
out the home.

Figure 29. Heatmap of estimated distribution.
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placed in that location, which is used to set the z-coordinate of 
the new vertex.  After all the segments have been placed, the line 
strip is smoothed with a box filter to remove both noise present 
in the raw track data and aliasing effects generated by the use of a 
discrete height table.

The line strip is then converted to triangles in the form of a rib-
bon of constant width.  This ribbon is bent along its length to 
form an extruded V shape so that it does not disappear when 
viewed from the side, but retains at least 35% of its perceived 
width from any angle. The geometry is rendered with a Lam-
bertian shader using a single directed light source and smoothed 
normals. Although the ribbon geometry is bent, the normals are 
computed as if the ribbons laid flat so that the crease down the 
center remains invisible.

This method of rendering track data is believed to be novel, and 
offers several advantages. It shows the distribution of word pro-
duction, as the heatmap does, and likely provides a better sense 
of the quantitative density through the use of height rather than 
color.  At the same time, it shows the individual samples, provid-
ing a look at the form of the underlying data and a rough sense 
of the size of the dataset. And it connects the two modalities, 
the individual samples and the distribution, through a physical 
metaphor of a pile of ribbons that is easily recognizable and more 
intuitive than a representation of a Gaussian convolution.

Figure 30. Thousands of person tracks combined to reveal a spatial distribution of the word water.

Figure 31. Detail of peak in kitchen.
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The interface built for this visualization uses the same 
rendering engine as HouseFly and enables the user to move 
through the plot in the same manner. The similar use of 
first person navigation provides a greater sense of the physi-
cal space than the 2D maps of the previous page, although 
without the rich detail provided by the video, the scale and 
nature of the environment is still not as apparent. However, 
there may be several ways to combine these two views of the 
home. The following animation presents one approach, and 
was produced to explain the data at the TED presentation.

The video opens on a scene in the living room rendered in 
3D in the manner of HouseFly. This orients the viewer with 
a representation that immediately recognizable. 

Here, the nanny is standing near the wall at the end of the 
couch. The child is camouflaged in this still image, but is 
standing nearby between the couch and coffee table. 

The audio and video begin playing immediately and present 
the viewer with an example of a single sample point, a short 
interaction containing a particular word. 

As the two people move through the room, a thick colored 
ribbon is drawn behind them to mark their paths, directly re-
lating the track data with the movements of the inhabitants. 
Only the most recent seconds of track data is highlighted 
with color, red for the child and green for the caregiver, and 
fades to gray as it grows longer.

The nanny asks, “Would you like some water?” and extends 
a glass to the child, and the child replies, “No!” and turns 
away. I wanted to visually connect each track to be shown 
with the occurrence of water. So, just as the caregiver says, 
“Would you like some water?” a caption of this utterance 
rises vertically from the ground from her position, with the 
word water highlighted in blue. The caption continues to rise 
until it moves outside of view.

At this point, the video also begins to fade out in order to 
shift focus from the event to the track and transcript data.
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The video fades out completely and the camera moves to the 
side to setup the next beat. The tracks of the child and nanny 
continue to extend. 

The aggregation of the tracks begins slowly. A few more 
tracks begin to appear in throughout the home in the same 
manner as the first, each generating a text caption.

At its climax, the video builds to a frenzy of text and tracks. 

Unlike a heatmap or surface plot, the viewer sees the indi-
vidual samples that establish the distribution. This provides a 
rough, qualitative sense of the significance, which can other-
wise be a difficult concept to explain to audiences unfamiliar 
with statistics.

As the last of the captions leaves the screen, the distribution 
emerges. Utterances of water are shown to be highly con-
centrated within the kitchen area of the home.

For the next beat, we wanted to draw a comparison between 
the spatial distributions of different word types. In an early 
draft, the wordscape for water would build-out by sinking 
into the floor, followed quickly by the build-in of the bye 
wordscape emerging from the floor. The problem is that at 
first glance, the distributions of many words appear similar 
and have significant peaks in the kitchen, the living room, 
and the child’s bedroom. For the bye wordscape, shown 
right, the most salient visual difference is that larger peaks of 
the kitchen, which is somewhat misleading because bye was a 
more frequent word and simply generated more samples. 
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Much of the importance of a given word type’s spatial 
distribution is in how it differs from the spatial distribution 
all speech. For analysis, it is useful to plot the difference 
between distributions or a normalized distribution. But for 
presentation, this introduces another level of abstraction, 
and would break the metaphor of the pile of tracks. 

Instead, before the transition to bye, a change is made to the 
camera position to focus on an area of significant divergence 
from the mean distribution. Specifically, the camera moves 
to an area just outside the kitchen door and next to the stairs 
that lead to the entrance of the house.

When the wordscape transitions to bye, the viewer sees sig-
nificant growth in this region and the formation of a small 
mound. This particular mound represents a specific type of 
event: of people saying “bye” to those in the nearby rooms 
before leaving the home.

The camera then moves back to show more of the distribu-
tion.

More than showing the spatial distributions of word types, 
this animation also shows what the data represents. The 
opening gives the viewer a concrete image of how each line 
represents a small event in the child’s life. The use of anima-
tion is used to link the single event to the distribution to 
show how quantitative patterns of behavior emerge from 
many such events. The animation shows the process with vi-
sual excitement, and results in a representation that has more 
presence and physicality than a typical surface plot.

This video does not address the linguistic analysis performed 
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by researchers, or present the quantitative results. More detailed 
information on the spatio-linguistic analyses can be found in 
[Roy, B. 2012] and [Miller, 2011], with additional publications 
pending.

In the animation shown, track data was provided by George 
Shaw, and transcript data by Brandon Roy. Deb Roy and I con-
ceived of the visualization, and I created the software system and 
animation to produce it.

Video 2. Animated visualization of wordscapes.
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3.12 First Steps: Making Data Personal

The rise of personal data offers opportunities to look at people 
in new ways, and thus new ways to tell dramatic stories. For the 
recorded participants of the Human Speechome Project, the 
collected data is extraordinarily personal. Deb, the father of the 
home, has referred to the data as the largest collection of home 
videos ever collected. For the child, the data is a unique record of 
his own early development.

Tangential to its scientific goals, HSP has brought to surface 
implications for how information technologies may eventually 
change the way we record events from our lives. Today, to aug-
ment and share our memories, we have access to collections of 
photographs and videos taken from the sparse set of events we 
think will be notable and merit documentation. As it becomes 
increasingly feasible to collect data anywhere at all times, we can 
create vastly more comprehensive records of our past that might 
capture unanticipated events or events that might not seem no-
table until long after they have passed. 
  
Beyond the collection of data, there are implications for how 
such data might be accessed. HouseFly offers a unique contribu-
tion to the HSP participants as a way to review memories that is 
far more evocative of reliving those events than photographs or 
conventional video, one in which the users can travel through 
the scene, be immersed in it, and view details of events from new 
perspectives. Indeed, the participants have used HouseFly for this 
purpose, using it in their home to browse through personal copies 
made of a portion of the corpus.

We wanted to share this aspect of the project at the TED confer-
ence, and to create a video that would connect to the audience on 
an emotional level to show the implications for how the research 
might one day impact everyday life. So for the last clip of the 
presentation, I made a video of the child’s first steps, an exciting 
milestone to which most parents can relate. 



66

The video begins with an establishing shot, a familiar 
overhead view of the home.

The next action is to bring the viewer into the home and 
establish the scene and the atmosphere with greater detail.

The camera swoops into the living room, through the din-
ing room, and into the kitchen.

The camera briefly pauses at the grandmother making 
dinner in the kitchen, the only other person in the home, 
before continuing out the door on the right and into the 
hallway.

The camera enters the hallway just as the father and child 
arrive. The child stands up, and the father beckons the 
child to walk towards him. “Can you do it?”

The child takes a several slow steps towards the father. 
He shows his excitement by whispering, “Wow,” which is 
repeated by the father.
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After a few steps, the child ends is walk and falls back 
down to a crawling position.

The dénouement.

The video freezes. The camera pulls out from the home, 
continuing until it vanishes. This was the last clip of the 
presentation, so this transition also served to close out 
discussion of the HSP project.

Video 3. Visualization of a child’s first steps.
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In this video, the ability to navigate through the home is used to 
show details of the scene to establish atmosphere and draw the 
viewer into the event. Aesthetically, it turns what might other-
wise look like typical surveillance video into something less sterile 
and more intimate, increasing the drama of the event. The video 
is not the strongest example of a data visualization, as it shows a 
fairly literal depiction of a single event. But the means to access 
such moments is been provided by the tools developed to orga-
nize and retrieve the recorded data. The video does not just rep-
resent a parent that had a camcorder at a lucky moment, but the 
ability to recall any such moment that may have occurred years 
ago in any part of the environment. It suggests the possibility of a 
future in which there is little need to hold and operate a camera.

This video was the last played at the TED presentation, and was 
one of the videos most frequently mentioned by viewers in online 
discussions. The content of this discussion suggests that it success-
fully connected with the audience, and many viewers comment-
ing that the clip was touching or “had me almost crying.” It also 
successfully promoted interest in the personal implications of the 
research, and several viewers expressed a wish for a similar record 
of their own life. A more detailed account of audience feedback is 
provided in Section 5.

3.13 Additional Applications

HouseFly was initially developed for the HSP data, but can be 
used to browse other datasets that include suitable, multi-camera 
video recordings. Such video is commonly collected by surveil-
lance systems used in many businesses and other facilities, which 
offers possibilities for the analysis of human behavior in other 
environments. Indeed, several HSP researchers have explored this 
topic, and employed the same methodologies as HSP to analyze 
how people utilize retail spaces, and how store layout and cus-
tomer-employee interactions impact sales. Through partnerships 
with several companies, data was collected from multiple loca-
tions, including several banks and an electronics store. The data 
collected includes video, but due to the more public nature of the 
environments, does not include audio.
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The construction of the camera and environment models required 
by HouseFly, as described in 3.8, requires only a few hours of 
effort, and was easily performed to bring data from three differ-
ent retail environments into the system. A notable advantage of 
HouseFly is that it greatly simplifies tasks that involve following 
unfamiliar individuals through large and crowded environments. 
Even more so, tracking groups of people that enter the store to-
gether, or interactions between a customer and employee, where 
the participants may at times separate and occupy different areas 
of the store. Providing a coherent overview of the space enables 
the user to view the entire space without switching between cam-
eras, and to follow complex activities at whatever distance is most 
convenient.

Figure 35 shows three hours of track data extracted from bank 
video. Here, the green tracks indicate customers and the red 
tracks employees. The customer-employee classification is per-
formed automatically using a system developed by George Shaw. 
The classifier uses both appearance and motion features of the 
persons tracked. Although the employees do not wear uniforms, 
they adhere to a standard of dress that can be modeled as a color 
histogram and classified with accuracy significantly greater than 
chance. The paths of the employees are also distinct from those of 
the customers, where employees occupy certain seats more often, 
stand in the teller area behind the counter, and enter doors to 
back rooms. Using this information, Shaw’s system could separate 
employees from customers with approximately 90% accuracy.

Browsing this set of tracks quickly reveals which areas of the 
stores were used more than others. Many customers used the 
ATM, a few used a computer console installed in the lower-left, 
and none perused the pamphlets to the left of the entrance shown 
in the lower-middle. One experiment being performed by the 
bank was the installation of two Microsoft Touch Tables in the 
lower right. Within this interface, the user can select the track 
data around these tables and retrieve all recordings of people 
in that area. In this set of data, customers sat at the tables only 
slightly more than the employees, and interacted with the table 
interface just as frequently as they used the table as a writing sur-
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Figure 32. Bank in North Carolina recorded with 11 cameras.

Figure 33. Bank in Manhattan recorded with 20 cameras.

Figure 34. Electronics store recorded with 8 cameras.
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Figure 35. Three hours of track 
data in a bank. Red lines indicate 
customer tracks, green indicates 
employees.
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face or as a place to set their coffee.

Retail stores also generate electronic records of customer trans-
actions. In a bank environment, transactions include deposits, 
withdrawals, and other financial events. In the electronics store, 
transactions consisted of items purchased by each customer, or 
point-of-sales data. Figure 36 shows two anonymized transac-
tions in the bank environment, which are rendered in HouseFly as 
progress bars.

Much of the analysis performed involved the combined analysis 
of the track data with the transactions. Automatic analysis of 
the track data can be used to determine how long each customer 
waited in queue, which can then be used to model how waiting 
in queue affects transaction rates. One phenomenon discovered 
was that when customers conducted transactions over $1000, they 
would interact with the teller three times longer before initiating 
the transaction. While the process was identical regardless of the 
amount of money, the social interaction was substantially differ-
ent.

In recent years, an industry has begun to grow around the use of 
video analytics for similar purposes. Several companies now offer 
services to count the number of customers entering a store, how 
long they remain, and which areas generate the most traffic. In 
the past, such studies were performed manually, with observers 
in the store recording this information on clipboards. Analysis of 
space utilization was performed with spaghetti plots, in which the 
analysts would physically lay colored string throughout the envi-
ronment in order to explore traffic patterns. The rapid decline of 
recording costs and improvements of computer vision will likely 
play a pivotal role in how retailers approach store layout and 
design. This line of inquiry was more extensively pursued and 
described by my colleagues in [Rony, 2012; Shaw, 2011].

Figure 36. Customer transactions.
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4 Social Media

At the time of this writing, the social network site Facebook has 
over 900 million active users. In other words, one-seventh of the 
world’s entire population has logged into Facebook within the 
past month [Sengupta, 2012]. Other services like Google+, Twit-
ter and LinkedIn also have memberships in the tens to hundreds 
of millions. There has been great interest in the analysis of these 
networks. Some of that interest is financially motivated, where 
the vast size and personal nature of social networks may hold 
lucrative new opportunities for personalized advertisement, 
tracking personal interests and identifying consumer trends. 
Other motivations include finding ways to use the networks as 
effective tools for political organization, disaster response, and 
other applications that call for rapid, mass communication. Other 
motivations are in the social sciences, where the vast amounts of 
data from these networks may reveal much about human social 
behavior.

The work presented so far has focused on recreating real places as 
simulations as a way to view data. The spatial layout of the envi-
ronments and physical appearance of many objects was naturally 
defined by the data itself. Attempting to place the viewer inside 
data that is non-spatial or abstract, like that collected from a social 
network, presents several challenges: defining a coherent 3D 
space to hold the data, visually communicating what abstract data 
represents when it has no naturally recognizable form, and giving 
non-physical data a sense of presence.

What is the point of making an abstract dataset look physical? 
Several possibilities will be explored in this section, but I will 
provide one general argument here. Providing a physical repre-
sentation to abstract data is the same as using a physical metaphor 
to explain an abstract concept.  It provides the viewer with a con-
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crete image of something that might otherwise be communicated 
only symbolically, and can thus be a powerful tool for helping 
to conceptualize what the data represents, facilitate reasoning 
through physical common sense, and to make the data familiar, 
relatable, and engaging. 

4.1 Connecting Social Media to Mass Media

This section describes work I performed in collaboration with 
Bluefin Labs. Bluefin is a media analytics company founded by 
Deb Roy, my academic advisor, and Michael Fleischman, a for-
mer member of my research group. 

Bluefin aims to analyze the relationships between mass media and 
social media. One of the primary objectives has been to measure 
audience response to television programming. Methods of audi-
ence measurement often involve soliciting viewers to participate 
in focus groups, to keep diaries of their viewing habits, or to use 
electronic devices that automatically record and send this data to 
the analysts. Bluefin’s approach is instead to measure the unsolicited 
response of the audience by collecting and analyzing the public 
comments individuals post online to blogs and social network 
sites.

This analysis involves the construction of two very large data 
structures: a mass media graph, and a social media graph. For the mass 
media graph, dozens of television channels are continuously 
recorded and processed. Numerous types of data are extracted 
from the television content, but relevant to this discussion is the 
identification of every show (e.g. Seinfeld) and commercial (e.g. 
“Coca-Cola Polar Bears, Winter 2011”). Each show and commer-
cial constitutes a node in the mass media graph, and the edges of 
the graph connect the shows to all commercials that played within 
it.

For the social media graph, public comments are collected from 
Twitter and Facebook. Each identified author becomes one node 
in the graph, and the edges of the graph represent lines of com-
munication and connect authors that send or receive messages to 
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one another.  

These two graphs are constructed from different sources, and the 
challenge remains in finding the connections between the two. 
Television is a popular conversation topic and generates millions 
of comments on social media sites every day. Each time an author 
writes about a piece of televised content, he constructs a referen-
tial link between himself and the content. These links provide a 
connective web between the social and mass media graphs such 
that the authors are not only connected to those they commu-
nicate with, but also to some of the things they communicate 
about.

For humans, such links are easy to find. We are adept at derefer-
encing natural language and linking speech to objects. But finding 
these links at scale is a large endeavor that requires parsing billions 
of comments and linking them to millions of audio-video events, 
requiring computer systems that can both parse natural language 
and identify television content. The payoff is that the resulting 
synthesis of the two graphs can reveal a wealth of unsolicited 
feedback about TV programming, the effectiveness of advertise-
ment campaigns, the television viewing habits of individuals, and 
the dynamics of shared conversation topics across social groups.

I worked with Bluefin to create a visualization as a way to effi-
ciently explain the approach of this analysis and to illustrate this 
relationship between social and mass media. This visualization 
was intended for a general audience, and was presented at the 
TED conference amongst other venues. Mass media and social 
media are both abstract and nebulous networks of information, 
and one of the goals was to provide an image of the two networks 
that was concrete and easy to conceptualize. A second, editorial-
minded goal was to make the visualization evocative of the scale 
and complexity of the data. 

Figure 37 shows an early iteration of a data browsing interface 
that uses a standard network diagram representation of dots and 
lines. This image shows a small subset of the data pertaining to a 
single television show, Supernatural, and its audience. The show 
is represented by the red dot in the center. All the authors that 
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have written about the show are drawn as white dots, and 
all the authors that have not written about the show but 
follow someone who does are drawn in gray. In total, there 
are about 51,000 nodes and 81,000 edges to this graph. The 
nodes have been organized using the implementation of the 
sfpd algorithm provided by GraphViz [Ellson, 2003].

The representation of a graph as a dots and lines on a plane is 
a conventional approach. It can be highly functional and use-
ful for analysis, but is not always the most exciting. Here, the 
records of over 50,000 individuals have been reduced to a 
mathematical abstraction that says little about the scale or na-
ture of the data itself. There are enough dots to saturate the 
image, yet it does not provide a visual impression of being 
anything massive or impressive, or of being anything at all. 

Like most network diagrams, this graphic provides no sense 
of scale. The issue is not in communicating a quantitative 
scale, of which there is none, but to provide the qualitative 
feeling of scale that one gets when entering a cathedral, or 
even looking at a vividly rendered naturalistic image of a 
large space, as in Figure 39. This is an issue of presence. Cre-
ating a representation that looks and feels like an actual place 
must give the viewer a sense of absolute scale and communi-
cate how the viewer relates to the environment physically.

Painters have long known techniques to make paintings look 
large, but it is an interesting exercise to revisit those tech-
niques to identify the minimum number of details that must 
be added to make abstract data appear large. Our perception 
of size and depth is well studied in terms of the perception 
of different depth cues and the interpretation of those cues 
to build a mental model of a spatial environment. The cat-
egorization of depth cues is not consistent across literature, 
but the table on the following page provides descriptions of 
12 established cues, collected from a survey, [Cutting, 1997], 
and several additional sources.  

This document will not discuss all of these in detail, but the 
table is provided to define terms as I present an example of 
using these cues to establish a sense of space. 

Figure 37. Graph of people commenting on 
the television show Supernatural on Twitter. 

Figure 38. Detail of the graph, highlighting 
one author and connected followers.

Figure 39. Pieter Bruegel. The Tower of Babel. 
c. 1563.
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Occlusion or Interposition Closer objects block more distant objects from sight, 
indicating the order of depth.

Ordinal

Relative Size The difference in apparent size between similar objects 
indicates ratio of distance from viewer.

Ratio

Relative Density or
Texture Gradient

The scaling of textures or object groupings according to 
distance.

Ratio

Stereopsis The displacement between apparent positions of an 
object as seen by the left and right eye.

Absolute, but requires 
stereoscopic display.

Convergence Fixating both eyes on a near object causes them to point 
inward, where the angle provides depth information.

Absolute, but requires 
stereoscopic display.

Accommodation The ocularmotor flexing of the eye’s lens to bring an 
object into focus provides a sense of depth. 

Absolute, but requires 
holographic display.

Motion Perspective Motion perspective includes motion parallax and radial 
outflow. Motion parallax is the apparent speed of an 
object in motion relative to the viewer or another 
object. Radial outflow is the areal scaling of an object is 
its distance to the viewer changes [Gomer, 2009].

Absolute if velocity is known. 
Otherwise, a ratio.

Elevation If the viewer is positioned over a ground plane, the base 
of objects resting on that plane indicates distance, and 
closer objects will have a lower position in the visual 
field.

Absolute if the eye height is 
known. Otherwise, a ratio.

Familiar Size If the absolute size of an object is known, its apparent 
size indicates absolute distance.

Absolute if size is known.

Defocus Blur For optical lens systems, the amount by which an 
object is blurred indicates its distance from the focal 
plane. Further, depth of field is shallower for near focus 
[Mather, 1996].

Absolute if lens characteristics 
and aperture are known.

Aerial Perspective Viewing objects through mediums that are not 
completely transparent, including air, causes distant 
objects to appear desaturated. 

Absolute if opacity of medium 
is known.

Object Dynamics Knowledge of dynamical systems can provide depth 
information from the apparent speed, acceleration, or 
other motion of objects. For example, the apparent 
acceleration of an object in free fall can indicate absolute 
distance [Hecht, 1996]. These cues are not yet well 
defined and less researched than the others.

Absolute if dynamical model is 
known.

Cues for Depth and Size Perception

Source Description Information Provided
(Physically possible, although not 
necessary perceived by humans!)

Relative Sources

Absolute Sources

Not produced by 2D displays

Information from [Cutting, 1997], except where cited otherwise.
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Beginning again with a set of dots, each represents 
a single author, and have been arranged and colored 
randomly. The only depth cue is occlusion. The scale 
of the image might be anything, from microns to 
light-years.

I first tried to replace the dots with icons of people, 
objects of familiar size. The viewer might now guess 
a rough scale (my office mate estimated it to be the 
size of a soccer field), although the representation is 
still quite flat. 

The icons could be made more realistic or changed 
to photos, but even real physical objects do not 
evoke a strong sense of scale when removed from 
other depth cues. Experiments on this subject have 
involved showing objects like playing cards, to 
participants under restricted viewing conditions that 
removed other depth cues and asking the participants 
to judge the distance and size of those objects. The 
results revealed that when shown a normal-sized card 
five meters away, participants were more likely to 
report seeing an unusually small card at around two 
meters away [Predebon, 1992; Gogol, 1987]. In the 
absence of other information, our visual perception 
will readily disregard our knowledge of object size.

A further problem of using a 2D layout is that re-
gardless of the representation chosen for the authors, 
attempting to show more than a few thousand will 
result in an indiscernible texture. 
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Positioning the icons within a volume appear more 
spatial, but provides only a relative depth through 
contrast in size and texture and occlusions. 

Navigating within this 3D scene provides motion 
perspective information, but without a clear sense of 
the viewer’s own velocity or size, the absolute scale 
remains unresolved.

Aerial perspective, or fog, might indicate absolute 
depth if the density is known, but even so, we are 
poor at using it to judge depth. In most cases, includ-
ing the image on the left, it primarily provides an 
ordinal measure of depth. In this image, however, it 
does help in improving the visual contrast between 
and far and near objects and reinforcing the sense of 
volumetric space.

In this image, the volumetric layout has been aban-
doned and the icons have been return to a plane, but 
now viewed from a lower angle. The result is an im-
age that provides a much more vivid sense of a large 
space containing a vast number of people.

The planar configuration accomplishes two things. 
First, it establishes a linear perspective. Linear 
perspective is not, in itself, a source of depth infor-
mation, but a system of interpretation. It combines 
multiple sources of information and resolves the 
constraints and ambiguities between them to pro-
duce a spatial model of a scene. In particular, linear 
perspective largely relies on the heuristic of inter-
preting elements that are apparently collinear in the 
retinotopic image as also being collinear in physical 
space. Here, increasing the colinearity of the icons 
greatly reduces the perceived ambiguity of the scale 
and depth of each.

Second, the icons now create an implicit ground 
surface, which provides an organizing structure 
that helps to define the space. With the lower cam-
era angle, the ground surface establishes a horizon 
line and elevation cues, and also creates a strong 
texture gradient that extends from foreground to 
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The use of a ground surface is not limited to large 
spaces, and might be instrumental in defining a space 
of any scale. At left is an image of the same icons, 
but grouped more closely together, without aerial 
perspective, and viewed from a higher vantage point. 
The image does not look tiny, but substantially less 
expansive than the previous image.

Defocus blurring can emulate the depth-of-field 
created by optical lens systems, including the hu-
man eye. Shallow DOFs emulate the focus on near 
objects, and when added to an aerial photograph or 
other large scene using a tilt-shift camera or digital 
manipulation, can sometimes produce a striking 
miniaturization effect. Here, without the richer scale 
cues provided by naturalistic imagery, the effect is 
still present, but less pronounced.

For interactive visualizations, defocus blurring is best 
avoided as it predetermines what the viewer may 
focus on. In passive mediums, like photography and 
cinema, we are more accepting of having our focus 
guided, and even appreciate the bokeh of a photo-
graph or the way a narrowly-focused movie scene 
lifts the actors out of the background. In interactive 
mediums, the user is more likely to want to con-
trol what he sees and to explore different parts of a 
scene, where the inability to adjust his focus may be 
an annoyance. This is demonstrated by video games, 
where the emulation of DOF has recently become an 
easily achievable effect and is now a feature of many 
popular engines [Hillaire, 2008]. While it is still 
too early to judge its impact, initial opinion appears 
predominately negative.

background. This information further reinforces the 
linear perspective.

This is a complex way of saying that to create a sense 
of absolute space, it helps to have a ground surface. 
The different techniques of providing depth infor-
mation are important, but any cue is likely to be 
ambiguous without an organizing structure.
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4.2 Social Network Visualization

After achieving the desired effect of scale, the 
system was then used to produce the following 
visualization. 

The visualization opens with a shot of the au-
thors, arranged as discussed.

Lines are added that connect authors that commu-
nicate to each other, revealing an intricate social 
graph.

The camera pulls back to reveal more of the net-
work. 

The motion of the camera includes significant 
lead-in and lead-out acceleration to emulate 
physical inertia. This helps significantly to main-
tain a sense of a physical space and navigation.

Nodes representing television shows and com-
mercials are then added to the scene, organized 
on a new plane below the authors. Each node 
is shown as video panel, which provides a large 
amount of visual activity and excitement to the 
scene.
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Edges are added that connect commercials to the 
television shows in which they aired, revealing 
the mass media graph.

The camera pulls out, showing the two media 
graphs.

The two graphs are shown as separate, but par-
allel, planes, preparing the audience for a third 
dimension. 

The two graphs are then connected. Each line 
connects an author to a show or commercial that 
the author has written about.

This image represents one of the main points of 
the visualization: to provide a conceptual bridge 
between mass media and social media that invites 
new inferences. 

The camera moves closer to the mass media nodes 
to set up the next beat.
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All of the lines are removed. Now that the data-
set has been explained at a distance, the next few 
beats present examples of types of patterns found 
in the connected graphs.

The first pattern begins with a single author that 
has written about a show, illustrated by a bright 
line that extends from the show to the author.

Lines then extend from the one author to the 
other authors that received those comments.

More lines extend between authors, showing a 
small network of people that communicate with 
one another.
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The camera stops on a video showing a recent 
State of the Union address, and holds for a few 
seconds. This is an event that generates a huge 
number of comments.

The lines are removed, and the visualization 
moves to the second pattern. Here, many lines 
shoot out from a single author creating a firework 
effect, showing an amateur critic that comments 
on many shows and is read by many people. 

In one version, we attempted to make the anima-
tion of the lines less sudden, slowing it down and 
using multiple build ins. However, test audiences 
responded well to the more dramatic explosion of 
lines, and the effect was retained.

The third pattern looks at a specific television 
show. The camera moves forward and dives 
through the crowd.

These authors also write about the same show, 
and form a co-viewing clique that communicates 
about a shared interest.
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As the camera returns to the side, lines shoot from 
the State of the Union to thousands of authors.

And then all the authors that have received com-
ments about the State of Union are highlighted.

The visualization closes by showing some of the 
most salient phrases used in this discussion. Al-
though the video does not delve any deeper into 
the content analysis, this shot is meant to raise the 
topic for further discussion.

This visualization shows two very different data-
sets, explains what each dataset represents, how 
they are connected, and a few of the inferences 
that might be drawn from those connections. The 
visualization is far from naturalistic, but provides 
sufficient cues to establish a strong sense of scale 
and space, resulting in a visualization that is more 
engaging and evocative than the earlier 2D ver-
sion shown in Figure 37. It also provides a more 
cinematic approach to animation, which is used to 
connect different viewpoints of the scene, from 
distant shots that show the large portions of the 
graphs, to very close shots that show only a single 
node. 
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Video 4. Visualization of a social media graph combined with mass media graph.
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4.3 News Television

For many news events, public reaction is an essential part of the 
story, and news television networks are increasingly turning to 
social media as a way to gauge this reaction. The relationship 
between news and social media is still being defined, and studios 
continue to develop effective practices for using social media for 
journalistic purposes. This section discusses the development of a 
visualization for news television intended to report on public re-
action within social media, and the design considerations involved 
when creating visualizations for a medium like television.

In late 2011, one of the largest media events in America was 
coverage of the GOP presidential primaries, wherein seven of the 
candidates running for the Republican Party nomination par-
ticipated in a series of televised debates. As coverage of an elec-
tion process, public reaction to the debates was a primary focus, 
and ABC News wanted to air a segment analyzing social media 
response to a debate being held on December 10th. Producers 
from ABC had seen the social network visualization created for 
TED, discussed in Section 4.2, and thought that it might adapt 
well to television. And so in collaboration with Bluefin Labs and 
Isabel Meirelles, I extended the visualization and produced a 
two-minute segment to be played the morning after the debate on 
This Week With Christiane Amanpour. The data involved would be 
just a single piece of televised content, the recording of the debate 
itself, and all the Twitter comments it generated.

Most data visualization literature focuses on design for print, pro-
jector, or computer display, and draws from the established design 
practices of those fields. Little is mentioned of visualization 
design for television, and few visualizations are shown on televi-
sion beyond basic charts that report political polls, stock prices, or 
one-dimensional product comparisons. There are several reasons 
why television is not an ideal medium for data visualization, but 
also compelling possibilities for using television to reach large 
audiences and strengthen the use of empirical analysis in popular 
discourse.

One of the primary limitations of television is the picture qual-
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ity. Most television sets have a low native resolution, vary greatly 
in size and aspect ratio, and are usually viewed from a distance. 
Furthermore, they are better optimized to display naturalistic im-
ages, like film and photographs, and poorly optimized to display-
ing high-contrast edges, as with text, and fine lines. Designing 
an effective graphics for television involves reducing text where 
possible, giving a large amount of space to every element that the 
viewer must see clearly, and avoiding complicated layouts that 
divide the space of the screen. This is antithetical to visualization 
design for print, where it is possible to present intricate informa-
tion within a single view, and to allow the viewer to look over it 
from up close. 

A second limitation is that television does not allow the viewer 
to examine things at his own pace, or control the flow of the 
presentation.  For many programs, viewers are not expected to 
even look at the television much at all. The segment I created 
was targeted to play on a Sunday morning just after the debate, a 
weekend when many viewers might actually sit down to watch 
the morning news. The proposal of creating a segment for a 
weekday was considered impractical, because the audience was 
expected to be preparing for work and might only glance at the 
television occasionally, largely undermining the purpose of airing 
a visualization. 

These issues are not unique to television. Image quality and 
resolution are significant issues whenever showing graphics on a 
distant screen, as when presenting with a projector. The issues of 
pacing and passive communication are present whenever commu-
nicating to many people at once. Edward Tufte, one of the stan-
dard bearers of information design, has also described this as prob-
lematic, and has argued that providing a paper handouts prior to 
presentations can give the audience “...one mode of information 
that allows them to control the order and pace of learning” [Tufte, 
2007]. But handouts are not always practical.

When trying to visually communicate complex ideas in these 
circumstances, it may be necessary to accept the limitations of 
what the medium can show within a single view, and compensate 
by taking advantage of what can be shown in sequence at lower 
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resolution. The use of 3D animation provides several ways to do 
this. Camera movements can be used to briskly bring the viewer 
from one view to the next. Animation can communicate causal 
and process information that would otherwise call for a textual 
explanation. The third reason is that animation provides addi-
tional visual information through motion perspective that can 
significantly help perception when pushing against the limits of a 
low resolution display. Objects that appear as a small smudge in a 
static image are sometimes easy to identify in motion.

4.4 Visualization of the GOP Debate

In the visualization that follows, video and social media data was 
provided by Bluefin Labs and Twitter. Topic analysis of the Twit-
ter data was performed by Mathew Miller. Editorial focus, cap-
tion writing, and transcript authoring was performed by Russell 
Stevens and Tom Thai.  Deb Roy and Isabel Mierelles provided 
design input. I was the primary designer and producer of the 
visualization itself. The debate ended at 10pm on December 10, 
2011. The complete video was sent to the ABC News team, who 
trimmed the video down, revised the transcript, and approximat-
ed 12 hours after the debate ended, aired the segment.
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Establish subject

The opening shot establishes the subject, the GOP 
Debate, shown as video footage provided by ABC 
News.

Introduce a single point of data

The next beat introduces a single comment made 
about the debate, using the same author icons as 
the social graph visualization.

Introduce rest of data

The camera pulls back as the rest of the comments 
are added to the screen. 236,000 comments were 
identified, however, only 70,000 are shown in the 
scene so that the icons would not become overly 
small. The analysis to be shown is accurate for the 
entire dataset.

Summarize setting

The camera holds in this position for a moment, 
creating an image of tens of thousands of people 
watching the debate and offering their comments 
on it. This provides a literal, visual explanation of 
what the data represents. 
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Introduce candidates

The giant screen builds out, and icons of each of 
the candidates in the debate builds in. 

Transition to next view

The authors begin moving, creating a moment 
of intense visual activity. Instead of just cutting 
to the next view, the transition is animated to 
show  that this new view uses the same data and 
to maintain continuity.

Show the volume of comments about each can-
didate

The comments organize themselves into a bar 
chart showing the amount of discussion about 
each candidate. Mitt Romney generated the 
most comments and Rick Perry the least. 

Transition to next view



92

Introduce event

The screen re-emerges, showing the single event 
of the debate that generated the greatest number 
of comments. After Perry criticizes statements 
made by Romney in a book, Romney extends 
his arm and offers to bet Perry $10,000 that those 
statements were never made.

Show response to event

A number of comments are highlighted, showing 
the social media response to this event.

Show volume of comments over time

The comments reorganize themselves into an area 
plot that shows the volume of comments received 
throughout the debate. The peaks of this graph 
indicate notable events that drove discussion, with 
the largest peaks generated between a half-hour 
and an hour into the debate. 
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Show detail

A specific comment about the event is shown. 
This comment was representative of the overall 
opinion, where most regarded Romney’s bet as 
a gaffe that made him appear as a rich, frivolous 
with his money, and disconnected from the work-
ing class. 

Show propagation of comment

The comment shown was retweeted, or posted 
again by other authors, many times throughout 
the event. The text of the comment streams 
out from the original comment to each of the 
retweeted versions, showing its pattern of propa-
gation.

A primary contribution of this visualization is the way it connects 
different views of the data using a persistent representation. The 
comments made about the debate are introduced once, explained 
through a metaphor of a large crowd of people watching the 
debate. The comments are then rearranged to bring the viewer 
through different aspects of the public response, including overall 
volume, response to individual candidates, the response over time, 
and response to a single event within the debate. 

While the visualization shows the volume of comments about a 
single event, it does not go into further detail about who respond-
ed or what was actually written. The software that was developed 
provides several views that may have addressed this and offered 
a more detailed analysis, but were ultimately left out of the final 
video due to editorial decisions. 

Figure 40 is taken from an earlier draft of the visualization, using 
data from a previous debate. In this debate, Perry accused Rom-
ney of hiring illegal immigrants to work on his property. The 
people icons at the bottom of the image represent the comments 
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about this specific event. The icons are colored red, white, or 
green to indicate if the coment expressed a negative, neutral, 
or positive sentiment. In this instance, the image shows that 
the general sentiment towards this event was slightly more 
negative than positive. Another unused view organized the 
comments by demographic groups, showing the breakdown 
of comments according to author gender, age, and interests.

Figure 40. Sentiment breakdown of comments 
about Perry’s accusation that Romney hired 
illegal immigrants to work on his property.

Video 5. Visualization of the GOP Presidential Candidate Debate of December 10, 2011
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5 Critique

With the exception of the GOP Debate visualization discussed 
in Section 4.4, all of the videos described in this document were 
used in a 20-minute presentation at TED 2011 delivered by Deb 
Roy. This video was posted online shortly after the presentation, 
and at the time of this writing, has been viewed over 1.5 mil-
lion times on the TED website. The video is also been viewed on 
YouTube, and has been used as in-flight entertainment by Virgin 
Airlines. Subsequently, the presentation has generated thousands 
of comments online from unsolicited viewers. While Roy was 
responsible for constructing and delivering the presentation, I was 
the primary creator of most of the graphics, including all of the 
video content, and much of the feedback referred explicitly to the 
visualizations.

This kind of feedback is often more useful in qualitative assess-
ment than quantitative, but to provide a rough sense of audience 
response, a portion of the comments were coded for sentiment 
and tallied. 299 comments were collected from the TED web-
site, not including one comment in a foreign language and two 
comments made involved researchers. Of these, 62 comments 
expressed an opinion specifically about the visualizations and 
graphics. I believe this is a relatively high fraction considering 
that many comments did not containing any specific details on 
the talk, and that the talk was not about data visualization and 
mentioned the design of the visualizations used only briefly. Each 
comment was hand coded as expressive a positive, negative, or 
neutral sentiment. Of these comments, 5 were negative, 57 were 
positive, and 0 were neutral.

Informativeness is one of the key attributes for which most 
visualizations strive. As Edward Tufte describes, “Excellence in 
statistical graphics consists of complex ideas communicated with 
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clarity, precision, and efficiency” [Tufte, 1986]. Several com-
menters thought that the visualizations failed in this regard:

“Actually, I found many of the visualizations more dis-
tracting than clarifying, especially the social media ones. 
Lots of little TV screens in a grid, flying through space... 
uh...”

Conversely:

“The data visualizations in this presentation are very 
impressive. They manage to provide overwhelmingly 
complex ideas and data in an easily interpretable format.”

“I’m a software engineer. I was staggered by the level, 
detail and complexity of the information and analyses 
that he has displayed without batting an eyelid. Why are 
‘fancy graphs’ important? Because it helps people like you 
understand complex information :)”

Several viewers were specifically impressed by the sense of im-
mersion created by the visualizations: 

“While designed to monitor his son’s development, his 
computer system ended up giving him an unparalleled 
glimpse into his own life and that of his family. He can 
literally search through footage using spoken words and 
behaviors. Using multiple angles and simulation software, 
he can virtually live through his past experiences in the 
first person!”

“Never come across something so powerful that almost 
gets us back in time... fantastic stuff.”

Comments on the aesthetics and production of the visualizations 
were almost uniformly positive. However,  a few of the viewers 
thought that the visualizations were designed to hype research 
that would otherwise be poor or uninteresting:

“Data visualizations are most useful when they help peo-



97

ple understand complex information. When they are used 
to make pretty standard observations look like ‘expensive’ 
research, they become dangerous.”

The comments collected did not provide critiques much more 
detailed than that shown. However, in general, opinion was very 
positive and often enthusiastic. Viewers found the visualizations 
informative, immersive, and technically and visually impressive.

Many comments did not discuss the visualization work explicitly, 
but imply that they may have achieved their goals in making the 
research interesting and relatable: 

“As I said on Twitter last week, Deb Roy’s talk at this 
year’s TED was among my favorites ever. Its mixture of 
science, data, visualization, and personal story touched all 
my hot buttons, and touched me personally.”

“There’s no doubt that Mr. Roy’s approach to researching 
the development of his son’s language is, at first glance, a 
bit creepy. Document every waking hour of your family’s 
life using an array of ceiling-mounted cameras all over 
your house? Yep, creepy. ... But as Mr. Roy and MIT’s 
work is demonstrating, the ability to record everything, 
archive it, analyze it and share it with others can have the 
most wonderful, human and un-creepiest results.”

The most frequent criticism on the presentation, appearing in 40 
comments on the TED website, was that the results were disap-
pointing or too obvious:

“This was so disappointing. A year of recording audio 
and video, significant time analyzing, tons of money and 
technology – and all we learn is that ‘water’ is mostly spo-
ken in the kitchen and a few other obvious tidbits?”

I cannot take responsibility for much of the presentation, but will 
offer a response. In a short 20-minute presentation, it can be dif-
ficult to describe the results of several years of linguistics analysis 
in great detail.  The visualizations that were created were focused 
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more on explaining the data, the methodologies developed, and 
the potential impact of the research, which we felt would have 
broad relevance to a general audience. 

HSP has produced a number of scientific findings that we were 
not able to fully disseminated at TED. For example, the three 
caregivers of the household – the father, wife, and nanny – con-
tinuously adjusted the complexity of their utterances in the 
presence of the child in a way that seems designed to help him 
learn language to a surprisingly and previously unobserved 
degree. Given the difficulty of tracking exactly which words 
the child does and does not know at a given moment and taking 
that knowledge into account each time they spoke to the child, a 
reasonable interpretation is that caregivers subconsciously tracked 
the child’s receptive vocabulary and predictively tuned their lan-
guage to serve as linguistic scaffolding.

A second point is that even very obvious things require empiri-
cal observation to model scientifically. To use the example of the 
critic, it is quite expected that water would be spoken most fre-
quently in the kitchen. However, measuring the precise frequency 
empirically, and being able to compare that to the frequency of 
other word types, is surprisingly difficult. What the wordscape 
visualization (Section 3.11) shows is that we have developed a 
way to collect such data, and have verified that this data conforms 
to what we might expect. This is, in itself, an important step in 
building scientific models of linguistic development. 

In working with this data further, my colleagues have discovered 
a surprisingly strong influence of non-linguistic social and physi-
cal context – what is happening, where, and when – in predicting 
the order in which the child learned his first words. By combin-
ing linguistic factors, such as the frequency or prosody of words 
heard by the child, with non-linguistic context, they have been 
able to create the most precise predictive model of word learning 
ever created for a given child [Miller, 2011]. 



99

6 Conclusions

This dissertation has presented a body of work that has utilized 
the first person and 3D graphics to address challenges of viewing, 
navigating, analyzing, and communicating information embed-
ded in big, heterogeneous data sets. The datasets used in this work 
included a variety of data collected for real world applications. 
And while the design of each visualization was tailored to the 
specifics of each dataset, each relied on the same generalizable ap-
proach of placing the viewer inside the data. Many aspects of the 
first person viewpoint and its implications have not been deeply 
explored previously, and this document makes several contribu-
tions to this area: 

An approach to the first person viewpoint that encompasses the no-
tion of presence and of creating a sense of physical engagement 
through visual perception. Where previous work has focused 
more on navigation schemas and immersive display technologies, 
this dissertation has extended the idea that many aspects of the 
first person can also play a significant role in visualizations pre-
sented on 2D displays, or that may not even be interactive. Not all 
the works in this thesis produced as strong a sense of first person 
engagement as video games, virtual reality rigs, or actual physical 
environments, but our sense of immersion does not need to be 
overwhelming to have an impact.

Methods of visualizing complex datasets as simulated environments to 
facilitate intuitive, spatio-temporal perception and navigation. 
The HouseFly system incorporates many previously established 
techniques, but as a whole, no simulation of a real environment 
has been created previously with a similar level of spatial detail 
and temporal depth. HouseFly presents multiple sources of data 
in a way that immediately reveals the environment as a whole and 
enables users to identify and follow activities seamlessly across 
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multiple sensors, levels of detail, and time. It also demonstrates a 
unique approach to retrieval that combines spatial, temporal, text, 
and annotation based queries.

An approach to data storytelling that leverages the use of 3D graph-
ics to compose and sequence shots in a more cinematic manner, 
including similar techniques for establishing context and subject 
matter, focusing viewer attention, and explaining relationships 
between different views of the data. The use of cinematic tech-
niques in data visualization has been discussed previously, e.g. 
[Gershon, 2001], but clear examples of the approach are still 
uncommon, with substantial room left for exploration.

An approach to creating more engaging visualizations by placing the 
viewer inside the data. This dissertation has examined how the 
first person can provide a vivid sense of being in a physical scene, 
provide novel perspectives and visual excitement, and, as dis-
cussed in the visualization of a child’s first steps in Section 3.12, 
even help to establish a more personal connection with the data. 

The evaluation of the thesis work has focused on the naviga-
tion of complex datasets, clarity of communication, and ability 
to present data in a way that provides meaning to the data and 
promotes engagement. These are significant goals in both research 
and communication. However, with regards to applying first per-
son interfaces for analysis tasks, this work is still in an exploratory 
stage. The research of both HSP and Bluefin Labs involves the 
application of novel methodologies and technologies at very large 
and challenging scales. Much of the effort behind this dissertation 
has been focused on developing methods of collecting data and 
attempting to uncover the new forms of analysis this data makes 
possible. As applications for these datasets become more clear, 
future work will be required to identify specific analysis tasks 
that call for optimization, and to evaluate the performance of the 
techniques discussed quantitatively.

Further effort will also be required to reduce the labor and 
expertise required to create such graphics, and to develop bet-
ter software tools. Creating 3D interfaces for data visualization 
currently requires significant ability in software development, as 
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well as specialized knowledge of graphics hardware, algorithms, 
and software libraries. For designers without such experience, 
the approach to visualization discussed here may be difficult or 
prohibitively expensive to replicate. Many of the visualization 
frameworks available are limited to producing standard plots and 
2D graphics. The Processing language, developed by Ben Fry and 
Casey Reas, is a notable exception, and provides a simplified in-
terface to OpenGL and other libraries that enable novice develop-
ers to more easily produce 3D graphics, typography, and multi-
media content [Fry, 2004]. However, Processing is still closer to 
a language than a visualization engine, a simplified dialect of Java 
with additional libraries, and does not include many of the higher 
level tools required for highly functional 3D interfaces. A short 
list of desirable tools might include a system for asset and scene-
graph management, scripting and animation, unified geometry 
collision and picking, a flexible renderer that facilitates procedur-
ally generated graphics, and a GUI library that integrates both 2D 
and 3D interface components. Still, any software framework that 
integrates these tools would only mitigate the effort of software 
development. The result would resemble a 3D video game en-
gine, which still require significant expertise and learning to use 
effectively. Making 3D visualization truly accessible to non-pro-
grammers will require more radical developments in tool design.

I do not claim that the approach to visualization argued for in this 
document is appropriate for all applications, or even most. Creat-
ing a 3D interface to visualize sales figures at a financial review 
meeting would be unlikely to illuminate the data any better than 
a simple line plot, and an extravagant waste of effort. But as we 
encounter new and increasingly massive datasets, there is greater 
need to understand these datasets as complex systems and to view 
them from many perspectives. This dissertation has shown how 
placing the viewer inside the data may achieve this goal, and in 
the process, to produce graphics that show something new, in-
sightful, and beautiful.
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