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ABSTRACT

A spoken language generation system has been developed that
learns to describe objects in computer-generated visual scenes.
The system is trained by a ‘show-and-tell’ procedure in which vi-
sual scenes are paired with natural language descriptions. Learn-
ing algorithms acquire probabilistic structures which encode the
visual semantics of phrase structure, word classes, and individual
words. Using these structures, a planning algorithm integrates syn-
tactic, semantic, and contextual constraints to generate natural and
unambiguous descriptions of objects in novel scenes. The output
of the generation system is synthesized using word-based concate-
native synthesis drawing from the original training speech corpus.
In evaluations of semantic comprehension by human judges, the
performance of automatically generated spoken descriptions was
comparable to human generated descriptions.

1. INTRODUCTION

A growing number of applications require the translation of per-
ceptual or sensory data into natural language descriptions. Most
current approaches to this problem relies on manually created rules
which encode domain specific knowledge. These rules are used
for all aspects of the generation process including, for example,
lexical selection and sentence frame selection. We present a train-
able system called DESCRIBER (a more detailed description of
this system can be found in [1]) which learns to generate descrip-
tions of visual scenes by example. This work is motivated by our
long term goal of developing spoken language processing systems
which ground semantics in machine perception and action.

We consider the problem of generating spoken descriptions
from visual scenes to be a form oflanguage grounding[2, 3, 4].
Grounding refers to the process of connecting language to refer-
ents in the language user’s environment. In contrast to methods
which rely on symbolic representations of semantics, grounded
representations bind words (and sequences of words) directly to
non-symbolic perceptual features. Crucially, bottom-up sub-symbolic
structures must be available to influence symbolic processing [2].
All symbolic representations are ultimately encoded in terms of
representations of the machine’s environment which are available
to the machine directly through its perceptual system.

Semantics in DESCRIBER are visually-grounded. Input to the
sytem consists of visual scenes paired with naturally spoken de-
scriptions and their transcriptions. A set of statistical learning al-
gorithms extract syntactic and semantic structures which link spo-
ken utterances to visual scenes. These acquired structures are used
by a generation algorithm to produce spoken descriptions of novel
visual scenes. Concatenative synthesis is used to convert output of

the generation subsystem into speech. In evaluations of semantic
comprehension by human judges, the performance of automati-
cally generated spoken descriptions is found to be comparable to
human-generated descriptions.

The problem of generating referring expressions has been ad-
dressed in many previous computational systems [5, 6]. Most pre-
vious language generation systems may be contrasted with our
work in two main ways. First, our emphasis is on learning all nec-
essary linguistic structures from training data. Jordan and Walker
[7] also used machine learning to train a system which generates
nominal descriptions of objects. The only aspect of this generation
system which is trainable, however, is the choice of which logical
combination of four attributes to use in describing objects. In com-
parison, the scope of what is learned by DESCRIBER includes
attribute selection, syntactic structures and the visual semantics of
words. A second difference is that we take the notion of grounding
semantics in sub-symbolic representations to be a critical aspect
of linking natural language to visual scenes. The Visual Translator
system (VITRA) [8] grounds language generation in visual input
(dynamic scenes from automobile traffic and soccer games). In
contrast to our work, VITRA is not designed as a learning system.
Thus porting it to a new domain would presumably be a arduous
and labor intensive task.

1.1. The Learning Problems

In this paper we consider learning problems in which each training
example is comprised of (1) a natural language word sequence and
(2) a vector of real-valued features which represents the seman-
tics of the word sequence. We assume no prior knowledge about
lexical semantics, word classes, nor syntactic structures.

A basic problem is to establish the semantics of individual
words. To bootstrap the acquisition of word associations, utter-
ances are treated as “bags of words”. Each word in an utterance
may potentially be a label for any subset of co-occurring visual
features. Thus one problem facing the language learner is feature
selection: choosing the subset of potential features which should
be bound to a word. Once feature assignments have been made,
statistical learning methods can be used to train classifiers which
map words to ranges of values within those features. A second
problem is to cluster words into word classes based on semantic
and syntactic constraints. We assume that word classes are a nec-
essary first step in acquiring rules of word order. For example,
before a language learner can learn the English rule that adjec-
tives precede nouns, some primitive notion of adjective and noun
word classes presumably needs to be in place. A third problem is
learning word order. We address the problems of learning adjec-
tive ordering (“the large blue square” vs. “the blue large square”)



and phrase ordering for generating relative spatial clauses. In the
latter, the semantics of phrase order needs to be learned (i.e., the
difference in meaning between “the ball next to the block” vs. “the
block next to the ball”).

Once the problems outlined above have been addressed, the
system has at its disposal a grounded language model which en-
ables it to map novel visual scenes into natural language descrip-
tions. The language generation problem is treated as a search prob-
lem in a probabilistic framework in which syntactic, semantic, and
contextual constraints are integrated.

2. SYSTEM DESCRIPTION

The description task is based on images of the sort shown in Fig-
ure 1. The computer generated image contains a set of ten non-
overlapping rectangles. The height, width, x-y position, and red-
green-blue (RGB) color of each rectangle is continuously varying
and chosen from a uniform random distribution. DESCRIBER ad-
dresses the following problem: Given a set of images, each with a
target objectand a natural language description of the target, learn
to generatesyntactically correct, semantically accurate, and con-
textually appropriatereferring expressions of objects embedded in
novel multi-object scenes.

Fig. 1. A typical scene processed by DESCRIBER. The arrow
indicates the target object.

The ‘perceptual system’ of DESCRIBER consists of a set of
feature extractors which operate on synthetic images. In compari-
son to CELL, visual processing in DESCRIBER is trivially avail-
able since we have direct access to the source of the images (i.e.,
access to the program which generated the images). A set of visual
attributes including shape, size, location, color, and brightness, is
extracted from each rectangle in a scene. The features for the set
of objects constitute the iconic representation of a scene. Learning
in DESCRIBER consists of six stages:

Stage 1: Word Class Formation
In order to generate syntactically correct phrases such as ‘large

red square’ as opposed to ‘red large square’ or ‘square red’, word
classes that integrate syntactic and semantic structure must be learned.
Two methods of clustering words into syntactically equivalent classes
were investigated. The first relies on distributional analysis of
word co-occurrence patterns. The basic idea is that words which
co-occur in a description are unlikely to belong to the same word
class since they are probably labeling different aspects of the scene.
The second method clusters words which co-occur in similar vi-
sual contexts. This method uses shared visual grounding as a basis
for word classification. We have found that a hybrid method which
combines both methods leads to an optimal clustering of words.

Stage 2: Feature Selection for Words and Word Classes
A subset of visual features is automatically selected and as-

sociated with each word. A search algorithm finds the subset of
visual features for which the distribution of feature values condi-
tioned on the presence of the word is maximally divergent from
the unconditioned feature distribution. Features are assumed to be
normally distributed. The Kullback-Leibler divergence is used as
a divergence metric between word-conditioned and unconditioned
distributions. This method has been found to reliably select word
features in an eight dimensional feature space. Word classes in-
herit the conjunction of all features assigned to all words in that
class.

Stage 3: Grounding Adjective/Noun Semantics
For each word (token type), a multidimensional Gaussian model

of feature distributions is computed using all observations which
co-occur with that word. The Gaussian distribution for each word
is only specified over the subset of features assigned to that word
in Stage 2.

Stage 4: Learning Noun Phrase Word Order
A class-based bigram statistical language model is learned and

models the syntax of noun phrases. The visually grounded word
classes acquired in Stage 1 form the basis for this Markovian model
of word order.

Stage 5: Grounding the Semantics of Spatial Terms
A probabilistic parser uses the noun phrase bigram language

model from Stage 4 to identify noun phrases in the training cor-
pus. Utterances which are found to contain two noun phrases are
used as input for this stage and Stage 6. Multi-noun-phrase ut-
terances are usually of the form ‘TARGETNP [spatial relation]
LANDMARK NP’, that is, a noun phrase describing the target
object, followed by a spatial relation, followed by alandmark
noun phrase. A typical utterance of this type is, ‘The large square
slightly to the left of the vertical pink rectangle.’. An automatic
process based on bigram word pair probabilities is used to tokenize
commonly occurring phrases (e.g., ‘to the left of’ is converted to
the token ‘tothe left of’). Any words in the training utterance
which are not tagged as noun phrases by the parser are treated as
candidate spatial terms. Three spatial primitives are introduced in
this stage to capture inter-object distance and angles. The proce-
dures in Stages 2 and 3 are re-used to ground spatial words in terms
of these spatial features.

Stage 6: Learning Multi-Phrase Syntax
Multi-noun-phrase training utterances are used as a basis for

estimating a phrase-based bigram language model. The class-based,
noun phrase language models acquired in Stage 4 are embedded in
nodes of the language model learned in this stage.

To train DESCRIBER, a human participant was asked to ver-
bally describe approximately 500 images of the kind shown in Fig-
ure 1. Each spoken description was manually transcribed, result-
ing in a training corpus of images paired with utterance transcrip-
tions1. Figures 3 and 4 illustrate the results of the learning algo-
rithm on this training corpus. The language model has a three-
layer structure. At the highest level of abstraction (left side of Fig-
ure 3), phrase order is modeled as a Markov model which specifies
possible sequences of noun phrases and connector words, most of
which are spatial terms. Transition probabilities have been omitted
from the figure for clarity. Two of the nodes in the phrase grammar
designate noun phrases (labeled TARGETOBJECT and LAND-
MARK OBJECT) and are diagrammatically linked by dashed lines

1A natural extension of this work is to integrate the acoustic word learn-
ing methods from CELL to replace this manual transcription step.



to the next level of the model. Note that at the phrase level, the se-
mantics of relative noun phrase order are encoded by the distinc-
tion of target and landmark phrases. In other words, the system
knows that the first noun phrase describes the target and the sec-
ond describes the landmark. This distinction is learned in Stage 6
(details of how this is learned can be found in [1].

START

TARGET_OBJECT

above

to_the_right_of

below

to_the_left_of

touching

directly

LANDMARK_OBJECT

and

END

Fig. 2. Relative clause structure acquired by DESCRIBER.

START

the

CLUSTER 2
light, white, dark

CLUSTER 3
pink, yellow, salmon, orange, 

grey, red, green, 
purple, colored, blue, 

brown

CLUSTER 4
horizontal, vertical, bright

CLUSTER 5
rectangle, square

CLUSTER 6
small, thin, large, largest, 

smallest

tall

olive

CLUSTER 9
leftmost, rightmost

CLUSTER 11
lowest, highest

END

Fig. 3. Noun phrase structure acquired by DESCRIBER.

Each word in the noun phrase language model is linked to an
associated visual model. The grounding models for one word class
are shown as an example in Figure 4. The words ‘dark’, ‘light’
and ‘white’ were clustered into a word class in Stage 1. The blue
and green color components were selected as most salient for this
class in Stage 2. The ellipses in the figure display isoprobabil-
ity contours of the word-conditional Gaussian models in the blue-
green feature space learned for each word in Stage 3. The model
for ‘dark’ specifies low values of both blue and green components,
whereas ‘light’ and ‘white’ specify high values. ’White’ is mapped
to a subset of ‘light’ for which the green color component is espe-
cially saturated. In summary, the phrase level language model is
grounded through two levels of indirection in terms of sensory fea-
tures of the system.
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Fig. 4. Visual grounding of words for a sample word class.

A planning system uses the grounded grammar to generate
semantically unambiguous, syntactically well formed, contextual-
ized text descriptions of objects in novel scenes. A concatenative
speech synthesis procedure is used to automatically convert the
text string to speech using the input training corpus. The final out-
put of the system are spoken descriptions of target objects in the
voice of the human teacher. In outline form, the planner works as
follows:

Stage 1: Generate Noun Phrases
Using the noun phrase model as a stochastic generator, the

most likely word sequence is generated to describe the target ob-
ject, and each non-target object in the scene.

Stage 2: Compute Ambiguity of Target Object Noun Phrase
An ambiguity score is computed based on how well the phrase

generated in Stage 1 describes non-target objects in the scene. The
Viterbi algorithm is used to compute the probability that each ob-
ject in the scene matches the target phrase. If the closest competing
object is not well described by the noun phrase, then the planner
terminates, otherwise it proceeds to Stage 3.

Stage 3: Generate Relative Spatial Clause
A landmark object is automatically selected which can be used

to unambiguously identify the target. Stage 1 is used to generate a
noun phrase for the landmark. The phrase-based language model
is used to combine the target and landmark noun phrases.

Sample output from DESCRIBER is shown in Figure 5 for
four novel scenes which were not part of the training corpus. In
each scene, the target object is indicated with an arrow. Note that
the descriptions take into account the relative context of each tar-
get object. In the lower two scenes, Stage 1 failed to produce an
unambiguous noun phrase, so DESCRIBER generated a complex



Table 1. Results of an evaluation of human and machine generated
descriptions.

Judge Human-generated Machine-generated
(% correct) (% correct)

A 90.0 81.5
B 91.2 83.0
C 88.2 79.5
Average 89.8 81.3

utterance containing a relative landmark. These descriptions repre-
sent DESCRIBER’s attempt to strike a balance between syntactic,
semantic, and contextual constraints.

The highest vertical rectangle.The thin pink rectangle.

The dark green rectangle above
the light green rectangle.

The dark purple rectangle touching
the light purple rectangle.

Fig. 5. Sample output generated by DESCRIBER for target objects
indicated by arrows in the images. Relative spatial clauses are
automatically generated to reduce ambiguity when needed (bottom
two scenes).

3. EVALUATION

We evaluated spoken descriptions from the original human-generated
training corpus and from the output of the generation system. Three
human judges unfamiliar with the technical details of the genera-
tion system participated in the evaluation. Each judge evaluated
200 human-generated and 200 machine-generated spoken descrip-
tions. All judges evaluated the same sets of utterances. Responses
were evaluated by comparing the selected object for each image
to the actual target object which was selected in order to produce
the verbal description. Table 1 shows the results for both human-
generated and machine generated results.

Averaged across the three listeners, the original human-generated
descriptions were correctly understood 89.8% of the time. This re-
sult reflects the inherent difficultly of the rectangle task. An analy-

sis of the errors reveals that a difference in intended versus inferred
referents sometimes hinged on subtle differences in the speaker
and listener’s conception of a term. For example the use of the
terms “pink”, “dark pink”, “purple”, “light purple”, and “red” of-
ten lead to comprehension errors. In some cases it appears that
the speaker did not consider a second object in the scene which
matched the description he produced.

The average listener performance on the machine-generated
descriptions was 81.3%, i.e., a difference of only 8.5% compared
to the results with the human-generated set. An analysis of errors
reveals that the same causes of errors found with the human set
also were at play with the machine data. Differences in intended
versus inferred meaning hinged on single descriptive terms. In
some cases, an object was labeled using a descriptive term which
was chosen mainly for its effect in reducing ambiguity rather than
for its description accuracy. This lead at times to confusions for
listeners. In addition, we also found that the system acquired
an incorrect grounded model of the spatial term “to-the-left-of”
which lead to some generation errors. This would easily be re-
solved by providing additional training examples which exemplify
proper use of the phrase.

4. CONCLUSIONS

The results presented in this section demonstrate the effectiveness
of the learning algorithms to acquire and apply grounded structures
for the visual description task. The semantics of individual words,
and the stochastic generation methods were able to produce natural
spoken utterances which human listeners were able to understand
with accuracies only 8.5% lower than original utterances spoken
from the training corpus.
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