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Abstract 
Broadcast video and virtual environments are just two of the growing number of domains in 

which language is embedded in multiple modalities of rich non-linguistic information.  
Applications for such multimodal domains are often based on traditional natural language 
processing techniques that ignore the connection between words and the non-linguistic context 
in which they are used.  This thesis describes a methodology for representing these connections 
in models which ground the meaning of words in representations of events.  Incorporating 
these grounded language models with text-based techniques significantly improves the 
performance of three multimodal applications: natural language understanding in videogames, 
sports video search and automatic speech recognition. 

Two approaches to representing the structure of events are presented and used to model the 
meaning of words.  In the domain of virtual game worlds, a hand-designed hierarchical behavior 
grammar is used to explicitly represent all the various actions that an agent can take in a virtual 
world.  This grammar is used to interpret events by parsing sequences of observed actions in 
order to generate hierarchical event structures.  In the noisier and more open-ended domain of 
broadcast sports video, hierarchical temporal patterns are automatically mined from large 
corpora of unlabeled video data.  The structure of events in video is represented by vectors of 
these hierarchical patterns. 

Grounded language models are encoded using Hierarchical Bayesian models to represent 
the probability of words given elements of these event structures.  These grounded language 
models are used to incorporate non-linguistic information into text-based approaches to 
multimodal applications.  In the virtual game domain, this non-linguistic information improves 
natural language understanding for a virtual agent by nearly 10% and cuts in half the negative 
effects of noise caused by automatic speech recognition.  For broadcast video of baseball and 
American football, video search systems that incorporate grounded language models are shown 
to perform up to 33% better than text-based systems.  Further, systems for recognizing speech in 
baseball video that use grounded language models show 25% greater word accuracy than 
traditional systems. 

Thesis Supervisor: Deb Roy 
Title: Associate Professor of Media Arts and Sciences  
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Chapter 1 

Introduction 

Creating machines that can understand natural language has been a goal of Artificial 

Intelligence (AI) since its inception.  However, even today’s most successful search engines and 

speech recognizers have only a partial knowledge of the meaning of words.  While they may 

contain sophisticated models of how words relate to each other, these systems are ignorant of 

how these words relate to the non-linguistic world.  For applications that operate only on text, 

such information may not be necessary for building successful systems.  But for the growing 

number of applications where language is embedded within rich non-linguistic context (e.g., 

video search), exploiting the connection between words and the world has significant 

advantages. 

This thesis describes a methodology for representing these connections in order to model the 

meaning of words for events.  Understanding events in a contextually rich domain is extremely 

challenging for an automatic system.  Events cannot be described in purely perceptual terms, 

but rather, unfold over time, are hierarchical, and can only be interpreted with knowledge of 

the larger context in which they occur.  In this thesis, two approaches to representing the 

structure of events are presented and used to model the meaning of words. 
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In the domain of virtual environments, a hand-designed hierarchical behavior grammar is 

used to explicitly represent all the various actions that an agent can take in a virtual world.  This 

grammar is used to interpret events by parsing sequences of observed actions in order to 

generate hierarchical event structures.  This top-down approach to representing events is 

contrasted with a bottom-up method designed for the noisier and more open-ended domain of 

broadcast video.  In this approach, hierarchical temporal patterns are automatically mined from 

large corpora of unlabeled video data.  The structure of events in video are then represented as 

vectors of these hierarchical patterns. 

A probabilistic model of meaning, called a grounded language model, is generated by 

associating words with elements of these event structures.  These grounded language models 

are used to incorporate non-linguistic information into text-based approaches to multimodal 

applications.  In the virtual domain, this non-linguistic information improves natural language 

understanding for a virtual agent by nearly 10% and cuts in half the negative effects of noise 

caused by automatic speech recognition.  For broadcast video, video search systems that 

incorporate grounded language models are shown to perform 33% better than text-based 

systems.  Further, systems for recognizing speech in video that use grounded language models 

show 25% greater word accuracy than traditional systems. 

The contributions of this thesis are twofold: first, methodologies for representing events are 

introduced that are rich enough for grounding language use in contextually rich domains; 

second, incorporating these grounded language models with text-based techniques is shown to 

significantly improve performance for a variety of multimodal applications. 

1.1 Challenge of Events 
In order for grounded language models to support multimodal applications in which language 

is embedded within a rich context, event representations must be designed that are both 

powerful enough to support language use, and robust enough to operate in noisy domains 

(such as broadcast video).  The nature of events, however, makes designing such 

representations extremely challenging, particularly for the purposes of grounding language.   
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Unlike most properties and objects, events are temporal entities that defy description in 

purely perceptual terms.  While colors and shapes are largely defined by their immediate 

impact on the senses, events unfold over time and generate no persistent sensory impressions.  

This temporal characteristic gives events a hierarchical internal structure; such that, individual 

events are decomposable into sequences of lower level sub-events (e.g. entering a room requires 

unlocking the door, opening the door, walking through the door, etc.)  Whereas objects can be 

decomposed into observable sub-objects (e.g. a tree is composed of a trunk, branches, leaves, 

etc.), the hierarchical structure of events is largely hidden and highly context dependent.  So, 

while one often opens a door in order to enter a room, in other contexts opening a door may have 

very different implications (e.g. asking someone to leave, inviting someone in, ventilating the room, 

etc.).   

The hierarchical and temporal nature of events makes them difficult to interpret in isolation 

and without knowledge of the larger context in which they occur.  Modeling this contextual 

knowledge, however, can quickly become computationally infeasible, particularly in extremely 

noisy domains such as broadcast video (where identifying even the lowest level events is 

unreliable).  In order to get a wedge into this extremely challenging problem, this thesis follows 

a strategy, first introduced in the philosophy of language, which focuses on the interpretation of 

events in games. 

1.2 Language Games 
Long before the advent of computer science, philosophers of language also struggled with ways 

to analyze the meaning of words.  In an attempt to examine the functional aspects of words, one 

such philosopher suggested analyzing meaning by focusing on the simple linguistic interactions 

that surround constrained tasks (Wittgenstein, 1954).  These simple interactions, which he called 

language games, have the advantage of representing real-world linguistic phenomena, while 

abstracting away many of the complexities that obscure more detailed analysis.  Focusing on 

such language games gives the philosopher a more manageable means of accessing the 

complexities of language use.  Further, by incrementally increasing the complexity of the 

language games under examination, the philosopher can develop an increasingly rich model of 

the meaning of words. 
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This thesis takes inspiration from this philosophical approach in order to tackle the 

complexities of representing events for grounded language models.  However, while 

philosophers have largely focused on imaginary interactions between people in contrived tasks 

(e.g. builders passing each other blocks), this thesis takes the notion of games more literally.  In 

this work, language is modeled using actual games played by real people.  We focus on two 

types of games from very different domains: immersive videogames and broadcast video of 

professional sports. 

1.2.1 Videogames  

Videogames provide an ideal environment for examining how to design representations rich 

enough for language grounding.  The current state of the art in virtual environments allow for 

the creation of exceptionally rich virtual worlds in which human participants interact through 

the use of virtual characters.  These virtual environments offer a very high level of control to 

designers both in their ability to generate tasks with controllable complexity, and to record the 

behaviors of their subjects.  Further, without the need for any computer vision technology, all 

actions taken by subjects in a virtual world can be automatically recorded with no perceptual 

noise.   

Most importantly, however, videogames make it possible to explicitly encode all the various 

actions that an agent can take in a virtual world.  As designers, one is given unique access not 

only to the rules of the games that are created, but also to the deterministic effects of actions on 

the environment (e.g. mouse-clicking a door makes the door open).  By encoding these rules 

and actions, the context of the game can be fully modeled and rich representations of events can 

be generated for language grounding.   

Unfortunately, many of the advantages of virtual worlds disappear when moving to the 

domain of broadcast video.  Unlike videogames, events in broadcast video are more open-

ended and not constrained by the limitations of a virtual world.  However, by continuing our 

literal interpretation of the philosophical method, and focusing on video of humans playing 

actual games (i.e. sports), different but analogous advantages can be exploited. 
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1.2.2 Broadcast Sports Video 

Even in the domain of sports video, computer vision technology has not been developed to 

accurately represent events.  The ability to identify objects (such as players, balls, etc.) and track 

their movements is an open problem and the subject of much research.  However, focusing on 

the domain of sports video does afford a number of advantages in terms of visual processing 

algorithms.   

First, the separation of sports games into plays (e.g., “at bats,” “downs,” “possessions,” etc.) 

gives each game a defined structure and simplifies the segmentation of events from continuous 

video.  Further, the use of similar playing fields and camera angles greatly simplifies the 

identification of characteristic shots (even across different teams and stadiums) that can be used 

as the basis for representing actions in a game.  

Finally, although many types of events occur in any particular sport, most everything that 

happens in a game conforms to a strict set of rules of conduct.  Thus, although varied and 

nondeterministic, the events that occur within a game often follow stable patterns (e.g., a double 

play usually involves a hit, followed by a catch, followed by a throw, etc.).  Data mining 

algorithms can be used to automatically learn these patterns directly from data in order to build 

up representations of events.  By building up more and more complex patterns, robust 

representations of context can be learned without the need for explicit encoding (as was done in 

the virtual world). 

In addition to its advantages for representing events, sports video offers a number of other 

practical advantages for learning grounded language models.  In terms of size, the popularity 

and frequent schedule of sports games make it easy to collect the large datasets necessary for 

learning grounded language models.  Over the course of a typical season hundreds of hours of 

sports video can easily be recorded from broadcast television.  These games are particularly 

well suited for modeling language learning because they are always shown with running 

commentary by announcers who provide play-by-play descriptions that correlate with the 

events in the video.1  Further, this commentary is almost always presented in closed captioning, 

                                                 
1
 Although

 
this correlation is not perfect (sometimes the announcers discuss events in the past, future, or on different 

topics), there is enough regularity in the data such that, as the amount of data increases, significant patterns can be 

detected.   
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thus alleviating the need for human transcription of speech.2  Finally, any progress in the 

automatic analysis of sports video is likely to have practical and commercial relevance as 

evidenced by its wide spread popularity, the existence of multi-billion dollar related businesses, 

and the large body of academic research that focuses on the topic.  

The next section describes our methodology for representing these events and how we train 

grounded language models on such data. 

1.3 Grounded Language Models 
Grounded language models represent the relationship between words and the non-linguistic 

context in which they are used.  Our methodology for learning grounded language models 

operates in two phases: event recognition and linguistic mapping.  During event recognition, 

we generate representations to encode the non-linguistic context that surrounds language use.  

Then, during linguistic mapping, we model the association between these event representations 

and the words that are uttered as they occur3.  We outline this two phase approach below, 

highlighting the differences between the top-down approach used to represent events in 

videogames and the bottom-up approach used for sports video. 

1.3.1 Event Recognition 

As described above, representations of events are dependent on the larger situational context 

for proper interpretation.  For applications in virtual game worlds, we make the assumption 

that all events in a videogame stem from a generative model of behavior that encodes the 

strategies and goals of the players of the game.  We call this generative model a behavior 

grammar (Miller et al., 1960) and formalize it using a hand-designed probabilistic context free 

grammar (PCFG).  Individual events are represented as hierarchical structures which are 

                                                 
2
 Closed captioning is a service provided by broadcasters primarily for hearing impaired viewers, in which human 

transcriptions of what is being said is embedded in the video stream.  These transcriptions can be displayed during 

viewing or extracted to a text file for later processing.  
3
 This thesis is concerned primarily with descriptive and directive utterances.  Other speech acts (e.g. questions) may 

not ground out in co-occurring context.  However, no limitations are placed on the types of utterances used to 

train grounded language models, and it is left to the system to learn which utterances ground out in context and 

which do not. 
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generated by parsing sequences of the players’ actions; just as syntactic structures are generated 

by parsing sequences of words in a sentence.  Although this top-down approach has many 

interesting properties (such as its ability to model the asymmetry in noun and verb learning), it 

is best suited to deterministic domains with very little noise.  In more complex domains, data-

driven methods become more effective. 

To represent events in video, we introduce a bottom-up approach in which the structure of 

events is automatically learned from large corpora of unannotated video data.  This approach 

operates over noisy features extracted from multiple video streams.  It uses temporal data 

mining to automatically discover hierarchical temporal patterns that exist within low level 

features of a video.  These hierarchical patterns form a codebook, which acts as an analogue to 

the behavior grammars described above.  Like the behavior grammar, the codebook is a 

representation of the larger situational context of a game.  However, the temporal patterns in 

the codebook are more flexible than the rigid production rules that make up a behavior 

grammar.  By using these more robust temporal patterns, and learning them directly from data, 

we produce event representations that are effective for video applications.  

1.3.2 Linguistic Mapping 

Grounded language models represent the association between words and the non-linguistic 

context in which they are used.  In this thesis, models encode this association using conditional 

probability distributions of the likelihood of a word being uttered given a representation of its 

non-linguistic context.  These probability distributions are trained using unsupervised statistical 

techniques that exploit large corpora of event representations paired with the words uttered 

during those events.  By encoding grounded language models in this way, a wide variety of 

previous work on designing and training probabilistic models can be exploited (e.g., work on 

Machine Translation models and Hierarchical Bayesian models).  Further, the use of probability 

distributions enables grounded language models to be easily applied to nearly any application 

with a probabilistic framework (particularly those that use traditional text-based language 

models).  In this thesis, we focus on how context improves performance on three such 

applications: natural language understanding, video search, and speech recognition. 
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1.4 Applications  
There are a growing number of application domains in which language is embedded in other 

modalities that contain rich non-linguistic information.  Often times such multimodal 

applications are based on traditional natural language processing techniques that are designed 

to exploit information only from text.  In video search applications, for example, many 

approaches (both academic and commercial) simply apply techniques for finding documents on 

the internet, to the transcriptions of speech in a video.  Such approaches become easily 

confused, however, by situations in which people talk about things that are not actually 

occurring.  For example, searching for a “home run” in baseball video using only transcripts of 

speech often returns false positive results where people are talking about a home run that 

happened in the past (or might happen in the future).  

A central focus of this thesis is to explore how grounded language models can improve such 

systems by incorporating non-linguistic information into traditionally text-based techniques.  

We evaluate these models (and the event representations on which they are based) using three 

applications: natural language understanding, video search, and speech recognition. 

Natural language understanding is evaluated in the context of virtual agents interacting with 

a human in a virtual game world.  Grounded language models are used to convert linguistic 

input into semantic frame representations, and behavior grammars are used to bias 

understanding towards representations that fit the context of the game.  Evaluations show that 

systems which incorporate context perform nearly 10% better than systems without context and 

further reduce the error caused by noisy automatic speech recognition by 50%. 

Video search is evaluated on video of broadcast baseball and American football games.  A 

grounded language model is used to extend a text-based language modeling approach, 

combining information from the audio/visual stream of video with speech transcriptions.  This 

non-linguistic context helps avoid the false positive results inherent in using text based methods 

(as described above).  Evaluations show that systems which incorporate grounded language 

models are over 33% more precise than the traditional text only approach. 

Finally, automatic recognition of speech is evaluated on video of broadcast baseball games.  

Grounded language models are combined with text-based unigram, bigram, and trigram 

language models to bias recognition towards phrases that are related to the events that occur 
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during an utterance.  (e.g., the occurrence of a ground ball during an utterance increases the 

probability of the bigram “ground ball”).  Evaluations show that a speech recognition system 

that uses grounded language models has 25% greater word accuracy than a traditional system. 

1.5 Roadmap 
In the remainder of this thesis is organized as follows:  

• In Chapter 2, previous work related to this thesis is described.   

• In Chapter 3, a top-down approach to event representation is described.  Grammars of 
behavior are introduced, and their design and implementation is presented. 

• In Chapter 4, grounded language models based on top-down event representations are 
evaluated on a natural language understanding task in two virtual environments: a 
multiplayer online videogame and a military training simulation. 

• In Chapter 5, a bottom-up approach to event representation is described.  The approach 
uses temporal data mining to automatically learn event structure from unlabeled video 
data.   

• In Chapter 6, Grounded language models are evaluated using a sports video search 
application.  

• In Chapter 7, Grounded language models are evaluated on the task of automatically 
recognizing speech in sports video.  

• In Chapter 8, we discuss the contributions of this work and implications for future 
directions. 
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Chapter 2 

Background 

The work in this thesis touches on many areas of computer science. This chapter focuses on 

work related to grounded language models, and the applications to which they are applied in 

the thesis.  Other related topics such as such as image classification, developmental psychology, 

machine translation, etc.  will be discussed as they are introduced within the following chapters. 

2.1 Symbolic Models of Meaning 
Traditional approaches to computational semantics define the meaning of a word strictly in 

terms of its relationship to other words, or word-like symbols.  These symbolic models can be 

categorized based on the purpose and manner in which these relationships are discovered.  

Much of the initial work in this area comes from researchers in computational linguistics and 

knowledge representation who sought to build more intelligent machines by formalizing all 

linguistic knowledge.  These early efforts depended on the use of human experts to encode 

semantic relationships using a variety of techniques including semantic networks (Quillian, 
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1967), formal logics (Lenat, 1995), semantic lexicons (Pustejovsky, 1991) and ontologies (Miller 

et al., 1990).  In general, designing such models is a very time consuming process, taking many 

years to complete, and with often controversial claims regarding the completeness and 

applicability of the final output.   

Researchers in cognitive psychology also focus on designing symbolic models of meaning, 

although with very different goals and techniques than those above.  These cognitive models 

focus on how children develop their linguistic abilities, and thus, are models that learn from 

data meant to mimic what children actually observe during development.  Such learning 

models take many forms, such as neural networks and Bayesian models (for a review, see 

Regier, 2003).  However, the vast majority of this work operates only on human coded 

representations of what children actually observe (e.g. the symbol ‘CAT’ for a real world cat), 

and thus, also require a great deal of human effort to create.  Further, because they are designed 

strictly to model human word learning, their applicability to real world tasks is highly limited. 

More recently, the fields of cognitive psychology and computational linguistics have 

converged on methods in which symbolic models of meaning are learned automatically from 

large corpora of text data.  These models define the meaning of a word entirely in terms of its 

correlation with other words that are used in similar linguistic contexts.  Thus, the meaning of 

the word “cat” is not defined by its relation to the symbol ‘CAT’, but rather, as a correlation 

with other words, such as “dog,” “fur,” “milk,” etc.  Such correlations are learned using a 

variety of statistical techniques (e.g. Latent Semantic Analysis: Landaur et al., 1997; Latent 

Dirichlet Allocation: Blei et al., 2003) from large corpora of text documents (news articles, etc.) 

without the need for human expertise.  These models not only correspond well with various 

aspects of human language development (Landaur, 1997), but also are useful in text-based real 

world applications such as document retrieval (Deerwester et al., 1990).   

Although research into symbolic models of meaning has produced many important results, 

such models are limited both in their ability to model psychological phenomena, as well as, in 

their applicability to real world tasks.  By abstracting away to a world made up entirely of 

symbols, cognitive models of word learning ignore a key element of semantics, the relationship 

between words and the environment of the language user (Harnad, 1990).  Similarly, by 

defining the meaning of a word strictly in terms of other words, the applicability of symbolic 

models is limited to those tasks that operate only on words (e.g., document retrieval, text 
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summarization, text-to-text machine translation, etc.).  For more realistic models of word 

learning, as well as, for applications situated in the real world (e.g., robotics, video processing, 

multiplayer videogames), a model of meaning is required that is grounded in the physical 

environment.   

2.2 Grounded Models of Meaning 
Recent work in the cognitive sciences addresses the limitations of symbolic models of meaning 

by defining the meaning of a word not strictly in terms of other words (or word-like symbols), 

but rather by grounding the meaning of a word in representations of the context in which they 

are used (for review see Roy, 2005, and Roy and Reiter, 2005).  Importantly, these 

representations of context are generated, not by some human in the loop, but rather, are 

automatically constructed by the machine based on its perception of the environment. 

The form of these representations varies dramatically depending upon the class of words to 

be grounded and the communication task at hand.  In Roy (2002), a grounded model of 

meaning was learned for words that describe simple shapes and colors in order to support a 

conversational robot.  The robot existed in a shared environment with the human user; it heard 

words through a microphone and could see the world using a camera.  The model learned to 

ground words for colors and shapes into representations output by a computer vision system 

using a mutual information technique that exploited recurrent patterns in the speech and video 

stream.  In other words, because people talked about colors and shapes more often in the 

presence of those same colors and shapes, a grounded model of meaning could be learned to 

support human interaction. 

Although the majority of work on language grounding has focused on more concrete words, 

such as words for objects and colors (Roy, 2005; Yu et al., 2003), there have been some efforts to 

ground words for simple movements.  This work has focused primarily on grounding event 

terms in representations of the physical environment.   Fern, Givan, and Siskind (2002) describe 

a system which grounds words for simple physical actions.  They use temporal logic 

representations to encode the force dynamic relationships that change between objects as they 
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are moved (Siskind, 2001).  Thus, “stacking” involves the forces of one object on another, while 

“lifting” involves removing the force of one object using another, etc.   

Bailey (1997) describes a very different method of representation to ground the meaning of 

low level physical movements (e.g. “push” and “pull”).  He represents such movements using 

the control system of a simulated arm, such that movements are represented by the values of 

parameters that control forces and joint angles of that arm performing that action.  Narayanan 

(1999) describe how similar underlying representations, called x-schemas, can also be used to 

understand more metaphorical uses of words for physical motion.  By mapping domains such 

as the economy into representations of physical movement, he develops a system for 

interpreting phrases from news articles, such as “the rising economy.”   

2.3 Representing Events 
In addition to work on grounding language, a great deal of research in AI has examined ways to 

represent events.  Seminal work by Minsky (1974) and Schank & Abelson (1977) introduced the 

idea of frames and scripts, respectively, as formalizations of stereotyped information and 

episodic knowledge about events.  Early work on automatic planning systems in AI model 

events using STRIPS representations, which encode the preconditions and post conditions of 

actions and the goals that they achieve (Russell and Norvig, 1995).  More recently, probabilistic 

models, such as partially observable Markov decision processes (POMDP), have been proposed 

to account for the uncertainty that exists when planning in noisy environments (Kaelbling et al., 

1998).   

Probabilistic methods have also been examined for the inverse planning problem, i.e., 

recognizing the plans of others.  Charniak and Goldman, (1993) describe a plan recognition 

system based on Bayesian belief networks that is used to understand natural language stories.  

Pynadath (1999) uses probabilistic context free grammars (PCFG) to recognize events for 

applications such as highway traffic modeling.  Baker et al. (2005) use a Bayesian model to infer 

the intentions behind an agent’s action in a cognitive model of human action understanding.  

Ivanov and Bobick (2000) recognize events in video (e.g., conducting music) by  combining 
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PCFGs with lower level hidden Markov models (HMMs) to capture both observational 

uncertainty , as well as, the hierarchical nature of complex events.   

Hongeng and Nevatia (2001) and Intille and Bobick (2001) combine low level probabilistic 

models with higher level temporal constraints to recognize multi-agent events in video.  

Hongeng and Nevatia (2001) combine HMMs with temporal logic in order to model events in 

surveillance video (such as the theft of a briefcase).  Similarly, Intille and Bobick (2001), insert 

temporal constraints into Bayesian belief networks to model events in American football (based 

on manually identified player tracks).  

A great deal of additional research has examined representing events specifically in sports 

video.  Li and Sezan (2001) use an HMM to identify “plays” in a baseball game based on visual 

features that correlate with characteristic scenes of the pitcher.  Rui et al. (2000) focus on audio 

features (e.g., pitch, amplitude, etc.) and use an HMM to recognize highlight events in baseball 

video.  Gong et al. (2004) use a discriminative classification approach to model specific types of 

events (e.g. home runs, strikeouts, etc.).  Events are represented as vectors of features in which 

each feature corresponds to visual or audio information from individual frames of the video.   

2.4 Cross-Modal Learning 
There exists a large body of research on algorithms for learning relations across information in 

multiple modalities.  In the domain of word learning, Siskind (1996) describes a model that uses 

deductive inference in order to find mappings between words and formal logic representations 

of meaning.  Roy (2003) examines word learning in more natural environments, looking at 

speech and visual data of mothers and children at play.  Mutual information is used to measure 

the independence of visual and acoustic features in order to learn mappings between clusters of 

phonemes and representations of shapes and colors.  Coen (2006) introduces a technique to 

cluster phonemes based on acoustic and visual features related to the movement of speakers’ 

mouths.  His multi-modal clustering algorithm clusters phonemes based on their inter-modal 

similarity as well as temporal correlations across modalities.   

Yu and Ballard (2003) examine the effects of speakers’ focus of attention on learning word-

object mappings.  They use algorithms from Machine Translation, specifically IBM model 1 
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(Brown et al., 1993) to estimate conditional probability distributions of words given hand coded 

representations of visible objects.  Barnard et al. (2003), also use Machine Translation algorithms 

for word learning.  They focus on a corpus of photographs manually annotated with words 

describing their contents, and automatically extract visual “blob” features from the images.  

They also introduce a Hierarchical Bayesian algorithm which extends Latent Dirichlet 

Allocation for multi-modal data (Blei and Jordan, 2003).  This model is similar to models 

introduced for text processing which encode the relationship between words in a document and 

their authors (Steyvers et al., 2004).  

2.5 Applications 

2.5.1 Natural Language Understanding 

Natural language understanding describes the task of automatically converting utterances of 

natural language into computer readable semantic formalizations.  While early work in this area 

used hand designed rules to understand language (e.g. Winograd, 1972), more recent work 

examines how such language understanding systems can be learned automatically. 

Recent work on learning natural language interfaces to databases falls within this category.  

Such natural language interfaces treat the translation of utterances into SQL queries as a 

problem of semantic parsing.  Using training sets of utterances annotated with semantic 

representations, machine learning techniques are used to train parsers that infer semantic 

representations from well-formed utterances (e.g., Zettlemoyer and Collins, 2005; Ge and 

Mooney, 2005; Epstein, 1996).   

In addition to such interfaces, a growing body of work focusing on semantic tagging has 

employed learning techniques.  In such work, large corpora of annotated text are annotated by 

hand with information about the semantic roles of various words or phrases within sentences 

(Baker et al., 1998; Palmer et al., 2005).  These corpora are then used to train semantic taggers to 

identify and classify these roles using linguistic and syntactic information extracted from the 

sentence (Gildea and Jurafsky, 2002; Fleischman et al., 2003).   
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Finally, there has been some recent work looking specifically at natural language 

understanding in virtual environments.  Bhagat et al. (2005) learn a probabilistic model to select 

the most likely frame elements given a natural language utterance.  This shallow model uses 

little training data and operates on spoken language (unlike the previous approaches which 

assume well formed sentences).  Gorniak and Roy (2005) present a more sophisticated model of 

language understanding based on plan recognition and a manually designed lexicon of word to 

meaning mappings.  Although not a learning methodology, their approach is novel in its use of 

information about the non-linguistic context of a virtual world in order to improve speech 

recognition.   

2.5.2 Multimodal Information Retrieval 

Research on multimodal information retrieval (IR) focuses on designing systems that enable 

searching for video and/or images from large corpora.  The majority of work on multimedia IR 

can be classified into one of two approaches: supervised and unsupervised.  Supervised 

approaches are particularly popular for video IR, and generally operate by first extracting 

individual frames from the video which are then classified into a number of pre-defined 

categories (called concepts) based on low level color and texture features (for a review, see 

Worring and  Snoek, 2005).  A user’s query is then translated into one or more of these concepts 

and video clips that contain frames of that concept are returned.  Such supervised approaches 

can perform well for certain types of queries, but often require a great deal of human effort both 

for the system designers (who must hand label example images to train the classifiers) and for 

the system users (who often must translate their queries by hand into the predefined concept 

terms).   

Unsupervised approaches to multimedia IR can also be divided into two approaches: those 

that incorporate non-linguistic data and those that do not.  Approaches that do not incorporate 

non-linguistic information are popular for video search because of their simplicity and 

generality.  Such systems generally employ automatic speech recognition (ASR) to generate a 

transcript of what is said in a video, which can then be used to index the video as if it were a 

text document, thus turning the problem of video search into one of text search (Wactlar et al., 

1996).  Although useful for more general applications, such as topic spotting in news 
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broadcasts, this approach is often unsatisfactory for more specific types of search, particularly in 

sports video.   

The occurrence of a query term in a video is often not enough to assume the video’s 

relevance to that query.  For example, when searching through video of baseball games, 

returning all clips in which the phrase “home run” occurs, results primarily in video of events 

where a home run does not actually occur. This follows from the fact that in sports, as in life, 

people often talk not about what is currently happening, but rather, they talk about what did, 

might, or will happen in the future. 

Unsupervised approaches that do incorporate non-linguistic information have primarily 

been used for searching large image databases (Barnard et al., 2003; Blei and Jordan., 2003).  

Such image search techniques generally operate by modeling the association between low level 

features of an image (such as color blobs) and hand annotated labels for that image.  Although 

these approaches employ similar techniques to those used in this thesis, two important 

distinctions must be noted.  First, these image IR systems do not employ representations of 

dynamic events, but focus only on features from individual images.  Second, such systems are 

trained using clean hand-labeled annotations, not natural speech transcriptions that do not 

necessarily describe the co-occurring video.   

2.5.3 Automatic Speech Recognition 

Automatic speech recognition (ASR) is a well studied problem in which acoustic speech signals 

are transcribed automatically into text.  State of the art techniques employ a noisy channel 

framework in which the correct transcription for a speech signal is found by means of a 

heuristic search (or decoding) through the space of possible text outputs.  This search is based 

on the input speech signal and two probabilistic models: the channel model (also called the 

acoustic model); and the source model (also called the language model).   

Acoustic models represent the relationship between the written and spoken forms of a word.  

They are trained using large parallel corpora of transcribed utterances paired with audio 

samples of people saying those utterances.  The audio samples are converted into time-series of 

spectral features, most typically mel-frequency cepstral coefficients (MFCCs) and the 

transcribed utterances are converted into sequences of phonemes, based on a pronunciation 
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dictionary (Rabiner and Juang, 1993).  The Expectation-Maximization (EM) algorithm is then 

used to train hidden Markov model (HMM) representations of the probabilistic relationship 

between acoustic features and phonemes.   

Language models are used to assign prior probabilities to sequences of words in a language, 

in order to bias a system toward outputs that are more likely to be uttered in a particular 

language.  Language modeling is a widely studied area of research used in many other natural 

language applications, such as information retrieval, machine translation, and part of speech 

tagging (Manning and Schutze, 2001).   

Standard approaches for generating language models collect frequency statistics for words 

and phrases in a large corpus of language-specific text documents (e.g., multiple years of the 

Wall Street Journal).  These statistics are used to generate multiple n-gram probability 

distributions which represent the probability of a word given the n-1 previous words in an 

utterance.  Because many sequences of words may not be observed in a given training corpus, 

smoothing is used to improve the probability estimates (Manning and Schutze, 2001). 

Very little work has been done to in ASR to exploit information from the non-linguistic 

context that surrounds language use.  A notable exception to this is Roy and Mukherjee (2005), 

in which the language model of an ASR system is extended to take advantage of the visual 

context of the speaker.  Here the language model dynamically updated the likelihoods of words 

based upon the output of a computer vision system in an extremely limited visual/linguistic 

domain (utterances were limited to the type: “the large green block beneath the yellow and red 

blocks”).4   

In this thesis, we present grounded language models as a more principled and general 

method of integrating non-linguistic context into natural language processing tasks.  Like 

traditional text-based language models, grounded language models encode the prior 

probability of words using conditional probability distributions.  Unlike text-based language 

models, though, grounded language models represent the probability of a word conditioned 

not only on the previous word(s), but also on features of the non-linguistic context in which the 

word was uttered.  In the following chapters, we describe in detail how grounded language 

                                                 
4
 See Qu and Chai (2006) for a related approach based on deictic gestures.  



  34 

models are generated and show how they are applied with significant benefit to the 

applications described here. 

 



  35 

Chapter 3 

Events in the Virtual World  

In this chapter we describe a top-down approach to representing event structure for a grounded 

language model.  The approach is based on the creation of behavior grammars which explicitly 

model all possible actions that agents can take in an environment.  Behavior grammars enable 

the design of rich models of meaning that capture the ambiguity inherent in language about 

events.  We highlight two distinct types of ambiguities modeled by behavior grammars.  We 

then describe a two phase approach for learning grounded language models, in which behavior 

grammars are used to generate hierarchical event structures that are then associated with 

natural language.  

3.1.1 Ambiguity of Events 

A key concern when representing the structure of events is to account for the ambiguities that 

arise when such actions are described.  While the ambiguity of events has been studied 

extensively in the psychological literature (Vallecher and Wagner, 1987; Woodward et al., 2001; 

Gleitman, 1990), little work on event representation has been proposed that accounts for those 

ambiguities in a computational framework.  To motivate our approach to representing events, 
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we propose a simple example that illustrates some of these ambiguities and suggests a 

representation to account for them. 

Consider a video game world (such as that shown in Figure 3-1) in which, to win the game, a 

player must respond to spoken requests by their partner to perform various tasks (e.g., if the 

player is told to “open the door,” the player must open the door).  Assume that you are 

watching this game take place and have full access to these interactions (i.e., the verbal requests 

paired with the player’s actions situated in the virtual world).  At a certain point in the game, 

you hear the unknown word “grok” uttered and observe the player click their mouse on the 

leftmost door.  Now, based only on your sensory observation, there are a number of possible 

interpretations for the word “grok.”  “Grok” may mean open the door, or alternatively, move to 

the door.  Or “grok” might be a command to let another player into the room, or for the player 

to get some needed object from the next room (such as an axe).   

Such situations demonstrate two distinct types of ambiguity, which we represent graphically 

as a lattice in Figure 3-2.  In this lattice, the leaf nodes represent low level observations of the 

player’s actions (i.e. the mouse clicks), while the root nodes represent the high-level intentions 

behind those actions (e.g. winning the game).   

The first type of ambiguity shown in the lattice, which we refer to as a vertical ambiguity, 

describes the ambiguity between the find axe versus open door interpretations of “grok.”  Here 

the ambiguity is based on the level of description that the speaker intends to convey, not what 

the speaker wanted the player to do.  Even when the speaker’s intention is known (e.g. the 

speaker wanted the player to get the axe), a vertical ambiguity still exists based on whether 

 

 

Figure 3-1  Screenshot of virtual game world used 

in grounded language modeling experiments  
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“grok” means “find the axe” or just the first step of that event, i.e. “open the door.”  

Interestingly, even though “grok” has a fixed meaning, if we were to ask the player “Did you 

mean to go find the axe?” or “Did you mean to go open the door?” they would answer yes to 

both questions. 

The second type of ambiguity, referred to as horizontal ambiguity describes the difference in 

interpretation between the find axe versus let in player meanings of “grok.”  In this case, the high 

level action behind the sensed action is ambiguous.  Unlike with vertical ambiguities, only one 

of these actions is typically intended.  Thus, if the speaker were questioned about their action, 

they could answer in the affirmative to only one of the questions: “Did you mean to let another 

player in?” and “Did you mean to go find the axe?”5 

By representing events as a lattice, both vertical and horizontal ambiguities are captured.  

Such representations encode the hierarchical nature of events, as well as, represent how the 

interpretation of an event is dependent upon the context of a situation.  In the next section we 

introduce behavior grammars as a way to formalize this context. 

                                                 
5 While vertical ambiguities may have a parallel in objects (e.g. animal-dog-poodle) (Rosch, 1976) horizontal 

ambiguities are unique to intentional actions.   

 

Figure 3-2  Example event structure inferred after observing a subject 
mouse click a door.  The structure provides a graphical representation 
of two distinct types of ambiguity surrounding word learning. 
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3.1.2 Grammars of Behavior  

The idea of a behavior grammar dates back at least to Miller et al. (1960) and has been re-visited 

more recently by Baldwin & Baird (2001).  We formalize this notion by defining a behavior 

grammar as a set of rules that describe how an agent’s higher level actions (e.g., find axe) can 

expand into sequences of lower level events (e.g. open door, go through door, open chest).  For any 

given high level goal (e.g. wining the game in the above example), the rules in a grammar 

define all the valid strategies that an agent can take to achieve that goal.  In this way, a behavior 

grammar for a task serves as a description of an agent’s knowledge about how to complete that 

task.  Also, it serves as a formalization of all the actions that an agent can take within a certain 

domain.6 

Figure 3-3 depicts a simple behavior grammar that can be used to interpret the observed 

movements in the videogame scenario described above.  The highest level intention is to win 

the game, and this is achieved with the completion of two lower level events: getting the axe, 

and letting in the other player.  These two events are themselves achieved through a sequence 

of lower level actions, both of which begin by opening a door.  For someone observing the 

scenario described above, the horizontal ambiguity surrounding the agent’s opening a door (see 

Figure 3-2) is represented in the behavior grammar by the existence of multiple rules (i.e. rule 2 

and 3) that both begin with the same action.  The resolution of such ambiguity is achieved 

                                                 
6
 Importantly, the rules in these behavior grammars are created entirely by hand (see Section 3.2).  Explicitly 

modeling this context is facilitated by the deterministic nature of virtual worlds and the relatively simple games 

we examine.  In domains where these assumptions do not hold, such as broadcast video, alternative techniques are 

applied.  The second part of this thesis discusses an approach which learns event structure automatically from 

data. 

  1. Win_Game → Get_Axe Let_in_Player 
 

2. Get_Axe → Open_Door Pick_Up_Axe 

3. Let_in_Player → Open_Door  
 

4. Open_Door → Click_Door 

5. Open_Door → Pull_Lever 

 

Figure 3-3.  Example production rules in a behavior 

grammar that encodes the strategies to win a simple 

game.  Behavior Grammars are used to infer event 

representations from sequences of observed movements. 
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through the observation of more movements in order to determine which of these two rules is 

consistent with all of the observed data.7 

Modeling the possible actions as a grammar of behavior allows us to recast the process of 

recognizing events as a problem of parsing a sequence of observations.  As players of a game 

perform new low level actions (i.e. mouse-clicks), the behavior grammar can be used to infer a 

hierarchical event structure over those actions.  In this top down approach, the knowledge of 

how to interpret high level events encoded in the behavior grammar is used to disambiguate 

lower level events.   

The following sections describe this process in more detail and show how it is used to train a 

grounded language model.  The methodology operates in two phases: Section 3.2 describes the 

first phase, in which a top-down approach is used to generate event structure representations 

from sequences of observed actions; Section 3.3 describes the second phase, in which words are 

mapped onto these inferred structures to produce a grounded language model.   

3.2 Representing Events  
Our top-down approach to event recognition infers event structure based on sequences of an 

agent’s observed low level actions.  As described above, this procedure is cast as a parsing 

problem, which relies on a behavior grammar that encodes the strategies an agent can take to 

achieve some goal.  In order to capitalize on this analogy with parsing, we represent such 

grammars of behavior using a probabilistic context free grammar (PCFG) that allows for the 

building of event structures in much the same way that a PCFG for syntax allows for the 

parsing of sentences (e.g., Collins, 1999).  Treating grammars in this way allows us to treat the 

rules that make up a behavior grammar as production rules in which an agent’s high level 

intentional actions produce sequences of lower level intentional actions with different 

probabilities (e.g., find_axe → open_door go_through_door open_chest).  Such rules mirror 

syntactic rules in which high level syntactic categories produce lower level categories (e.g. NP 

→ DT ADJ N).   

                                                 
7
 Because sometimes even the same sequence of observations can be described by multiple rules, intention rules are 

extended with probabilities that can also be used to resolve ambiguities.  This is discussed in more detail below. 
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Unlike syntactic rules, each node of an inferred event structure is not atomic, but rather, 

represents an action that itself has internal structure.  We can capture this internal structure by 

using a semantic frame representation for each node in the lattice.  Similar to the semantic 

frames described by Fillmore, (1976), these semantic frames encode the participants of an action 

and their thematic roles (agent, patient, action, etc.).  For example, in Figure 3-2 (see insert), the 

node labeled find axe, comprises a frame with a FIND action, a PLAYER agent, and an AXE 

patient.   

By formalizing the grammar of behavior as a PCFG, event recognition can be recast as a 

problem of parsing sequences of observed low level actions.  Similar to previous work in video 

event recognition (Ivanov and Bobick, 2000) and plan recognition (Pynadath, 1999), we borrow 

an established algorithm used for syntactic parsing from work in computational linguistics 

(Stolcke, 1994).  This algorithm is based on dynamic programming techniques, leading to 

efficient and tractable performance even with complex grammars and input data. The algorithm 

is adapted to generate event structures by replacing the syntactic grammar used for sentence 

parsing with a behavior grammar. The parser can then be run over a sequence of observations 

of players in a game, just as it would be run over a sequence of words in a sentence.   

Using PCFGs to model event recognition represents a compromise between simpler models 

of plan recognition such as Hidden Markov Models (e.g., Horvitz, 1998), that are easier to 

parameterize, but are not in general hierarchical, and models that rely on full abductive 

inference (Appelt and Pollack, 1992) that are less efficient because of their greater complexity.  

Although this compromise gives PCFGs a good balance between efficiency and complexity, 

they do this at the cost of a number of assumptions.  PCFG parsers cannot infer trees in which 

an agent executes multiple actions concurrently, nor can a single observed action ever be 

thought to accomplish multiple higher level goals.  Further, PCFGs assume that all actions occur 

in strict sequential order, and therefore, that they do not occur during or overlap with each 

other.8  These assumptions, however, allow for the use of very efficient algorithms to model 

event recognition and provide a natural method for handling the horizontal ambiguities 

associated with intentional action.   

                                                 
8
 This assumption does not hold in more complex domains, such as in broadcast video. 
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As described above, horizontal ambiguities stem from the fact that any given observed action 

may have been performed to achieve any number of higher level intentions.  This ambiguity is 

captured by the existence of multiple possible paths from the observed leaf action in an event 

structure to the root intention.  By treating a behavior grammar as a PCFG, each of these paths 

has associated with it a probability that stems from probabilities associated with each rule in the 

grammar (see Stolcke, 1994, for a discussion of how path probabilities are calculated).  As a 

Figure 3-4  a) Parallel sequences of speech and actions are recorded from subjects as the 

expert guides the novice through a virtual environment.  b) A tree is inferred over the 

novice’s sequence of observed actions using a probabilistic context free grammar of 

behaviors.  Each node in the tree is a different level of intentional action and is encoded by 

a semantic frame.  c) The vertical path from a leaf node in the tree (i.e. observed action) to 

the root (i.e. highest order intentional action) contains multiple possible levels to which an 

utterance may refer.  Linguistic mapping uses d) Expectation Maximization to estimate the 

conditional probabilities of words given roles to resolve this ambiguity. 
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growing history of movements are observed, the parsing algorithm is able to focus in on the 

most likely of these paths using the observed sequence as evidence for the agent’s high level 

intentions.  After each observation, the algorithm can produce a single tree that represents the 

most likely path from each of the observed leaf actions to the single root intention (see Figure 3-

4b).  Thus, in the same way that syntactic ambiguities can be resolved to create a syntax tree 

using a PCFG of syntax, horizontal ambiguities can be resolved to create a tree using a PCFG of 

behavior. 

Given a tree in which, by definition, horizontal ambiguities have been resolved, the model of 

language learning is still confronted with the possibility of vertical ambiguities.  Such vertical 

ambiguities, which refer to what level of description a speaker had in mind for their utterance, 

are represented by the multiple number of nodes that a given utterance could refer to along the 

vertical path from observed action to root goal (see Figure 3-4c).  It is an assumption of our 

model that these vertical paths are manually aligned in time with their appropriate utterance.9   

3.3 Linguistic Mapping 
Having observed a sequence of movements, the output of event recognition is a single tree that 

represents the model’s best guess of the higher order intentions that generated that sequence.  

This inferred tree can be seen as the conceptual scaffolding onto which utterances describing 

those intentional actions are to be mapped.  The goal of the linguistic mapping algorithm is to 

learn a grounded language model that encodes the relationship between the words an agent 

                                                 
9
 This assumption is dropped when working with broadcast video. 

 

 

1. Set uniform likelihoods for all utterance/frame pairings 

2. For each pair, run standard EM 

3. Merge output distributions of EM (weighting each by the likelihood 

of the pairing) 

4. Use merged distribution to recalculate likelihoods of all 

utterance/frame pairings 

5. Goto step 2 

Figure 3-5.  Psuedo-code for Lingistic Mapping algorithm 
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says and the event structure that describes what an agent does.  In this work, a bag of words 

model is employed and syntax is not exploited (see Fleischman and Roy, 2007c for an extension 

to this model which incorporates syntactic phrase boundaries). 

As described above, each node in an inferred event structure consists of a semantic frame.  

The linguistic mapping algorithm attempts to learn associations between words in utterances 

and the elements in these frames.  These elements can be either role fillers in a semantic frame 

(e.g. MOVE, DOOR) or the roles themselves (e.g. EVENT, PATH).  This allows a word to map 

not only to representations of objects and events (e.g. “go”→ MOVE), but also, to the more 

functional aspects of a semantic frame (e.g. “through” → PATH).  Such mappings are 

represented by the conditional probabilities of words given frame elements [i.e. 

p(word|element)].  By formalizing mappings in this way, we can equate the problem of 

learning a grounded language model to one of finding the maximum likelihood estimate of a 

conditional probability distribution.  

Similar to statistical approaches to language translation (Brown et al., 1993), we apply the 

Expectation Maximization (EM) algorithm to estimate these mappings. EM is a well studied 

algorithm that finds a locally optimal conditional probability distribution for an utterance given 

a semantic frame based on the equation: 
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where k is the number of words in the utterance W, Wj is the word in W at position j, l is the 

number of frame elements in the semantic frame F, Fi is the frame element in F at position i, and 

C is a constant. 

To understand the use of EM for linguistic mapping, it is easiest to first assume that we 

know which node in the vertical path is associated with each utterance (i.e., there is no vertical 

ambiguity).  EM operates by iterating between an Expectation (E) step and a Maximization (M) 

step.  In the E step, an initial conditional probability distribution is used to collect expected 

counts of how often a word in an utterance appears with a frame element in its paired semantic 

frame (Figure 3-4d).  In the M step, these expected counts are used to calculate a new 

conditional probability distribution.  By making a one-to-many assumption—that each word in 

an utterance is generated by only one frame element in the parallel frame (but that each frame 
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element can generate multiple words)—the iterative algorithm is guaranteed to converge to the 

maximum likelihood estimate of the conditional distribution.  Following Brown et al. (1993), we 

add a NULL role to each semantic frame which acts as a “garbage collector,” accounting for 

common words that don’t conceptually map to objects or actions (e.g., “the,” “now,” “ok,” etc.). 

The aforementioned procedure describes an ideal situation in which one knows which 

semantic frame from the associated vertical path should be paired with a given utterance.  As 

described above, this is not the case for language learners who, even knowing the intention 

behind an action, are faced with an ambiguity as to what level of description an utterance was 

meant to refer (Figure 3-4c).  To address this ambiguity, an outer processing loop is introduced 

that iterates over all possible pairings of utterances and semantic frames along the vertical path.  

For each pairing, a conditional probability distribution is estimated using EM.  After all pairings 

have been examined, their estimated distributions are merged, each weighted by their 

likelihood.  Figure 3-5 describes this procedure, which continues until a cross-validation 

stopping criterion is reached.  The utterance/frame pair with the highest likelihood yields the 

most probable resolution of the ambiguity.   

In this chapter, our top-down approach to representing events for grounded language 

models was described.  Behavior grammars are used to represent the hierarchical structure of 

events, which can then be used to ground the meaning of words.  While event representation is 

implemented as a parsing procedure, linguistic mapping is cast as a problem of estimating a 

conditional probability distribution of semantic frame elements given words.  In the next 

Chapter we describe evaluations of this grounded language model using two virtual game 

environments. 
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Chapter 4 

Application:  

Natural Language Understanding 

Although multiple strategies for evaluation exist, we examine the performance of grounded 

language models on a language understanding task.  Natural language understanding describes 

the task of automatically converting natural language utterances into computer readable 

semantic formalizations.  Previous work on learning such systems can be found in many areas 

of Artificial Intelligence research, such as in the database domain, where systems are trained to 

convert natural language queries into SQL (e.g., Zettlemoyer and Collins, 2005; Ge and Mooney, 

2005), as well as in the natural language processing community, where taggers are built to label 

sentences with semantic roles (Gildea and Jurafsky, 2002; Fleischman et al., 2003).   
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For these evaluations, we formulate natural language understanding in a Bayesian 

framework, in which understanding an utterance is equivalent to finding the most likely 

meaning (i.e. semantic frame) given that utterance (for a related formulation, see Epstein, 1996):  

)1()()|()|( αα −•≈ meaningpmeaningutteranceputterancemeaningp  4-1 

In this equation, the p(utterance|meaning) is calculated using the grounded language model as 

in equation (3-1).  The prior p(meaning) is approximated by the probability of the most likely 

inferred tree (i.e. the probability given by the PCFG parser).  It is generated online during 

testing as follows: as each action is performed in the virtual environment, the behavior 

grammar is used to infer a partial hierarchical event structure that accounts for all actions up to 

that point.  Whenever a new action is performed, the system generates a probability distribution 

over which action will be performed next.  This is done by cycling through each possible action 

in the grammar, parsing it as though it had actually occurred, and storing the probability of 

each resulting tree.   

In the remainder of this chapter, we describe two sets of experiments, in two different virtual 

domains, designed to evaluate grounded language models on a natural language 

understanding task.  The first environment, a multiplayer videogame, is designed in order to 

examine the richness of the event representations generated by the grammars of behavior.  

Using a natural language understanding task, we examine how the pattern of word learning 

Figure 4-1.  Map of virtual world used by experimental 

subjects.  Red circle marks start position.  
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demonstrated by the grounded language model is related to psychological findings on human 

language acquisition. 

With the second environment, we examine how the contextual information in the behavior 

grammar can be used to improve the performance of language understanding.  Experiments in 

an independently designed military training simulation demonstrate the practical benefits of 

our top-down approach for understanding natural language about events.   

4.1 NeverWinter Nights 
In order to evaluate the richness of the event representations used to train grounded language 

models, a virtual environment was designed based on the multiplayer videogame NeverWinter 

Nights10 (Figure 3-1).  The game was chosen because of its inclusion of an authoring tool that 

facilitated the creation of novel tasks within the virtual environment.  For the purposes of 

collecting data, a game was designed in which two human players must navigate their way 

through a cavernous world, collecting specific objects, in order to escape (earlier descriptions of 

this work appear in Fleischman and Roy, 2005a; Fleischman and Roy, 2005b, and Fleischman 

and Roy, 2007c).    

Subjects were paired such that one, the novice, would control the virtual character moving 

through the world, while the other, the expert, used a map to guide her through the world via 

spoken instructions.  While the expert could say anything in order to tell the novice where to go 

and what to do, the novice was instructed not to speak, but only to follow the commands of the 

expert.  The purpose behind these restrictions was to elicit speech that was free and 

spontaneous, but limited to task specific commands and descriptions (as opposed to other 

speech acts, such as questions).11 

For each pair of subjects, the experts were given a map of the environment (see Figure 4-1) 

and a list of objects that must be retrieved in a specific order (i.e. an axe, a password, and one of 

two keys) before the cavern could be exited.  The task was designed such that subjects could 

                                                 
10

 http://nwn.bioware.com/ 
11

 Note that in sports video language use is constrained only by the announcers’ responsibilities to report on the 

game being played.  This does not preclude discussion of other topics and speech acts, even though they are not 

explicitly represented in grounded language models. 
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access these objects in a number of different ways (opening chests, pulling levers, asking for 

help, bribing officials, etc.).  This was done specifically to elicit rich language from the experts 

(for sample transcript, see Appendix A).  The subject pairs were asked to repeat the task (i.e. exit 

the cavern) indefinitely, but were stopped by the experimenter after five attempts were 

successful.  This process took approximately 30 minutes per pair.  For each attempt, the order in 

which the objects were to be retrieved was randomized. 

The subjects in the data collection were university graduate and undergraduate students (8 

male, 4 female).  Subjects were staggered such that the novice in one pair became the expert in 

the next.  This insured that the experts had time to familiarize themselves with the environment 

and facilitated completion of the tasks.  Only those pairs of subjects that succeeded in 

completing the task five times were included in experiments.  Only eight pairs met this 

requirement. 

The experts wore head-mounted microphones such that all of their speech was recorded, and 

the game was instrumented so that all of the novices’ actions were recorded during game play.  

Figure 3-5a shows example screen shots of a game in progress along with the two associated 

parallel sequences of data: the expert’s speech and the novice’s actions.  The expert’s speech is 

then automatically segmented into utterances based on pause structure and manually 

transcribed (Yoshida, 2002).  The resulting transcribed utterances are then manually paired with 

their temporally appropriate observed actions. These sequences of observed actions are then 

parsed using a hand designed behavior grammar (see below) to infer a tree representation of 

the event structure (see Figure 3-5b).  For the training phase, but not the testing phase, the entire 

sequence of movements that resulted in the completion of the task is parsed at once and 

linguistic mapping is performed using the most likely tree from that parse.  This batch 

processing allows for much more reliable trees for training (since all of the movements in a task 

have been observed). 

In hand building the behavior grammar, two sets of rules were created: one to describe 

agents’ possible paths of locomotion and one to describe other actions necessary for completing 

the game (see Appendix A for examples of the most frequently used of these rules).  The 

locomotion rules were built semi-automatically, by enumerating all possible paths between 

target rooms in the game.  The non-locomotion rules were designed based on the rules of the 

game in order to match the actions that players must take to win (e.g. opening doors, taking 
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objects, interacting with non-player characters, etc.).  Rules were built and refined in an iterative 

manner, in order to insure that all subject trials could be parsed.  Because of limited data, 

generalization of the rules to held-out data was not examined.  Probabilities were set using the 

frequency of occurrence of the rules on the training data.   

The output of the collection process is a data set consisting of five trials for each of the eight 

successful subject pairs.  Each one of these 40 trials consists of a stream of the expert’s 

transcribed utterances and a tree representing the most likely parse of the novice’s observed 

actions.  In the next section we examine a number of experiments to evaluate grounded 

language models trained on this dataset.  

4.1.1 Experiments 

These experiments examine the performance of the grounded language model on a language 

understanding task.  For each subject pair, a grounded language model is trained using only the 

first four trials of their game play and then tested on the final held out trial.  (This gives on 

average 130 utterances of training data and 30 utterances of testing data per pair.)  For each 

utterance in the test data, the likelihood that it was generated by each possible frame is 

calculated.  In these experiments, we use only the grounded language model to calculate 

likelihoods and use a uniform prior probability.  The effect of a non-uniform prior is examined 

in Section 4.2. 

Given an unseen test utterance, we select the maximum likelihood frame as the system’s 

hypothesized meaning.  For all test utterances, we examine both how often the maximum 

likelihood estimate exactly matches the true frame (frame accuracy), as well as, how many of 

the frame elements within the estimated frame match the elements of the true frame (role 

accuracy).  For each pair, the number of iterations, beam search, and other initialization 

parameters (see Moore, 2004) are optimized using cross-validation.   
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Performance is tested under two conditions: 1) using a grounded language model trained 

with unknown utterance-to-level alignments (i.e. with vertical ambiguity), and 2) using a 

grounded language model trained with known utterance-to-level alignments (i.e. with no 

vertical ambiguity).  The performance is compared to a simple baseline of always choosing the 

most frequent frame from the training data. 

Figure 4-2 shows the percentage of maximum likelihood frames chosen by the system that 

exactly match the intended frame (frame accuracy), as well as, the percentage of roles from the 

maximum likelihood frame that overlap with roles in the intended frame (role accuracy).  The 

figure shows that either trained with or without vertical ambiguity, the grounded language 

model is able to understand language better than the baseline.  Further, the figure shows that 

both frame and role accuracy is higher when the system is trained without vertical ambiguity.  

This is not surprising, for the uncertainty inherent to vertical ambiguity is expected to add noise 

when training the grounded language model.   

More surprising though, is the large difference in how performance changes for roles 

compared to whole frames. While the performance on frame accuracy declines by 14.3% with 

the addition of vertical ambiguity, the same ambiguity causes only a 6.4% decline in role 

accuracy.  Because all roles in a frame must be correct for a frame to be considered correct, the 
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Figure 4-2 Language understanding in NeverWinter Nights.  Frame and role accuracy for a grounded a 

language model is compared when trained both with and without known utterance-to-level alignments 

(i.e. with vertical ambiguity), 
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large difference in performance drop suggests that the vertical ambiguity affects learning of 

words for some types of roles more than others.  

This hypothesis is analyzed by examining how often different classes of words (i.e. nouns vs. 

verbs) are mapped to the correct semantic role.  The results of this analysis are presented in 

Table 4-1, and show the total number of nouns and verbs that are correctly mapped in the test 

data, as well as, detailed statistics for the 10 most frequent nouns and verbs.  The frequency of 

those nouns and verbs in the training data is also presented.  The Table shows that the model’s 

accuracy for nouns is significantly (p<0.01) greater than its accuracy for verbs, even though 

fewer nouns than verbs were present in training.   

4.1.2 Discussion 

The asymmetry in how well the grounded language model learns nouns compared to verbs 

mirrors a similar pattern in human language acquisition.  Much psychological research on 

language acquisition has sought explanations for the asymmetry between noun and verb 

acquisition in the developing cognitive or linguistic abilities of language learners (Gentner, 

1982; Snedeker and Gleitman, 2004).  The performance of the grounded language model, 

however, follows directly from the model’s formalization of the event structure and the 

inherent ambiguity of those events.  

The key to our noun/verb asymmetric result lies in the fact that, while each node of an event 

structure (i.e. each semantic frame) has a different action role, often the object roles in different 

levels are the same.  For example, in Figure 3-5b, the actions GET, FIND, and OPEN occur only 

once along the vertical path from root to leaf.  However, the object AXE occurs multiple times 

along that same path.  In a word learning scenario, this means that even if the model 

misinterprets what level of event an utterance describes, because object roles are repeated at 

multiple levels, it still has a good chance of mapping the nouns in the utterance to their correct 

roles.  However, because action roles are more specific to their level of description, if the model 

misinterprets the level, linguistic mapping for the verb cannot succeed. 

This pattern is consistent throughout the training data; where, for each vertical path in an 

intention tree, the same action role is seen on average 1.05 times, while the same object role is 
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seen 2.05 times.  Thus, it is the ambiguity of actions and the recurrence of objects in a vertical 

path which causes the model to learn verbs more poorly than nouns.12  

The noun/verb asymmetry learning that we see in our results mirrors the pattern of 

behavior in children.  This of course does not imply that children maintain the particular data 

structures and algorithms that are used in this model.  However, at a functional level, the 

ambiguities that the model encodes also exist for the children, regardless of the specifics of their 

representations.  This insight suggests that one cause of the noun/verb asymmetry may lie not 

in the developing cognitive or linguistic abilities of children, but rather are inherent in the 

nature of events. 

The implications of these results are discussed further in Fleischman and Roy (2005a), and 

extended to examine the role of syntactic information in Fleischman and Roy (2007c).  In the 

next section we continue our examination of the effectiveness of grounded language models for 

natural language understanding using an additional virtual domain. 

                                                 
12

 While formalizing object ambiguity may dilute this effect, research on “basic level” descriptions (Rosch, 1976) 

suggests that ambiguity for objects may be different than for actions. 

Table 4-1  Word accuracy for nouns and verbs, with frequency in 

testing and training sets. 

 

 VERBS   NOUNS  
FrequencyAccuracy FrequencyAccuracy

Word Train Test Test (%) Word Train Test Test (%) 
Go 342 69 73.9 door 249 47 85.1 
Get 96 16 6.3 chest 89 22 54.5 

Open 65 17 23.5 portal 49 10 80.0 
take 59 14 50.0 key 33 9 100 
bash 47 12 66.7 axe 29 11 54.5 
follow 31 6 33.3 password 28 7 100 
talk 28 7 0.0 lockpick 26 6 100 
Turn 22 6 0.0 diamond 25 7 71.4 
Ask 19 7 42.9 lever 24 7 85.7 

Teleport 10 4 0.0 archway 23 5 100 
ALL 719 158 44.0 ALL 575 130 65.2 
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4.2 Mission Rehearsal Exercise (MRE) 
The second domain used for testing this top-down approach to representing events for 

grounded language models is an interactive virtual training environment called the Mission 

Rehearsal Exercise (MRE) (earlier versions of this work appear in Fleischman and Hovy, 2006).  

Unlike the NeverWinter Nights videogame environment, which was designed specifically for 

examining grounded language modeling, the MRE is an ongoing large-scale collaborative 

research project designed independently of this thesis (Swartout et al, 2005). 

The MRE is a fully interactive training simulation modeled after the holodeck in Star Trek.  

The project brings together researchers working on graphics, 3-D audio, Artificial Intelligence, 

and Hollywood screenwriters to create a realistic virtual world in which human subjects can 

interact naturally with simulated agents.  The virtual agents communicate through voice and 

gesture, reason about plans and actions, and incorporate a complex model of emotions.  Human 

users can query and interact with an agent using natural speech as they proceed through 

scenarios developed for the particular training mission at hand.   

Figure 4-3 shows a screen shot of the “peace-keeping mission” scenario employed for these 

evaluations.  The scenario is designed to train army lieutenants for eastern European peace 

keeping missions.  It centers on the trainee, a human lieutenant, who is attempting to move his 

platoon to support an inspection, when one of his drivers unexpectedly collides with a civilian 

car.  A civilian passenger, a young boy, is critically injured and the trainee must interact with 

 

Figure 4-3.  Screenshot of Mission Rehearsal Exercise (MRE) military training scenario. 
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his or her virtual platoon sergeant in order to arrange a medical evacuation (i.e. medevac) and 

stabilize the situation.  

In the MRE, all actions and plans that an agent may take are represented as tasks in a task 

model (Rickel et al., 2002).  These tasks are represented using relatively standard plan 

representations, in which each task is defined by a sequence of (partially ordered) steps, or 

actions, that may either be primitive (i.e. a physical or sensing action in the virtual world) or 

abstract (i.e., a task that must be further decomposed into primitive actions).  Each action can be 

related to any other by causal links and/or threat relations that define the pre and post 

conditions used in planning.  Further, because abstract actions are decomposable, the task 

model maintains a hierarchical structure that can be seen in the graphical representation of the 

task [medevac], shown in Figure 4-4.  Here the large dashed boxes represent abstract actions 

and the smaller solid boxes represent the primitive actions of which they are composed.  (The 

pre and post conditions are represented by ovals, the relations between states and actions as 

lines).  Further, as seen in the inset, each action has an internal case frame structure, identical to 

that used in our representations of behavior grammars. 

The actions represented in the MRE’s task model delimit what the virtual agents in the MRE 

can do, and thus, encode the contextual situation of the training scenario itself.  Although not 

designed for interpreting language, the task model encodes the same type of information that 

grammars of behavior are designed to capture.  Although not encoded as a probabilistic context 

free grammar (PCFG), the task model can easily be converted by removing much of the 

[call-medevac]

[medevac-to-base]

[3rd-sqd-sec-lz]

3rd-sqd-at-aa

[land-medevac]

Lz-secure Lz-marked

Medevac-called

Medevac-at-aa

[secure-lz]

[med-mv2aa]

Medevac-overhead

[medevac]

critical-injuries

critical-injuries

agent sgt

event secure
destination lz

instrument 3rd-sqd

[3rd-sqd-sec-lz]

 

Figure 4-4  Task model of agents in the MRE.  Inset shows 

frame representation of individual action. 
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planner-specific information it contains and attaching probabilities to its various tasks (for more 

detail, see Fleischman and Hovy, 2006).  Appendix A shows a PCFG representation of the 

information in the task model for the “peace-keeping mission” scenario in the MRE.   

By converting the task model to a grammar of behavior, we can evaluate our grounded 

language model as a natural language interface for trainees in the MRE.  Unlike our evaluations 

using NeverWinter Nights, these evaluations have the advantage of operating on an 

independently generated dataset, and using a grammar of behavior not hand-designed by the 

experimenter.13  In the following section we describe these evaluations in detail. 

4.2.1 Experiments 

As in the previous set of evaluations, we are interested in the ability of the grounded language 

model to predict the correct semantic frame representation given a natural language input.  

Unlike the NeverWinter Nights evaluation, however, these experiments focus on measuring the 

effect of the context itself on language understanding.   

We evaluate our grounded language models on transcripts of eight test runs of the MRE 

system (totaling 150 individual test utterances).  Test runs represent actual interactions between 

military personnel and the virtual agents in the MRE system.  Due to error propagation 

amongst the modules (e.g. speech recognition, dialogue management, etc.), these test runs are 

far from the type of clean interactions one sees with Wizard of Oz data.  However, evaluating 

on actual interactions more accurately represents the system’s true performance, as such noisy 

interactions are the norm in interactive applications.  (Appendix A shows a portion of one of 

these test interactions. )  

                                                 
13

 Even though the task model of the MRE is not hand-designed by the author, it is hand-designed by another 

researcher.  The next Chapter describes an approach which avoids hand-designed representations.  
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Approximately 360 utterances were manually transcribed and paired directly with frame 

representations from the behavior grammar.  A grounded language model was trained on this 

data as described in Chapter 3.  Note that unlike the data used in the NeverWinter Nights 

evaluations, no vertical ambiguities exist in this training data, i.e. training frames and utterances 

were hand aligned.  This reflects the focus of these experiments on the effect of context on 

understanding (not ambiguity in the training data).   

To parameterize the probabilities used in the behavior grammar, maximum likelihood 

estimates for the rules were generated using leave one out cross-validation (i.e., probabilities for 

one run were estimated based on all other runs in the test set).   

As described above, language understanding operates using a noisy-channel framework, in 

which a weighting coefficient alpha is used to adjust the amount of context that is exploited 

during understanding (see Equation 4-1).  In these experiments, alpha=1 corresponds to using 

only the grounded language model for understanding, while alpha=0 corresponds to using only 

the prior probability derived from the behavior grammar (i.e. no linguistic evidence at all).   

Figure 4-5 shows the results of varying alpha on understanding hand transcribed test 

utterances.  Performance is measured using an F-measure based on the recall and precision of 

frame elements which the system correctly predicts.  Results at each alpha value are above 

baseline performance of always guessing the most common frame (baseline F-Score = 0.11).   
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While Figure 4-5 shows performance given input from human transcription of speech, Figure 

4-6 describes the effect of using automatic speech recognition (ASR) on the performance of the 

system.  Because it introduces noise into the input, using ASR has a negative effect on language 

understanding performance.  Figure 4-6 shows the magnitude of that drop in two different 

conditions: with and without contextual information from the behavior grammar.  Although 

performance drops in both conditions, the relative drop in the system that does not use context 

is nearly 50% greater for the system that uses context. 

4.2.2 Discussion 

The results indicate that exploiting the contextual information encoded in the behavior 

grammar increases the performance of language understanding in the MRE.  In addition, this 

contextual information makes the language understanding system more robust to noise from 

automatic speech recognition (ASR).   

This follows from the fact that behavior grammars allow the contextual history of an 

utterance to be exploited during language understanding.  Figure 4-7 shows a typical situation 

in the MRE in which, having completed a series of actions (i.e. collision, secure_area, 

evacuate_boy), the user produces an utterances that is poorly recognized by the ASR module.  

Even though the linguistic evidence here is weak, by setting the prior probabilities (in Equation 

4-1) of each frame appropriately, the utterance can still be understood.  This follows from the 

Figure 4-6  Context reduces negative effect of automatic speech 

recognition (ASR) on language understanding.   
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fact that, by encoding the situational context of the task in the behavior grammar, the system is 

biased to output semantic frames that are appropriate for a given situation.   

While encoding context using grammars of behavior has advantages for language 

understanding, there are a number of limitations to this approach that must be addressed.  

4.3 Conclusion 
We have described an approach for representing events in a grounded language model.  The 

approach is based on the use of behavior grammars, which explicitly represent the actions an 

agent may take in an environment.  Behavior grammars are used to generate rich 

representations of events to support natural language understanding in virtual environments.  

These representations allow for more robust communication with virtual agents.  By 

incorporating contextual information in a principled way, agents can better understand 

language given limited or noisy linguistic input.  Further, the rich event structures generated by 

this top-down approach provide insights into psychological phenomena in human linguistic 

development.   

Although there are many advantages to explicitly representing context using behavior 

grammars, the top-down methodology that we introduce has serious limitations for 

[collision] [secure_area] [evacuate_boy] [?]

[help_boy]

[?]

[complete_mission] [ambulance]

[medevac]

[call_ambulance]

[call_medevac]
[secure_lz]

“roger will injured what what medevac asap over”

Figure 4-7  Parsing observed actions with a behavior grammar biases 

understanding toward events that are appropriate given the previous 

context (even with limited linguistic evidence).  
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generalization to other, more complex domains.  The primary source of these limitations is the 

dependence on hand-crafted grammars of behavior to model the situational context of events.   

As the complexity of a domain increases, hand crafting grammars of behavior becomes less 

practical.  Although natural in the relatively simple virtual games described here, the situational 

context that must be modeled for many real world interactions is too complex to model by 

hand.  Even interactions within more advanced videogames (particularly ones that seek to 

mimic the real-world) may be too complicated to be captured by hand built grammars of 

behavior.14  But in domains that represent the real world, such as the domain of broadcast 

video, such hand crafted models are a practical impossibility.   

In hand crafting behavior grammars for virtual worlds, a number of features could be 

exploited that are unique to such environments.  First, virtual worlds are deterministic such that 

the consequences of every user action can be predicted ahead of time (e.g. clicking on a door 

opens the door, etc.).  Further, all user actions are transparent to the machine and can be 

recorded with virtually no noise or error.  Finally, the artificial nature of virtual worlds itself 

facilitates the hand crafting of behavior grammars because the context in which events occur is 

already (in some sense) being explicitly modeled.   

Generalizing grounded language models to more complex domains requires substituting our 

top-down method, with its reliance on hand crafted behavior grammars, for a more robust 

approach.  In the following sections, we describe an alternative methodology in which event 

representations do not relay on hand crafted behavior grammars, but rather, are learned 

directly from large amounts of data.  We use this bottom-up approach to train grounded 

language models for the domain of broadcast sports video; and devote particular attention to 

the benefit of such models on practical video applications such as video search and speech 

recognition. 

                                                 
14

 See Orkin and Roy (2007) for first steps toward addressing this problem. 
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Chapter 5 

Events in Sports Video 

In this section we introduce a methodology for representing events in video for a grounded 

language model.  Unlike the top-down approach introduced for virtual environments, this 

method does not rely on hand crafted grammars of behavior to interpret events in a domain.  

Rather, the method automatically learns event structures directly from large corpora of 

unlabeled data.  By avoiding the need for hand built models of context, this bottom-up 

approach learns event representations that are robust enough for grounding language in the 

very challenging domain of broadcast sports video. 

Broadcast video is a rich and unique data source, encoding both visual and linguistic 

information about the events that occur in the world.  Learning grounded language models that 

exploit both of these information sources requires robust representations of the structure of 

these events.  Unlike with videogames, the domain of broadcast video does not afford access to 

clean deterministic events that can be recognized without error or noise.  Rather, video is 

complex and noisy, making it an extremely challenging domain for grounding language. 
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While the challenges to grounded language models for video are great, so are the potential 

rewards.  Interest in video applications, both academic and commercial, has grown rapidly in 

the recent past as the availability of digital video has increased.  The extreme popularity of 

sports video in particular is indicative of the great demand for applications in that domain.  

Such applications would benefit greatly by exploiting the relationship between words and the 

visual world encoded by grounded language models.  In this chapter, we detail our bottom-up 

approach to representing video events for grounded language models and examine their 

effectiveness for improving the performance of two such practical applications: video search 

and speech recognition. 

5.1.1 Events in Sports Video  

In the previous section, we demonstrated the benefits of using a top-down approach to 

representing events for grounded language models in virtual environments.  As a first attempt 

to ground language in sports video, one might adopt the same approach by trying to hand craft 

a grammar to represent events in sports.   

Previous work has applied similar methods to recognizing events in surveillance video (e.g., 

Ivanov and Bobick, 2000; Hongen et al., 2004).  In these approaches, complex events (e.g. stealing 

a bag) are recognized using hand crafted models that describe temporal relations between lower 

level sub-events (e.g., putting down/picking up a bag).  In order to apply this method to the sports 

domain, one could imagine an analogous approach in which complex events (such as home run) 

are built up from temporal relations between the basic sub-events of sports video (e.g., hitting, 

throwing, catching, running, etc.).   

Applying this approach to sports video, however, has a number of serious drawbacks.  It is 

not trivial to specify by hand the temporal relations that make up complex events in sports.  

Such events often occur in a many different ways and under many different conditions, making 

them difficult for even an expert to manually encode15.  Even when such relations can be 

specified by hand, the basic sub-events in sports video must still be identified.  Unfortunately, 

identifying such basic events in video is infeasible given the limitations of current computer 

                                                 
15

 See Intille and Bobick (2001) for an example of a methodology in which temporal relations within an event are 

hand crafted. 
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vision algorithms.16  Although advancing quickly, computer vision is unreliable (at best) for 

recognizing objects in images, and even less consistent in identifying events in video.  It is just 

not the case that computer vision can recognize events such as hitting a baseball (which are 

defined by the movement of a small white ball moving at velocities so high, they are difficult 

even for a human to see).   

In order to account for the limitations of a top-down approach to sports video, we focus on a 

method which does not rely on hand crafted relations between difficult to recognize events.  

Rather, we introduce a bottom-up method in which hierarchical temporal patterns of easy to 

identify low level features are automatically mined from large corpora of sports video. 

5.1.2 From Grammars to Patterns 

Our bottom-up approach to representing events in sports is based on the exploitation of the 

unique characteristics of broadcast video.  Unlike home video, broadcast video is highly 

produced.  It is made up of multiple different shots (often from many different cameras) and is 

brought together into a coherent whole by a human director.  Broadcast sports video is no 

different; it exploits a large number of cameras (sometimes more than 15), pointing at different 

parts of the field, and relies on a human director to make sure that the audience follows the 

events of the game.  Although each game may have a different director, the styles that each one 

employs are extremely consistent within a sport.  Even across different teams, in different 

stadiums, and on different broadcast networks, the common directing styles of a sport embody 

a language of film that is highly regular within a particular domain.   

For example, in baseball, events generally start with a view from behind the pitchers’ mound 

in which the pitcher, batter, catcher and umpire are all visible (see Figure 5-1).  Depending on 

what happens next, the scene may switch to a view of the field, the stands or to a close-up of the 

batter or pitcher.  When a ball is hit into the air, its trajectory is tracked by the camera; and as it 

falls into the glove of a player, the camera zooms in to get a clear picture.   

The elements that make up the language of film (i.e., the scene selection, the camera motion, 

etc.) are in place to insure continuity for the viewers.  During often fast moving events, such 

human direction serves to limit the viewers’ disorientation and guide their attention towards 

                                                 
16

 Intille and Bobick (2001) operate on manually defined traces of player movements. 
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the important aspects of the events.  In this way, the various devices used to direct the 

production of a sports video can be seen as standing in for the attentional focus of the director.   

As events unfold, the director shifts the cameras to where the event is occurring, insuring that 

the audience and he are attending to the same thing (i.e. the event).  By capturing this 

attentional information, the same techniques that are used to benefit human viewers, can also be 

used to help the machine represent events for grounding language. 

It is often the case that patterns in the language of film can be found that correlate with high 

level events.  Often these patterns are easier for a machine to recognize than the high level 

events themselves.  For example, a very common pattern in baseball is for a sequence of scenes 

(or shots) in which a view of the pitching mound immediately jumps to a view of the field.  

Intuitively, this temporal pattern is highly correlated with a player hitting the baseball into the 

field.  Because it is much easier for a machine to recognize these low level features (i.e. pitching 

scenes and field scenes) than the event itself (i.e. hitting a baseball), we can use the temporal 

pattern as a kind of “motion signature” for that event.   By introducing more low level features 

(such as camera motion, audio classes, etc.), and finding more complex motion signatures, the 

machine is able to build up rich representations for many different types of complex events.   

The following sections describe our methodology for learning temporal patterns to represent 

events for grounded language models.  These temporal patterns act as analogues to the rules 

that were hand crafted for the behavior grammars described in Chapter 3.  The notion of a 

formal grammar of behavior, however, is dropped in favor of a codebook of automatically 

learned temporal patterns.  This codebook is used to represent events, not as a hierarchical 

event tree, but rather as a vector of temporal patterns that match low level features of a video.  

Unlike the top-down approach used for virtual environments, this bottom-up method generates 

events representation robust enough for grounding language in sports video. 

Our approach to learning grounded language models operates in two phases.  Section 5.2 

describes the first phase, in which events that occur in the video are represented using 

hierarchical temporal patterns automatically mined from low level features.  Section 5.3 details 

the second phase, in which a conditional probability distribution is estimated that describes the 

likelihood that a word was uttered given such event representations.  (Appendix C describes 

the workflow for collecting and processing data with details of what software was employed). 
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For expository reasons, the following sections describe these two aspects of our approach as 

they are applied to the domain of broadcast baseball games.  Importantly, with the exception of 

the visual context features (see Section 5.2.1), nothing about this methodology is specific to 

baseball video.  Section 6.3 describes and evaluates the methodology as it is applied to 

American football.   

5.2 Representing Events 
The following sections describe our method for representing events based on the consistencies 

exploited in the language of film for the baseball domain (see Section 6.3 for examples from the 

domain of American football).  We describe our method in two phases: first, low level features 

of the video that can be easily and reliably detected are extracted from the video stream.  Then 

in the second phase, temporal data mining is used to find patterns within these low level 

feature streams that correlate with higher level events.   

Figure 5-1.  Overview of Event Representation in Video.  a) Events are represented by first 

abstracting the raw video into visual context, camera motion, and audio context features.  b) 

Temporal data mining is then used to discover hierarchical temporal patterns in the parallel 

streams of features.  c) Temporal patterns found significant in each iteration are stored in a 

codebook that is used to represent high level events in video. 
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5.2.1 Feature Extraction 

The first step in representing events in video is to abstract the raw video stream into features 

that are more semantically meaningful than raw pixels.  This step represents the only part of the 

grounded language modeling process which uses supervised learning, and is the only step 

which is specific for each domain being modeled.  For the sake of simplicity, the next sections 

focus only on a single domain, i.e. the domain of baseball video.   

Determining what features to extract from the video is a critical part of designing a grounded 

language model.  The features must be informative, while at the same time be easily and 

reliably extractable from the video.  Thus, extremely low level properties of the pixels (such as 

color values) are undesirable as they are not informative enough for language grounding.  

While at the same time high level features (such as the movement of the ball) cannot be reliably 

identified.  The following sections describe three features types that provide a good balance 

between being informative and being easy to extract.  These feature types are: visual context 

features, camera motion features, and audio context features.   

Visual Context Features 

Visual context features encode general properties of the visual scene being displayed in a video.  

These features correspond to the general type or category of a particular frame of video, e.g. 

whether the frame shows a view from behind the pitcher’s mound or looking out onto the 

outfield.  Figure 5-2 describes the steps for extracting visual context features in the baseball 

domain. 

The first step in classifying visual context features is to segment the video into shots (or 

scenes) based on changes in the visual scene due to editing (e.g. jumping from a close up to a 

wide shot of the field).  This process, called shot detection, is a well studied problem, and is 

based on frame by frame comparisons of video in which differences in color histograms are 

used to find points of sudden change (for a review, see Boreczky and Rowe, 1996).  By applying 

a threshold to the differences in the color histograms of adjacent frames, boundaries can be 

detected which correspond to shot changes in the video.  The set of adjacent frames (greater 

than 30 frames) that occur between two such sequential boundaries is defined as a shot. 



  67 

In this work, we use a method of shot detection, developed by Tardini et al. (2005), which 

focuses not on directly adjacent frames in a video, but rather on windows of frames and the 

gradient of change that is seen within the window.  They provide a fast and efficient open 

source implementation of their method, which has demonstrated high performance on sports 

video.   

After the video is segmented into shots, the shots are categorized using a two step 

classification process.  First, individual frames are sampled from the beginning, middle and end 

of each shot.  These frames, called key frames, are treated as exemplars of the entire shot and 

are used as the basis for shot classification.  Each key frame is represented as a vector of low 

level features that describe its various visual properties, such as color distribution, entropy, etc. 

(see Appendix B for the complete list of features).   A set of manually labeled key frames is then 

used to train a decision tree classifier (with bagging and boosting) using the WEKA machine 

learning toolkit (Witten and Frank, 2005).  Frames are categorized into three high-level domain-

dependent shot types: pitching-frames which include characteristic shots of the pitching mound; 

Figure 5-2  Overview of scene classification for baseball games.  Color and motion 

features are used to break raw video into individual shots.  Key frames within each shot 

are then classified into course categories (i.e., field, pitch, other).  Shots categorized as 

field are then broken into sub key frames (one for every ten frames) and sub-categorized. 
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field-frames which include shots focusing on any part of the field; and other-frames which include 

all other shots from close ups of players, to commercial breaks. Evaluations show very high 

performance classification of these categories, with f-scores ranging from 0.94 to 0.97 (see 

Appendix B for more details of the evaluation). 17 

Shots are classified based on the categorization of frames in a hierarchical manner.  For each 

shot, if any key frame within that shot is classified as a pitching-frame, then the whole shot is 

classified as a pitching-shot.  If no pitching-frame is found, but a field- frame is found, then the shot 

is classified as a field-shot.  Otherwise, the shot is classified as other-shot.  18 

Given this first level classification, a second pass is made through the data in order to 

subcategorize the field-shots into more fine grained classifications.  Because field shots often 

contain a great deal of activity, we resample key frames from the shots at a rate of one key 

frame per 10 frames19.  Since field shots represent a minority of the total shots in a sports video, 

sampling at such a fine rate is not prohibitively expensive.20  Given this new sampling, each key 

frame is now subcategorized (again using a boosted and bagged decision tree) into one of the 

following categories: audience-frame, on-base-frame, infield-frame, outfield-frame, deep-outfield-frame, 

full-field-frame, misc-frame, and running-frame, with f-scores ranging from 0.80 to 0.94.  (see 

Appendix B for more details on evaluations). 

Audio Context 

The audio stream of a video can also provide useful information for representing events.  For 

example, in baseball video, the cheering of the crowd is often an indicator of the difference 

between a base hit and a foul ball.  In order to capture such audio information, supervised 

methods are used to train classifiers to categorize the audio stream from mpeg video into a 

stream of discrete categories of speech, cheering, and music. 

                                                 
17

 F-score is equal to the harmonic mean of precision and recall. 
18

 This method of voting was implemented specifically to address problems of missed shot boundary detection.  If 

the system incorrectly misses a boundary between, for example, a pitching-shot and an other-shot, it is preferable 

to label that combined shot as a pitching-shot.  Biasing classification in this way insures that pitching-shots and 

field-shots are available for further processing. 
19

 Video is recorded at 29.97 frames/sec. 
20

 The percentage breakdown of shot types in the baseball corpus is field-shot: 12.4%; pitching-shot: 17.4%; other-

shot: 70.2%. 
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Classification operates on a sequence of overlapping 30 ms frames extracted from the audio 

stream. For each frame, a feature vector representation is computed using, mel-frequency 

cepstral coefficients (MFCCs).  Such representations have been shown to perform well in speech 

related tasks (e.g., automatic speech recognition: Rabiner and Juang, 1993).  In addition to 

MFCCs, energy, the number of zero crossings, spectral entropy, and relative power between 

different frequency bands is included in the vector representation.21 

A series of binary decision trees is trained (with boosting and bagging) for each of the audio 

classifications described above using the WEKA machine learning toolkit (Witten and Frank, 

2005).  Binary classifiers were used to allow for the possibility of multiple overlapping audio 

classifications (e.g., speech occurring while the crowd is cheering).  Each classifier is applied to 

each frame, producing multiple sequences of class labels.  F-scores for these classifiers range 

from 0.67 (for cheering) to 0.93 (for speech).22  These labels are then smoothed using a dynamic 

programming cost minimization algorithm (similar to what is used in Hidden Markov Models) 

(Fleischman, Roy, and Roy, 2007).  Once these streams of discrete audio labels are extracted, 

they are input along with the visual context and camera motion features, to a temporal data 

mining algorithm which discovers patterns that will be used to represent events for the 

grounded language model. 

Camera Motion Features 

In addition to visual and audio context features, camera motion also provides informative 

features.  Unlike visual and audio context features, which provide information about the global 

situation that is being observed, camera motion features represent more precise information 

about the actions occurring in a video.  The intuition here is that the camera is a stand in for a 

viewer’s focus of attention.  As actions occur in a video, the camera moves to follow it; this 

camera motion thus mirrors the actions themselves, providing informative features for event 

representation.   

Like shot boundary detection, detecting the motion of the camera in a video (i.e., the amount 

it pans left to right, tilts up and down, and zooms in and out) is a well-studied problem.   Many 

                                                 
21

 These features are adequate for classification.  For more accurate results additional features that encode pitch 

information should also be included.  Selecting additional useful audio features is beyond the scope of this thesis. 
22

 Appendix B details the performance of the classifiers on a held out test set. 
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techniques have been proposed using, for example, optical flow (Berger et al., 1992), or mpeg 

motion vectors (Tan et al., 2000).  We use an open source implementation of Bouthemy et al. 

(1999) in which camera motion is estimated by fitting the parameters of a two-dimensional 

affine model to differences between each pair of sequential frames in a video.23  The parameters 

of this model are converted to a three dimensional feature vector that represents the amount of 

pan, tilt, and zoom estimated in the video between successive frames.   

The output of the above process is a stream of real valued numbers.  However, as described 

in the next section, the temporal data mining algorithm that is employed requires discrete 

categories of low level features.  In order to convert the stream of real valued pan, tilt, zoom 

features into a stream of discrete category features, a Hidden Markov Model (HMM), 

implemented with the Graphical Modeling Toolkit is used.24   

A 15-state, fully connected 1st order HMM is trained on unlabeled camera motion data. 25  

This HMM is then used to decode continuous streams of pan/tilt/zoom values from a video 

clip into a stream of discrete state IDs (one ID for each state in the model).   These state IDs 

represent clusters of characteristic camera behaviors often seen in the video.  For example, the 

HMM trained on unlabeled baseball video clusters together camera motions in which the 

camera zooms in quickly while panning slowly to the left.  This characteristic behavior is 

interesting because it is often seen (among other times) after a batter is walked, as the 

cameraman follows him as he goes from home plate to first base.  Discritizing camera motion 

vectors in this way facilitates the mining of temporal patterns between camera motion, visual 

and audio context features  and provides the basis for representing events in the grounded 

language model.  

                                                 
23

 http://www.irisa.fr/vista/Motion2D/index.html 
24

 http://ssli.ee.washington.edu/~bilmes/gmtk/ 
25

 The choice of 15 states for the HMM was based on informal analysis of the resulting clusters.  With more formal 

tuning, performance of the system may be improved.  
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5.2.2 Temporal Pattern Mining 

As described above, we follow previous work in event recognition (Fleischman et al., 2007), in 

which high level events are represented using temporal relations between lower level sub-

events.  Because of the limitations of computer vision technology, detecting ideal sub-events for 

sports video (e.g. throwing, catching, running, etc…) is not feasible.  Thus, this work focuses on 

using temporal relations between simple low level features that correlate with events in sports 

video.   

Unlike previous work in event recognition (e.g., Intille and Bobick, 2001; Ivanov and Bobick, 

2000; Hongen et al., 2005) in which representations of the temporal relations between low level 

events are built up by hand, this thesis borrows methods from work in temporal data mining to 

automatically discover such patterns from a large corpus of unannotated video.  Importantly, 

these techniques allow discovery of temporal patterns that are not strictly sequential, but rather, 

are composed of features that can occur in complex and varied temporal relations to each other.   

To find such patterns automatically, we build on previous work in video content 

classification (Fleischman and Roy, 2006) in which temporal data mining techniques are used to 

discover event patterns within streams of lower level features (see Figure 5-1).  The algorithm 

we use is based on work by Hoppner (2001) and Cohen (2001) and is fully unsupervised.  It 

proceeds by examining the relations that occur between multiple features streams extracted 

from the video.  The algorithm looks for temporal relations that occur between these low level 

 

Figure 5-3.  Allen relations. Any two events must be in 

one of these seven asymmetric temporal relations. 
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features, keeping track of how often each relation is observed.  After observing the entire video 

corpus, it uses statistical significance testing to determine which relations are significant.  The 

algorithm makes multiple passes through the data, and relations between individual features 

that are found significant in one pass (e.g. [OVERLAP, field-scene, cheer]), are themselves treated 

as individual features in the next pass.  This allows the system to build up higher-order nested 

relations in each iteration (e.g. [BEFORE, [OVERLAP, field-scene, cheer], field scene]]).   

Pseudo-code for the algorithm is presented in Figure 5-4. The algorithm processes the 

multiple streams of features frame by frame, at each point checking if any low level features 

have just ended (e.g., music stops playing, a shot of the pitcher switches to a shot of the field, 

etc.).  If this has happened, that low level feature is compared with other features in three 

different sets: 1) the set of features that have also just ended; 2) the set of features that are still 

ongoing; and 3) the set of features that have recently ended.  We define a time limited Short 

Term Memory (STM) in which these recently completed features are stored (set to 30 frames)26.  

The size of this STM acts as a windowing length such that only events within this window can 

be compared.27 

For each pair of features (i.e., the newly ended feature and the features selected from one of 

the three sets), the temporal relation that exists between them is calculated.  Following Allen 

(1984), any two features must be in one of seven temporal relations with each other (see Figure 

5-3).28  This relation is now treated as a new composite feature: i.e., a feature composed of the 

relation and the two features (e.g. [OVERLAP, field-scene, cheer]).  A record is then updated 

which keeps track of how often each feature has been observed  Further, if the composite 

feature has already been found significant (i.e., in a previous iteration), it is added to the set of 

features that just ended or is still active, so that it can be composed with other features (as 

described above).  By recursively adding features that were previously found significant, the 

system is able to discover higher-order nested relations in each iteration.  

                                                 
26

 The STM window parameter was set informally in order to capture long distance relationships while maintaining 

computational tractability. 
27

 This differs from STM in Cohen (2001) which is limited by size, not time, and thus allows comparisons between 

events that occur arbitrarily far apart in time. 
28

 To avoid missing good examples due to small differences in timing, relations are based on soft intervals, not hard 

constraints.  Thus, for example, instead of A meets B iff (end of A)==(start of B), we define A meets B iff (end of 

A)-α < (start of B) < (end of A)+α.  For these experiments, α is set to 5 frames. 
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Once the algorithm has examined all the frames in the video it cycles through each observed 

composite feature and checks if that feature is significant.  Similar to Cohen (2001), we use the 

phi statistic to measure the significance of a composite feature.  For each composite feature, we 

create a 2-by-2 contingency table that describes how often different sub-features of the 

Figure 5-4 .  Pseudo-code for mining hierarchical temporal 

patterns from large unannotated video corpora. 
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composite were observed in that temporal relation.  For example, in the contingency table 

shown in Table 5-1, A represents how often a cheer occurred during a pitching-shot, B represents 

how often a cheer occurred during any other type of feature, C represents how often a non-cheer 

feature occurred during a pitching-shot, and D represents how often any non-cheer occurred 

during any non-pitching-shot. 

Phi can now be calculated using Equation 5-1, in which χ2 is the chi square statistic calculated 

from the contingency table and N is the table’s total.29  The phi statistic provides a measure 

between 0 and 1 of the strength of the association between the sub-features in a composite 

feature and can be tested for statistical significance as with a Pearson r.  In order for a composite 

event observed by our system to be considered significant, its phi must both be greater than 

some value rho (set to 0.05) as, as well as, significant above a threshold alpha (set to 0.95).  

N

2χ
φ =  5-1 

 

In this work, the algorithm was set such that each iteration produced significant patterns of 

increasingly higher orders (e.g., the first iteration produced relations one level deep, the second 

produced relations two levels deep, etc.).  After all iterations are completed, the output of the 

program is a set of significant temporal patterns discovered from the unannotated data.  In this 

work we set the maximum number of iterations to three (see Table 5-2 for example patterns). 

These significant temporal patterns make up a codebook which is then used as a basis for 

representing a video.  The term codebook is often used in image analysis to describe a set of 

                                                 
29

 The use of the chi square statistic is somewhat arbitrary.  Other measures of variable dependence can be used as 

well (e.g. Mutual Information).  Although not discussed, log likelihood (Dunning, 1993) was tested with no 

significant difference in performance observed. 

Table 5-1. Contingency table used to calculate significance of event 

during(cheer, pitching-shot).   

 
during pitching-shot ¬¬¬¬ pitching-shot 

cheer A B 

¬¬¬¬cheer C D 
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features (stored in the codebook) that are used to encode raw image data.  Such codebooks are 

used to represent raw video using features that are more easily processed by the computer.  

Our framework follows a similar approach, encoding raw video using a codebook of 

temporal patterns.  Encoding proceeds by first segmenting a video into discrete events; “at 

bats” in the case of baseball (see Section 5.3 for more details).   Each event is then abstracted into 

the visual context, camera motion, and audio context feature streams (as described in Section 

5.2.1).  These feature streams are then scanned, looking for any temporal patterns (and nested 

sub-patterns) that match those found in the codebook.  A vector representation is generated for 

each events based on the patterns from the codebook that match the event.   

Table 5-2.  Example hierarchical temporal patterns learned in three iterations of the temporal data 

mining algorithm.  Freq. represents the number of times the pattern was observed in the data and 

phi represents the strength of the association between features.   

PatternPatternPatternPatternssss    phiphiphiphi    FreqFreqFreqFreq....    

Iteration 1Iteration 1Iteration 1Iteration 1            

starts(field)(cheering) 0.0705 238 

during(motion-cluster-14)(pitch) 0.121  48063 

meet(pitch)(field) 0.310  7337 

equals(field)(outfield) 0.376  226 

meet(infield)(on-base) 0.439  1919 

Iteration 2Iteration 2Iteration 2Iteration 2            

finishes(meet(pitch)(field))(outfield) 0.060  2158 

meet(starts(pitch)(motion-cluster-14))(field) 0.099  4711 

during(infield)(meet(pitch)(field)) 0.099  6366 

starts(pitch)(meet(motion-cluster-14)(motion-cluster-3)) 0.125  3080 

overlap(meet(pitch)( infield))(field) 0.209  1865 

Iteration 3Iteration 3Iteration 3Iteration 3            

starts(overlap(meet(motion-cluster-14)(motion-cluster-3))(cheering))(pitch) 0.180  276 

finishes(meet(meet(pitch)( infield))(outfield))(field) 0.186  306 

finishes(during(motion-cluster-2)(meet(pitch)(deep-outfield)))(field) 0.203  408 

finishes(starts(meet(pitch)(infield))(overlap(motion-cluster-14)( 
cheering)))(starts(field)(motion-cluster-2)) 

0.205  36 

equals(before(equals(motion-cluster-2)(infield))(outfield))(during(motion-
cluster-12)(field)) 

0.224  32 
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This vector representation is the same length for each event and is equivalent to the number 

of temporal patterns in the learned codebook (approximately 1900 patterns for the baseball 

domain, and 1000 for the football domain).  Each element in this vector is associated with a 

specific pattern from the codebook.  The value of that element depends on the duration for 

which that pattern was observed in that particular video event.30  These values range from 0 (if 

the pattern was not observed in the video) to m, where m is the total number of frames in the 

video (if the pattern was observed for the entire video event). 

For example, say that temporal data mining generated a codebook with four patterns: A, B, 

C, and A-before-B (where A-before-B is a higher order combination of patterns A and B).  A video 

event is now scanned and patterns A and C are observed for 10 frames each.  The codebook 

represents this video event as the vector (10, 0, 0, 10).  Now, another video event is observed 

with pattern A for 10 frames, pattern B for 20 frames, and pattern A-before-B for 10 frames.  This 

event is represented as the vector (10, 20, 10, 0).  Representing events in this way not only 

captures long distance dependency information (in the composite patterns) but also encodes 

duration information; two information sources that are not easily captured in standard dynamic 

models (e.g., HMMs). 

This process of representing video events is analogous to the parsing method described in 

Section 3.2.  However, in that method a behavior grammar was used to generate well formed 

tree representations for sequences of low level actions.  Here, a codebook is used to match 

multiple, parallel streams of low level features in order to generate a vector of hierarchical 

matched patterns.  Given this method for representing the non-linguistic context of a video, we 

can now examine how to model the relationship between such context and the words used to 

describe it. 

5.3 Linguistic Mapping 
Having described how non-linguistic context is represented in a grounded language model, we 

can now turn to modeling the relationship between this context and the language used to 

describe it.  Modeling this relationship assumes that the speech uttered in a video refers often 

                                                 
30

 The duration of a composite event is equivalent to the duration of its shortest sub event. 
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(although not exclusively) to the events being represented by the temporal pattern features.  

Given such an assumption, we formalize the relationship between words and context as a 

conditional probability distribution, i.e. as the probability of a word given a vector of temporal 

patterns.  We estimate these conditional distributions using a framework similar to that used for 

training translation models in research on statistical machine translation (MT). 

In statistical machine translation, conditional probability distributions are used to model the 

likelihood that a word(s) from one language (e.g. English) can be translated into a word(s) from 

another (e.g., French) (Manning and Schutze, 2001).  These conditional distributions (called 

translation models) are estimated based on a parallel corpus in which a sentence in English is 

paired with a translation of that sentence in French.  To estimate grounded language models we 

make an analogy between the parallel corpus used for MT, and the utterances and 

representations extracted from sports video.  Just as MT systems are trained using parallel 

corpora of French translations and the English sentences to which they refer, grounded 

language models exploit a parallel corpus of natural language utterances and representations of 

the context in which they were said. 

In order to create this parallel corpus, we first segment the raw videos of full sports games 

into a set of individual video clips, where each clip shows a different event that occurred in a 

game.  The nature of this segmentation differs for each domain; for broadcast baseball, the 

natural granularity for each event is at the level of individual pitches (i.e. each pitch is treated as 

an independent event).31   

The first step in segmenting baseball video is to extract the visual context features from the 

video and look for scenes classified as pitching-shots (see Section 5.2.1). We follow previous work 

in sports video processing (Gong et al., 2004) and define an event in a baseball video as any 

sequence of shots starting with a pitching-shot and continuing for four subsequent shots.  This 

definition follows from the fact that the vast majority of events in baseball start with a pitch and 

do not last longer than four shots.32   

                                                 
31

 See Section 6.3 for a discussion of segmentation in American football. 
32

 Although some events, such as stolen bases, do not involve an actual pitch, even these are very often preceded by 

a shot classified as a pitching-shot.   
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For each of these events in our corpus, a representation of the event is generated using the 

temporal pattern features as described in Section 5.2.2.  These representations are then paired 

with all the words from the closed captioning transcription that occur during that event (plus or 

minus 10 seconds).  Because these transcriptions are not necessarily time synched with the 

audio, we use the method described in Hauptmann and Witbrock (1998) to align the closed 

captioning to the announcers’ speech.   

This method uses dynamic programming to find the best possible alignment between the 

closed captioning transcript and the output of an automatic speech recognition (ASR) system 

applied to the audio of the game.  ASR is performed using the Sphinx 3 speech recognition 

system with a language model trained specifically on the closed captioning for that segment of 

video.  Unlike the closed captioning transcription, the output of the ASR system contains 

accurate time codes for exactly when words were uttered.  Although formal alignment 

evaluations were not performed, informal analysis confirms that the dynamic programming 

algorithm needs relatively few correctly recognized words to use as anchor points in order to 

estimate reasonable time codes for the closed captioning transcription.  However, this 

alignment process does introduce noise in both training and testing, suggesting more 

sophisticated approaches (e.g., Hazen, 2006) would lead to improved performance. 

Having generated a parallel corpus of utterances and representations of the contexts in 

which they were said, we are now faced with the question of how to use the corpus to estimate 

our grounded language model.  Our initial approach continued the analogy and adopted a 

methodology similar to what is used in Machine Translation.  Fleischman and Roy (2006) 

describes a system which follows IBM Model 1 (Brown et al., 1993), in which each word in an 

utterance is assumed to be generated independently by exactly one temporal pattern feature 

from its corresponding event representation.  The expectation-maximization (EM) algorithm is 

used to estimate the probability of a word given a video representation based on the equation: 
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where k is the number of words in the utterance W, Wj is the word in W at position j, l is the 

number of temporal pattern features in the vector representation P, Pi is the feature in P at 

position i, and C is a constant. 
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Although such models are satisfactory (see Fleischman and Roy, 2006 for pilot evaluations), 

this methodology is not ideal for estimating grounded language models.  Practically speaking, 

because using EM requires examining all possible alignments between words and features, 

training such MT based models on large corpora can be expensive.  A more fundamental 

concern, however, lies in the basic generative story for MT.  While the assumption that words 

are generated by elements from their parallel representation is reasonable for French 

translations of English sentences, it is far less reasonable to posit that individual temporal 

pattern features generate words in an utterance that describes an event.  Unlike words in 

French, temporal pattern features are very abstract representations of non-linguistic context that 

do not necessarily map directly onto words in English.  Instead, a more natural assumption 

posits that a layer of hidden variables intervenes between the temporal features and the English 

words.   

Informally, we want a generative story that describes the sports announcer as she is 

watching a game and commenting on it.  Whenever some event occurs in the game, the 

announcer’s perceptual system encodes the event as a temporal pattern representation.  This 

representation then activates concepts (i.e., latent variables) in the announcer’s mind that have 

 
Figure 5-5  Plate notation for a generative process corresponding to an adapted AT model 

(Steyvers et al., 2004).  For each event e (of the E events in the corpus), each word w (of the Ne 

words paired with e) is chosen by first randomly selecting a pattern x from the vector of 

patterns (pe ) paired with e.  A topic z is then randomly chosen from the multinomial 

distribution in θ associated with x.  w is then randomly chosen from the multinomial 

distribution in φ associated with z.  α and β are parameters on the dirichlet priors for θ and φ. 
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come to be associated with such representations.  These concepts in turn generate words that 

describe those concepts that have been activated.   

In order to model this generative story, we follow recent work in automatic image 

annotation (Barnard et al., 2003; Blei and Jordan, 2003) and natural language processing 

(Steyvers et al., 2004), in which hierarchical Bayesian models are used to represent such hidden 

(or latent) variables.  We follow closely a model used to represent text documents, i.e., the 

Author-Topic (AT) model (Steyvers et al., 2004), which is a generalization of Latent Dirichlet 

Allocation (LDA) (Blei et al., 2005).33   

LDA is a technique that was initially developed to model the distribution of topics discussed 

in a large corpus of text documents.  The model assumes that every document in a corpus is 

made up of a mixture of topics, and that each word in a document is generated from a 

probability distribution associated with one of those topics.  The AT model generalizes LDA, 

saying that the mixture of topics is not dependent on the document itself, but rather on the 

authors who wrote it.34  According to this model, for each word (or words) in a document, an 

author is chosen uniformly from the set of the authors of the document.  Then, a topic is chosen 

from a distribution of topics associated with that particular author.  Finally, the word is 

generated from a distribution associated with that chosen topic.  We can express the probability 

of the words in a document (W) given its authors (A) as: 

∏ ∑∑
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where m is a word in W, x is an author in A, Ad is the number of authors in A, and z is a topic in 

the set of latent topics T induced from a large corpus of unannotated training documents.   

We use the AT model to estimate our grounded language model by making an analogy 

between documents and events in video.  In our framework, the words in a document 

correspond to the words in the closed captioning transcript associated with an event.  The 

authors of a document correspond to the temporal patterns representing the non-linguistic 

                                                 
33

 In the discussion that follows, we describe a method for estimating unigram grounded language models.  

Estimating bigram and trigram models can be done by processing on word pairs or triples, and performing 

normalization on the resulting conditional distributions.  See Section 7.1.1 for more details. 
34

 LDA can be seen as a special case of the AT model, in which each document was generated by a single, unique 

author. 
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context of that event.  We modify the AT model slightly, such that, instead of selecting from a 

uniform distribution (as is done with authors of documents), we select patterns from a 

multinomial distribution based upon the duration of the pattern.  The intuition here is that 

patterns that occur for a longer duration are more salient and thus, should be given greater 

weight in the generative process.  We can now rewrite (1) to give the probability of words 

during an event (W) given the vector of observed temporal patterns (P) as: 

∏∑∑
∈ ∈ ∈

=
Wm Px Tz

xpxzpzmpPWp )()|()|()|(  5-4 

where x is now a temporal pattern feature in the vector P. 

Figure 5-5 describes this generative process using plate notation. For each event e (of the E 

events in the training corpus), each word w (of the Ne words paired with e) is chosen by first 

randomly selecting a pattern x from a multinomial distribution over the patterns in the vector 

(pe ) paired with e.  A topic z is then randomly chosen from the multinomial distribution in θ 

associated with x.  w is then randomly chosen from the multinomial distribution in φ associated 

with z.  α and β are parameters on the Dirichlet priors for θ and φ.  We use the Matlab Topic 

Modeling toolkit35 to train the parameters θ and φ using Gibbs sampling, a Markov Chain 

Monte Carlo technique.   

Having described the methodology by which grounded language models are trained, in the 

next sections we describe evaluations run to examine the ability of grounded language models 

to improve performance on two practical video applications.  We describe experiments on video 

information retrieval and automatic speech recognition. 

                                                 
35

 http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm.  The toolkit was modified to enable sampling 

temporal pattern features from a multinomial distribution, as opposed to sampling authors from a uniform 

distribution (see Appendix C). 
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Chapter 6 

Application: Video Search 

The increasing prevalence of video data on the internet has sparked a growing interest in the 

field of video search.  Like traditional information retrieval (IR), video search focuses on the 

task of finding specific videos, or types of videos, from within a large collection of data.  This 

similarity has led to a number of approaches (both academic and commercial) that attempt to 

repurpose techniques that have been successful for finding documents on the internet.  Such 

approaches treat the speech uttered in a video like words written in a document, and then 

apply traditional text-based IR algorithms to transcriptions of the videos’ speech.  These 

approaches are popular because of their scalability and the lack of human supervision required 

to index large corpora.  However, applying such methods to searching sports video faces 

serious challenges, even when human generated speech transcriptions are available (for 

example, in the closed captioning stream).   

Unlike the case with text documents, the occurrence of a query term in a video’s audio track 

is often not enough to assume the video’s relevance to that query.  For example, when searching 

through video of baseball games, returning all clips in which the phrase “home run” is uttered 
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results primarily in video of events where a home run does not actually occur.  This follows 

from the fact that in sports, as in life, people often talk not about what is currently happening, 

but rather, they talk about what did, might, could, should, will or won’t happen in the future.   

Traditional IR techniques cannot address such problems because they model the meaning of 

a query term strictly by that term’s relationship to other terms.  To build systems that 

successfully search video, IR techniques must exploit not just linguistic information but also 

elements of the non-linguistic context that surrounds language use.  A great deal of research has 

addressed this issue by designing video search techniques that rely on supervised methods to 

classify events (for a review, see Snoek and Worring, (2005).  The majority of these systems do 

not index events by natural language query terms (as traditional IR approaches do), but rather, 

categorize events using classifiers trained on hand labeled examples of predefined event types 

(e.g. home runs, ground balls, etc.).36  Although these approaches can be useful, such supervised 

approaches to video retrieval are labor intensive for the system designers, who must label 

examples and train the concept classifiers.  Further, they limit the usability for the system’s 

users, who cannot query the system for whatever they want, but rather, are given access only to 

those predefined event types which the designers thought to include. 

In this section, we present experiments that compare traditional text-based approaches to 

video search to a method for content-based indexing of sports video that is based on the 

grounded language models introduced in this thesis (earlier versions of this work appear in 

Fleischman and Roy, 2007b and Fleischman and Roy, 2007a).  Our method maintains the 

advantages of traditional IR approaches while incorporating contextual information in an 

unsupervised manner.  In the following sections we examine the effectiveness of this approach 

in retrieving video events from a held out test set of broadcast baseball and American football 

games.  Results indicate that performance of the system using the grounded language model is 

significantly better than traditional text based approaches.  These results not only validate the 

ability of grounded language models to learn the meaning of words uttered in sports video, but 

also, indicate the practical benefits of using grounded language modeling in solving a real 

world task.   

                                                 
36

 For an interesting exception see Babaguchi et al. (2002) in which hand chosen terms from the closed captioning 

stream are used to index a limited set of predefined events. 
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6.1 Grounded video indexing 
The majority of work on video search in the sports domain, (e.g. Gong et al., 2004), focuses on 

retrieving video data using a set of supervised classifiers that categorize events into pre-

determined concepts (e.g. homerun, infield out, outfield hit etc.).  Such supervised systems can be 

seen as discovering mappings from a closed set of query terms to a closed set of events (as in 

Babaguchi et al., 2002).  However, the most successful video search systems, like the most 

successful text search systems, allow users to use an open set of query terms to find any event 

that they may wish.  A supervised system can only perform such an open task with the addition 

of a function to map (automatically or manually) from an open set of query terms to its pre-

defined set of event classes.37  For example, a query using the natural language term “homer,” 

must explicitly be mapped to a query for the predefined event type: home run.  Importantly, if 

no predefined event type matches the users query, the system cannot return a result. 

The goal of our approach is to develop a method which maps an open set of query terms to 

an open set of events without the use of explicit mapping functions to predefined event types.  

Our method is based on a text-based approach to document retrieval, the language modeling 

approach of Song and Croft (1999), which allows for open natural language queries and does 

not rely on supervised indexing methods.  By extending this method with grounded language 

models, we can reap the benefits of traditional methods while avoiding many problems faced 

when applying text based methods to video search. 

In Song and Croft (1999), documents relevant to a query are ranked based on the probability 

that each document generated each query term.  For video search, we make a natural analogy 

between words in a document and speech uttered in a video.  We can now rank the relevance of 

each event in a video corpus to a user query using the following formula (adopted from Song 

and Croft (1999) :38 

                                                 
37

 This is often done in the news domain in which video is indexed based on hundreds of classifiers and natural 

language queries are converted (often manually) into Boolean expressions of predefined event types Snoek and 

Worring, (2005). 
38

 In these experiments, only unigram language models are used.  However, the general framework can be easily 

expanded to bigrams and trigrams, as is suggested by the experiments on automatic speech recognition, discussed 

in Section 7.1.1. 
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Here, query is defined as a set of independent words, i.e., word.  Each event in the corpus has 

associated with it a set of terms (i.e., caption) uttered in the context of that event which are 

extracted from the closed captioning transcription (see Section 5.3).   

In our experiments, we follow Song and Croft (1999) in treating the probability of a word 

given a caption as an interpolation between the probability of the query term given the words in 

the caption and the probability of the word in the entire corpus: 

)(*)1()|(*)|( wordPcaptionwordPcaptionwordp corpuscaption ωω −+=  6-2 

Here ω is a weighting coefficient and the Pcaption and Pcorpus are maximum likelihood estimates 

(using add N smoothing) of the probability of the word in the caption and the probability of the 

word in the corpus, respectively.39  

In extending the language modeling approach to incorporate contextual information in the 

video, we make the simplifying assumption that the relevance of an event to a query can be 

modeled as two independent probabilities: the probability of the query word given the speech 

of the announcer, and the probability of the word given a representation of non-linguistic 

context of the event. We formalize this by extending Equation 6-1: 
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The p(word|caption) is estimated using Equation 6-2, while the p(word|video) is estimated as in 

Equation 5-4.  α is a weighting coefficient used to bias the system to the different sources of 

information.   

In the next sections we evaluate the grounded language indexing method on two sports 

domains: baseball and American football.  Although the majority of work focuses on baseball, 

results from American football serve to reinforce the conclusions drawn from the baseball 

domain.  For each set of experiments, we describe the data sources, generation of artificial query 

terms, experiments and results.  We conclude with a discussion of the results. 

                                                 
39

 Song and Croft (1999) use the more sophisticated Good-Turing smoothing.  The significance of using such 

techniques given the small size of the captions used here has not been explicitly examined and is left for future 

work.  In this thesis we set N to 0.001 and ω=0.5 based on an informal tuning. 
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6.2 Experiments: Baseball 

6.2.1 Data 

Evaluating the effects of grounded language models on video search performance poses a 

number of challenges.  Traditional evaluation methodologies focus on the use of a standardized 

corpus from which events can be searched, as well a standardized set of queries for which the 

relevance of each event has been manually annotated.  Performance of various systems can then 

be compared based on the precision with which relevant results are returned from the corpus 

for each query.40   

As standardized corpora are unavailable for the baseball domain, we generated our own 

corpus by recording games from broadcast television.  The corpus is composed of 99 Major 

League Baseball games from the 2006 season totaling approximately 275 hours and 20,000 

distinct events (where events are defined as sequences of shots, as discussed in Section 5.3).  

These games represent data from 25 teams in 23 stadiums, broadcast on five different television 

stations.  From this set, six games were held out for testing (15 hours, 1200 events, nine teams, 

four stations).41  From this test set, 237 highlights were hand annotated for use in evaluation.  A 

highlight is defined as any event that results in a player either out or safe.  These highlights are 

generally considered the more interesting events in baseball, and include home runs, strikeouts, 

etc.   

Each highlight is annotated with one or more of 13 labels according to the type of the event 

(e.g., strikeout vs. homerun), the location of the event (e.g., right field vs. infield), and the nature of 

the event (e.g., fly ball vs. line drive). See Figure 6-4 for a complete listing of categories.  Although 

only highlights are hand annotated, both highlights and non-highlights are used in the test set.  

Thus, retrieval operates over the complete set of events in a game (which is significantly more 

challenging than retrieval from just highlights alone). 

                                                 
40

 Although precision is reported throughout these experiments, other measures of performance have been suggested 

in the literature.  Mean Average Precision (MAP), for example, is a measure of weighted precision which gives 

higher points when results are returned in order of their relevance and gives more weight to queries for infrequent 

events.  We focus on precision in these experiments to insure ease of interpretability. 
41

 Although our methodology is unsupervised, and thus, does not require a held out test set for evaluation, we 

choose to apply this more stringent evaluation procedure both to reduce the amount of hand annotation required 

for evaluating performance, as well as, to demonstrate the generality of the approach to unseen data. 
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Since a standard set of query terms was also unavailable for the baseball domain, we 

automatically generate queries using a technique similar to that used in Berger & Lafferty 

(1999).  For each of the highlight categories described above, a likelihood ratio is used to 

generate a measure of how indicative each unigram, bigram, and trigram in the corpus is of a 

particular category (Dunning, 1993).42  Query terms are then selected by taking the top 10 

ngrams that are most indicative of each category (e.g. “fly ball” for category flyball).  This gives 

us a set of queries for each annotated category (130 in all; see Figure 6-4) for which relevant 

results can easily be determined (e.g., if a returned event for the query “strike out” is of the 

strikeout category, it is marked relevant). 

                                                 
42

 The likelihood ratio is a statistical technique similar to chi-square or mutual information (Dunning, 1993).  It 

compares the probability of two competing hypotheses: h1: P(word |event) = P(word |¬event) and h2: P(word 

|event) >> P(word |¬event).  Thus, high values of the likelihood ratio for a given word and event pair indicate that 

the word is highly indicative of that event. 

TOPIC 3-10 TOPIC 3-25 TOPIC 3-34 TOPIC 3-42 
to_third_base 0.02325 in_the_air 0.03162 at_first_base 0.03532 swing_and_miss 0.0226 

first_out_of 0.01424 the_air_to 0.02227 to_first_base 0.01669 with_two_outs 0.01795 

two_down_in 0.01403 the_first_out 0.01252 in_this_game 0.016 full_count_now 0.0154 

on_the_ground 0.01351 left_center_field 0.00962 the_double_play 0.01212 of_the_way 0.00964 

the_ground_to 0.01288 the_second_out 0.00909 up_for_the 0.00983 count_now_to 0.0092 

to_end_the 0.01184 there's_two_down 0.00685 game_hitting_streak 0.0096 the_ball_game 0.00897 

pops_it_up 0.01142 out_number_one 0.00685 first_base_line 0.00789 down_and_away 0.00842 

        

TOPIC 2-9 TOPIC 2-13 TOPIC 2-22 TOPIC 2-40 
center_field 0.06001 makes_the 0.03665 strike_out 0.04514 second_base 0.05463 

left_field 0.03657 the_catch 0.03353 swing_and 0.03785 the_inning 0.04036 

to_left 0.03215 out_number 0.02135 and_miss 0.03219 double_play 0.02378 

to_right 0.0285 it_up 0.01112 at_bat 0.02523 in_time 0.02104 

to_center 0.02274 for_out 0.01076 strikes_out 0.02007 up_and 0.01809 

the_wall 0.02184 catch_for 0.01041 breaking_ball 0.01806 this_time 0.01376 

right_field 0.01857 the_third 0.00961 the_fastball 0.01738 base_line 0.01304 

        

TOPIC 1-6 TOPIC 1-8 TOPIC 1-9 TOPIC 1-38 
down 0.07517 strike 0.05317 base 0.07935 field 0.17031 

out 0.04869 out 0.04941 hit 0.04649 center 0.08867 

there's 0.04263 pitches 0.04756 double 0.0413 left 0.08826 

grounded 0.0369 ball 0.03582 third 0.04058 catch 0.05928 

throws 0.03197 pitch 0.03107 field 0.03769 makes 0.03142 

base 0.03141 home 0.031 second 0.03517 deep 0.03044 

ground 0.03052 strikeouts 0.02447 left 0.03106 air 0.02752 

 

Figure 6-1.  Example topic distributions.  Most likely words given topics for unigram, 

bigram, and trigram grounded language models.   
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6.2.2 Model 

We train our AT model using the Gibbs sampling method implemented in the Topic Modeling 

toolkit (Steyvers et al., 2004).  We run the sampler on a single chain for 1000 iterations.  We set 

the number of topics to 50, and normalize the pattern durations first by individual pattern 

across all events, and then for all patterns within an event.  The resulting parameter estimates 

are smoothed using a simple add N smoothing technique, where N=1 for the word by topic 

counts and N=0.01 for the pattern by topic counts.  These parameters settings are based on 

informal analysis of performance.  It is expected that optimization would further improve 

results and is left for future work. 

Figure 6-1 shows examples of 12 topics learned by the grounded language model along with 

the top seven n-grams most likely to be generated conditioned on each topic.43  The topics were 

hand selected to demonstrate how topics in grounded language models converge on event 

types in the sports domain.  Qualitative examination shows that topics range from the very 

specific, such as a “ground ball outs to third base” (TOPIC 3-10) to the very general, such as 

“hits” (TOPIC 1-9).  More mid-level event types are associated with the bigram models, for 

example: “field locations” (TOPIC 2-9), “catches” (TOPIC 2-13), “strikes” (TOPIC 2-22), “double 

plays” (TOPIC 2-40).   

6.2.3 Results 

Table 6-1 shows example outputs of the system run on all events from the six test games (both 

highlights and non-highlights).  The results are shown for a system that uses an equal 

interpolation between a traditional language modeling retrieval system and a system using the 

grounded language model [i.e., using an alpha=0.5 in Equation 6-3].  The top five results are 

returned for each query, and the relevant classes are displayed.  Results are reported using 

precision which indicates the number of relevant results divided by the number of returned 

results (set to five in these experiments).   

Figure 6-2 shows a comparison between the performance of a traditional language modeling 

retrieval system that uses only speech information versus a system using only the grounded 

                                                 
43

 Note that in the following information retrieval experiments, only unigram probabilities are used.  For more 

discussion of bigram and trigram models, see the speech recognition evaluations, and in particular Section 7.1. 
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language model and a system that interpolates between the two [using an alpha=0.5 in 

Equation 6-3].   

Results are reported for the 130 automatically generated queries described in Section 6.2.1, 

run over all events in the test games (both highlights and non-highlights).  Comparisons are 

made for searches within a single corpus made up of all six held out test games, as well as, for 

searches within each test game individually.  For each query, the precision is computed and the 

mean over all queries is reported.  The performance of the combined system for all games, and 

the system using only words is statistical significant (p=.035; df=649). 44 

Figure 6-3, shows the effect on performance of varying the weighting parameter alpha from 

Equation 6-3.  We report results on two sets of queries generated using the automatic technique 

described above: one taking the top 10 ngrams per highlight category, and one taking only the 

top three.  This second set of queries represents a smaller and cleaner test set to evaluate the 

performance of the system.  Peak performance is found at the alpha=0.4 level, showing 

statistically significant differences both for the full query set (p=.0018; df = 649), and for the top 

three query set (p=0.006; df=194). 

                                                 
44

 Significance is tested using a paired ttest. 

Table 6-1.  Example output of search system with grounded language model (i.e. alpha=0.5).  

Query terms are displayed with relevant category in parentheses.  Query results are presented in 

ranked order and described by all relevant categories to which they belong (e.g., GROUND_1
ST

_OUT 

represents an event where a batter hit a ground ball to 1
st
 base and was called out.  NON_HIGH 

represents a non-highlight event such as a foul ball).   

 

Query termsQuery termsQuery termsQuery terms        
Result Result Result Result     
rankrankrankrank    

walks  
(WALK) 

strike out  
(STRIKEOUT) 

left field  
(LEFT) 

it’s gone  
(HOMER) 

towards the corner  
(DOUBLE) 

1 WALK NON_HIGH LINE_LEFT_SINGLE NON_HIGH LINE_LEFT_DOUBLE 

2 NON_HIGH STRIKEOUT LINE_LEFT_DOUBLE FLY_LEFT_HOMER NON_HIGH 

3 NON_HIGH STRIKEOUT NON_HIGH GROUND_1ST_OUT LINE_LEFT_DOUBLE 

4 WALK NON_HIGH FLY_LEFT_OUT FLY_LEFT_HOMER NON_HIGH 

5 NON_HIGH STRIKEOUT FLY_LEFT_HOMER NON_HIGH NON_HIGH 

Precision.Precision.Precision.Precision.    0.40  0.60  0.80 0.40 0.40 
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Figure 6-4 shows a detailed view of the performance of the combined system (alpha=0.5) for 

each individual query.  Queries are grouped according to their highlight category and precision 

for each query is reported.  

6.2.4 Discussion 

Figure 6-2 shows that for all six test games, using the grounded language model improves 

results over traditional IR techniques.  In all but one game, using both text and non-linguistic 

information produced better performance than either information source on its own.  The one 

exception to this is game 6, in which the text only system performed poorly due to unusually 

poor time-code alignments of the closed captioning (due to poor ASR results).   This suggests 

that with better alignments, performance would increase both when using text alone and with 

grounded language models. 

The increase in performance due to grounded language models is even more evident when 

searching the complete set of test games.  The more detailed results reported in Figure 6-4 show 

a large range in performance due in part to the quality of the query term used.  Because query 

terms are generated automatically, as more terms are selected, their quality begins to 

deteriorate.  Thus, by only examining terms with high log-likelihood ratios, we would expect 

better performance from the system.  This is just what is shown in Figure 6-3. 

Here we see that results on just the top three queries generated automatically show 

markedly better performance than the larger set of test queries.  Also in Figure 6-3, we see the 

benefit of varying the weight between the grounded and traditional language models.  The 

increased performance is due to the complementary nature of the grounded language model 

and the traditional language model for IR.  As described above, traditional IR approaches return 

many false positives because of the tendency of announcers to discuss things that are not 

currently occurring.  On the other hand, grounded language models are poor at distinguishing 

between visually similar phenomena.  This is understandable considering that the difference 

between a home run and a foul ball can often be only a matter of inches.  By combining the two 

together, the grounded language model buttresses the traditional approach, leading to 

significant increases in performance when compared to either system on its own. 
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Figure 6-2  Baseball video search performance on individual test games.  Performance 

shown for system using only closed captioning (alpha=0), only video features (alpha=1), and 

using both together (alpha=0.5).   

 

Figure 6-3.  Baseball video search precision as a function of non-linguistic context.  

Alpha=0 represents the system using only the traditional language model.  Alpha=1 

represents the system using only the grounded language model.  Results are presented 

for automatically generated query sets using top 10 and top 3 most indicative terms. 
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6.3 Experiments: Football 
Although the domain of baseball is the primary implementation focus of this thesis, in order to 

evaluate the generality of our approach, pilot experiments were conducted in the domain of 

American football games.  American football is a more challenging domain than baseball for a 

number of reasons.  First, the layout of the field and the typical camera angles used are more 

limited in variety (and informativeness) to what is seen in baseball games.  Further, because the 

ball does not move as far or as fast as it does in baseball, there is generally less camera 

movement in videos of American football.  Despite these challenges, however, football shares 

with baseball the inherent advantages that sports offer for grounded language modeling (as 

described in Section 1.2.2).  This section describes how such grounded language models for 

football are trained, and discusses experiments that show their usefulness for video information 

retrieval.  

6.3.1 Model 

Training grounded language models for American football operates just like training models for 

baseball, with two exceptions: extracting visual context features and segmenting events.  Visual 

context features are extracted using the same two phase classification process described in 

Section 5.2.45  However, unlike shots in baseball which are classified into 12 categories, we 

classify football shots into only four categories: field-shots, goal-post-shots, umpire-shots, and other-

shots.  The selection of a smaller category set is a reflection of both the relative homogeneity of 

football video, as well as the smaller dataset used in our pilot experiments.  More detailed 

evaluation of visual shot classification can be found in Appendix B. 

                                                 
45

 See Appendix B for more detailed evaluations of visual context feature extraction in American football. 
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Figure 6-4  Detailed query results of baseball video search using both linguistic and non-

linguistic context (alpha=0.5). 
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The second difference associated with training grounded language models for football is the 

method of event segmentation.  Unlike baseball where events occur over sequences of shots of 

many different types, all events in football occur within shots of the field.  Thus, unlike baseball 

in which an event is delimited by four shots starting with a pitching-shot, in football each shot 

classified as field-shot is treated as an individual event.  

With the exception of visual context features and event segmentation, grounded language 

models for football are trained just as described in Section 0.  Temporal patterns are mined from 

the multiple streams of features extracted from the raw video and Gibbs sampling is used to 

estimate the parameters of an AT model given a parallel corpus of event representations and 

closed captioning text.  The AT model is parameterized as for baseball, although with the 

number of topics set to five due to the more homogenous nature of the feature streams and the 

significantly smaller training set.  Smoothing and normalization are performed as described for 

baseball. 

6.3.2 Data 

As with the domain of baseball, standard corpora do not exist for training grounded language 

models of American football.  Thus we created our own corpus by recording broadcast games 

from the National Football League (NFL).  A small corpus of eight games (from 13 teams, in 

eight stadiums, broadcast on three channels, 1577 individual events) was collected.  Events were 
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Figure 6-5 Detailed query results of football video search using both linguistic and non-

linguistic context (alpha=0.4). 
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segmented as described above and 411 highlights for five categories were labeled by hand as: 

touchdown, pass, incomplete-pass, punt, or no-play.46  Although by no means comprehensive, this 

set of highlights represents a useful subset given the limited amount of data available for these 

experiments. 

Artificial query terms (five per category) are generated from this corpus using the technique 

of Berger and Lafferty (1999) (see Figure 6-5 for the specific terms used).  Due to the limited 

amount of data, the corpus was used both to train and test the grounded language model.  

However, since training is an unsupervised process, this does not bias the results of our 

evaluations.   

6.3.3 Results 

Figure 6-6 shows the precision of the grounded language modeling approach, applied to the 

artificial queries described above, as a function of the weighting parameter alpha.  As in Figure 

6-3, an alpha=0 indicates the system is using no nonlinguistic information (i.e. only the 

                                                 
46

 No-play refers to plays that were stopped before the snap due primarily to a penalty against a team.  
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Figure 6-6.  Football video search precision as a function of non-linguistic 

context.  Alpha=0 represents the system using only the traditional language 

model.  Alpha=1 represents the system using only the grounded language model. 
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traditional language model), while an alpha=1 indicates no closed captioning data is used by 

the system (precision at this setting is 0.08).  Finally, Figure 6-5, show individual precision for 

each query in each category for the system with parameter alpha=0.4. 

6.3.4 Discussion 

Although the results of the information retrieval evaluations for American football are lower 

than that found for the baseball domain, the trend that is shown in Figure 6-6 follows closely 

that which is seen in the domain of baseball.  Just as in baseball, the system which exploits both 

text and non-linguistic context performs better than systems that use either source of 

information on their own.  Although this trend is qualitatively clear from the figure, the results 

are not statistically significant.  This is not surprising, however, given the dramatically smaller 

amount of training data used for these pilot experiments (eight training games) compared to 

what was used in the baseball evaluations (91 training games).   

In addition to the limited amount of training data, the lower improvement in American 

football follows from the more homogenous nature of the features extracted from football video.  

As discussed above, unlike baseball where different areas of the field are visually distinct, in 

football, the field has a consistent appearance in most sections (except for the end zones, which 

we do not identify).  Further, while in baseball, players spread across the field and the camera 

moves dramatically to follow the ball; in football, players often bunch up close together and the 

camera remains stationary.  The limitations of the low level features used in these experiments 

(which were very similar to those generated for the baseball domain) suggest that if additional 

features were selected that better suited the domain of football better results could be 

expected.47  However, that the trend in American football does indeed follow what was 

demonstrated in baseball, even given the limited nature of the visual features, further highlights 

the usefulness of grounded language models for video information retrieval. 

In the next chapter, another application domain is examined in which grounded language 

models are applied to automatic speech recognition (ASR).  As with video search, grounded 

language models allow for non-linguistic context to be incorporated into traditional techniques 

                                                 
47

 For example, Intille and Bobick (2001) obtain good results identifying plays in American football games using 

human generated traces of player movement.   
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in a principled way.  Experiments show that such context significantly improves the 

performance of ASR on a number of evaluation metrics. 
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Chapter 7 

Application: Video Speech Recognition 

In the previous chapter we described experiments that evaluate the usefulness of grounded 

language models for the task of video information retrieval.  In those experiments, the 

performance of a text-based language modeling technique was improved by using grounded 

language models to exploit the non-linguistic context of a video.   

This result can be generalized to any methodology that exploits text-based language models 

by simply replacing those models with their grounded counterparts.  This follows from the fact 

that both text-based and grounded language models encode the prior probability of words 

using conditional probability distributions.  Unlike text-based language models, though, 

grounded language models represent the probability of a word conditioned not only on the 

previous word(s), but also on features of the non-linguistic context in which the word was 

uttered.  In this chapter we examine the generality of grounded language models by examining 

their affect on another real-world task: automatic speech recognition in sports video (an earlier 

description of this work appears in Fleischman and Roy, 2008). 

Automatic speech recognition (ASR) relies heavily on the use of text-based language models 

and is a common preprocessing step for many multimodal applications such as video search 
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and summarization (Snoek and Worring, 2005).48  Although their performance is often 

reasonable in controlled environments (such as studio news rooms), ASR systems have 

significant difficulty in noisier settings (Wactlar et al., 1996).   

Sports broadcasts are particularly challenging to ASR systems for a number of reasons: first, 

there are multiple announcers in sports games making it difficult to train speaker dependent 

models.  Also, there are many out of vocabulary words such as player names and sports specific 

slang.  Further, announcers speak at varying speeds (sometimes fast, sometimes slow) and with 

changing prosody (excited speech, shouting, etc.) which is difficult for many ASR systems to 

model.  Finally, and most challenging, the audience of a sports game generates high levels of 

background noise that can make it difficult even for humans to understand what is said.  Figure 

7-1 gives a qualitative demonstration of this noise by showing two waveforms of the same 

utterance; the first, being said in the audio of a baseball game, the other spoken by the author 

under ideal laboratory conditions.  Figure 7-2 shows an additional measures of the level of 

background noise in baseball video.  Here the distribution of power during just background 

noise is compared to the distribution of power during speech and background noise.  The figure 

shows that background noise in baseball video has a much more similar power distribution 

compared to speech uttered in laboratory controlled conditions. 

                                                 
48

 Note that closed captioning transcriptions are available for some, but not all, sports broadcasts. 

 

Figure 7-1.  Sample waveforms showing the effect of magnitude of background noise in 
baseball audio noise.  Both waveforms are of the same utterance: “into left center field for a 
base hit.”  The bottom utterance was spoken in controlled laboratory conditions.  The top 
utterance was taken from the audio stream of a broadcast baseball game. 
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While many researches have examined ways to compensate for these different challenges, 

few have attempted to leverage information in the visual stream to improve speech recognition 

performance (for an exception see Roy and Mukherjee, 2005).   For many types of video, and in 

particular sports video, visual context can provide valuable clues as to what has been said.  For 

example, in video of Major League Baseball games, the likelihood of the phrase “ground ball” 

increases dramatically when a ground ball has actually been hit.   

In the following section we examine the generality of grounded language models by 

showing how they can be used to improve ASR performance.  Our experiments focus only on 

the domain of broadcast Major League Baseball games although, just as with video search, the 

approach can be generalized to other domains.  Even though the amount of noise present in the 

 
 

Figure 7-2.  Sample power distributions showing effect of background noise in baseball 

video.  Four audio samples compare the distribution of power during just background 

noise to the distribution of power during background noise plus speech .  Top samples 

and lower left sample extracted from baseball video (in gray).  Lower right sample 

generated under laboratory conditions (in red).   
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audio makes ASR exceptionally challenging, results indicate that grounded language models 

significantly improve the quality of recognized speech. 

7.1 Experiments 

7.1.1 Model 

As described above, our method for incorporating non-linguistic information into a speech 

recognition system is based on the learning of grounded language models from unlabeled data.  

The experiments that follow use the same parameterizations and training and test sets 

described in Section 6.2.  The training set is the paired corpus of event pattern representations 

and the associated closed captioning transcriptions of the announcers’ speech (vocab=17k, word 

count=1.65M).  The test set is a held out paired corpus of 1200 events, 237 of which are hand 

labeled highlights (vocab=1.8k, word count=12.6k).  Speech recognition experiments are 

evaluated only on these highlights, each of which has been re-transcribed by hand in order to 

avoid transcription and time code errors present in the closed captioning.   

Unigram grounded language models are trained in the same manner as described in Section 

6.2.2  Bigram and trigram models are also trained on this data, by treating each two and three 

word sequence as a single token and training a model on these word sequences. As in Section 

6.2.2, all instances of proper names, low frequency phrases, and word sequences composed 

entirely of stop words are removed from the training set.  The resulting models are then 

normalized to produce bigram and trigram grounded language models of the same form as 

traditional language models using the following equations:  
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These grounded language models are then combined in a backoff strategy with a traditional 

unigram, bigram, and trigram language model.  This backoff is necessary to account for the 

words not included in the grounded language model itself (i.e. stop words, proper names, low 
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frequency words).  Although more complicated backoff strategies exist (e.g., Hsu, 2007), we 

employ a very simple approach: if the n-gram appears in the grounded language model (GLM) 

then it is used, otherwise the traditional language model (LM) is used.   

We generate traditional language models from two datasets: the switchboard corpus, which 

is a commonly used corpus of transcriptions of open domain telephone speech (vocab=27k, 

word counts=3.65M); as well as, the closed captioning transcriptions from the training games 

used to train the grounded language models.  The SRI language modeling toolkit (Stolcke, 2002) 

is used to generate two separate language models (one for each dataset) using Chen and 

Goodman's modified Kneser-Ney discounting and interpolation (Chen and Goodman, 1998).  

These two models are then combined using static interpolation (also using the SRI language 

modeling toolkit), giving equal weight to both models.  

We evaluate the effect of grounded language models on ASR performance using 3 metrics: 

perplexity, word error rate, and precision on an information retrieval task. 

7.1.2 Perplexity 

Perplexity is an information theoretic measure of how well a model predicts a held out test set.  

Although not a direct measure of speech recognition performance, perplexity is an often used 

measure of the fit between a language model and the speech it is designed to recognize.  Thus, 

lower perplexity often correlates with better ASR performance.  The perplexity of a language 

model p(*) for a given test set is defined as: 

∑
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where N is the number of words x in the held out corpus.  The better a model predicts a test set, 

the lower the perplexity of the model. 

We use perplexity to compare our grounded language model to the traditional language 

models described above.  We calculate perplexity for five distinct models: 1) a language model 

trained only on the telephone-domain switchboard corpus, 2) a language model trained only on 

the baseball-domain closed captioning, 3) a language model that interpolates between these two 

(with equal weight given to both), 4) a grounded language model that backs off to the baseball-

domain traditional language model, and 5) a grounded language model that backs off to the 
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interpolated traditional language model.49  Table 7-1 reports the results of these calculations 

(lower is better). 

Not surprisingly, the switchboard-only model performs far worse than any other language 

model.  This is due to the large discrepancy between both the style and the vocabulary of 

speech about sports compared to the telephone speech sampled in the switchboard corpus.  

Even though the much larger switchboard corpus contains information useful for predicting the 

test set (i.e., there are n-grams in the test set that appear in the switchboard, but not in the 

closed captioning language model), interpolating between these two models has a non-

significant effect on perplexity.50    

Of more interest, however, is the decrease in perplexity when the grounded language model 

is used.  When the grounded language model backs off to the baseball-only traditional language 

model a large improvement in perplexity is observed.  Note that both these language models 

are in fact trained on the same speech transcriptions, i.e. the closed captioning from the training 

games.  However, whereas the baseline model remains the same for each of the 237 test 

highlights, the grounded language model generates different word distributions for each 

highlight depending on the visual features extracted from the highlight video.  This result 

demonstrates the strong predictive power of visual context for language in sports video. 

The benefits of such adaptation are again seen when backing off to the interpolated 

traditional model.  Although perplexity here is not significantly better than when backing off to 

                                                 
49

 All language models use the 17k word vocabulary from the baseball-domain closed captioning training data. 
50

 However, this additional information is sufficient to keep the switchboard model from significantly reducing the 

perplexity of the interpolated model.  Further, informal analysis shows that the interpolated model performs better 

on ASR tests than the closed caption only model. 

Table 7-1.  Perplexity of language models on a held out test set of baseball highlights.  

Three text-based language models were trained on the switchboard corpus, closed 

captioning from baseball training games, and an interpolation between the two models.  

The grounded language model was evaluated with a backoff to the closed captioning text-

based model, and with a backoff to the interpolated text-based model. 
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the baseball-only model, the interpolated model does show improvement.  This improvement 

becomes more pronounced in the next set of experiments which directly examine speech 

recognition performance.  

7.1.3 Word Accuracy and Error Rate  

The performance of an ASR system is typically evaluated using two measures: word accuracy, 

and word error rate.  The word accuracy of a system represents the proportion of words in the 

actual speech stream that were correctly recognized.  Word error rate (WER) is a stricter 

measure which punishes a system for mistakenly adding words not in the speech signal.  WER 

is a normalized measure of the number of word insertions, substitutions, and deletions required 

to transform the output transcription of an ASR system into a human generated gold standard 

transcription of the same utterance.   

Unlike perplexity which only evaluates the performance of language models, measuring 

word accuracy and error rate requires running an entire ASR system, i.e. both the language and 

acoustic models.  We use the Sphinx system to train baseball specific acoustic models using 

parallel acoustic/text data automatically mined from our training set.51  Following Jang and 

Hauptman (1999), we use an off the shelf acoustic model (the Hub4 model) to generate an 

extremely noisy speech transcript of each game in our training set, and use dynamic 

programming to align these noisy outputs to the closed captioning stream for those same 

games.  Given these two transcriptions, we then generate a paired acoustic/text corpus by 

sampling the audio at the time codes where the ASR transcription matches the closed 

captioning transcription.   

For example, if the ASR output contains the term sequence “… and farther home run for David 

forty says…” and the closed captioning contains the sequence “…another home run for David 

Ortiz…,” the matched phrase “home run for David” is assumed a correct transcription for the 

audio at the time codes given by the ASR system.  Only looking at sequences of three words or 

more, we extract approximately 18 hours of clean paired data from our 275 hour training 

corpus.  A continuous acoustic model with 8 gaussians and 6000 tied states is trained on this 

                                                 
51

 http://cmusphinx.sourceforge.net/ 
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data using the Sphinx speech recognizer.52  Although not done in this work, by repeating this 

process, and iteratively training new acoustic models that are then used to generate better ASR 

output, better alignments could be generated and more acoustic data could be extracted.  This 

iterative training is left for future work. 

Figure 7-2 shows the word accuracy and WER for an ASR system run using the Sphinx 

decoder with the acoustic model described above and three language models: the traditional 

model trained on the switchboard corpus, that model interpolated with the model trained on 

closed captioning,, and the grounded language model backing off to the interpolated model.   

In analyzing the performance of these models it is important to note how challenging speech 

recognition is in the sports domain.  The audio input to the models comes from multiple 

speakers, speaking quickly and at varying speeds (a particular challenge ASR systems).  

Further, the speech is recorded in a large stadium full of background noise coming from 

thousands of fans who are often screaming (particularly during the highlight events that our 

system is attempting to recognize).  The effects of this noise, combined with the limited amount 

                                                 
52

 http://cmusphinx.sourceforge.net/html/cmusphinx.php 

 

Figure 7-3.  Word accuracy and error rates for ASR systems using a text based language model 

trained on the switchboard corpus (switchboard), and the switchboard model interpolated with 

a text based model trained on baseball closed captions (interpolated), and a grounded language 

model which backs off to the interpolated model (grounded),. 
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of training data used to build the acoustic model, should be taken into account when 

considering the performance of the speech recognizer. 

Even with this noise, however, results indicate that the use of grounded language models 

significantly improves performance of both word accuracy and WER.  WER shows significant 

absolute reductions of 13% compared to the traditional switchboard language model, and 3.7% 

compared to the interpolated model (p<0.001;df=236).53  Word accuracy improvement is even 

more significant, with a 15.2% absolute improvement over the switchboard model and a 5.9% 

absolute improvement over the interpolated model (p<0.001;df=236). 

Even though their performance increases are significant, drawing conclusions about the 

usefulness of grounded language models based on word accuracy and WER is difficult.  Both 

metrics penalize a system that mistakes “a” for “uh” as much as one that mistakes “run” for 

“rum.”  When using ASR in real world situations (e.g. to assist in searching video), though, 

such substitutions are not of equal importance.  Further, while visual information may be useful 

for distinguishing the latter error, it is unlikely to assist with the former.  Thus, in the next 

section we examine an extrinsic evaluation in which grounded language models are judged not 

directly on their effect on word accuracy and WER, but based on their ability to support video 

information retrieval.  By performing such an extrinsic evaluation, we are able to more carefully 

analyze the types of errors that are avoided when using grounded language models. 

7.1.4 Precision of Information Retrieval  

One of the most commonly used applications of ASR for video is to support information 

retrieval (IR).  When closed captioning transcripts are not available, such video search systems 

must use ASR to generate transcriptions that can be used to index video.  In such cases, the 

output of the ASR system is used in the same way that closed captioning was used in the 

evaluations presented in Chapter 6.  Because the quality of the search results depends upon the 

accuracy of the speech recognizer, the performance of a video IR system gives an indirect 

evaluation of the ASR’s quality.  Further, performing such evaluations provides an error 

analysis of speech recognition results by highlighting a system’s ability to recognize the more 

relevant content words without being distracted by the more common stop words. 

                                                 
53

 Significance is tested using a paired ttest. 
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Following Section 6.1, we compare the performance of IR systems that employs the language 

modeling approach of Song and Croft (1999).54  Three such systems are compared: one that 

indexes video based on the output of an ASR system using the traditional interpolated language 

model described above (ASR-LM), one based on the output of an ASR system using the 

grounded language model backing off to the interpolated model (ASR-GLM), and one that does 

not use ASR at all, but rather uses the human generated closed captioning associated with the 

test set. 

For each system, all 1200 events from the test set are indexed.  Importantly, for these 

experiments all events from the test set are searched, not just the 237 highlight events used to 

evaluate perplexity, word accuracy, and WER.  The top three artificial queries for each of 13 

event types are generated as described in Section 6.2.  Performance of the systems is measured 

using the precision of the top five results; i.e. the proportion of the first five returned results that 

are events of the correct category.   

                                                 
54

 Note for these experiments, the grounded language model is not integrated directly into the retrieval system, as it 

is in Chapter 6, but rather, is only employed in generating ASR transcriptions of the audio. 
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Figure 7-4.    Precision of top five results of a video IR system based on speech 

transcriptions.  Three different transcriptions are compared: ASR-LM uses ASR with 

a text-only interpolated language model (trained on baseball closed captioning and 

the switchboard corpus); ASR-GLM uses ASR with a grounded language model; CC 

uses human generated closed captioning transcriptions (i.e., no ASR). 



  109 

Figure 7-3 shows the precision of the video IR systems based on ASR with the grounded 

language model (ASR-GLM), ASR with the traditional language model (ASR-LM), and closed 

captioning transcriptions (CC).  As with our previous evaluations, the IR results show that the 

system using the grounded language model performed better than the one using only 

traditional language models (17.5% relative improvement: p=0.013; df=194).  More notably, 

though, Figure 7-3 shows that the system using the grounded language model performed 

significantly better than the system using the hand generated closed captioning transcriptions 

(15.5% relative improvement: p=0.023; df=194).  Although this is somewhat counterintuitive 

given that the closed captioning transcripts are relatively noise-free, the results follow from the 

tendency of text based methods to return false positive results.  

As discussed in Chapter 6, the occurrence of a query term in a video is often not enough to 

assume the video’s relevance to that query.  For example, when searching through video of 

baseball games, returning all clips in which the phrase “strikeout” is uttered, often results in 

video of events where a strikeout does not actually occur.  This follows from the fact that in 

sports, as in life, people often talk not about what is currently happening, but rather, they talk 

about what did, might, or will happen in the future.   

By taking into account non-linguistic context during speech recognition, the grounded 

language model system indirectly circumvents some of these false positive results.  This follows 

from the fact that an effect of using the grounded language model is that when an announcer 

utters a phrase (e.g., “walk”), the system is more likely to recognize that phrase correctly if the 

event it refers to is actually occurring (i.e., if someone actually was walked).   

Table 7-2 shows a segment of the closed captioning from a video event in the test set, along 

with a transcription of the same segment as generated by two ASR systems (using grounded 

and text-based language models, respectively).  The event shows a player being struck out; but 

the announcer is describing the pitcher’s statistics for both strikeouts and walks.  While both the 

keywords “walks” and “strikeouts” appear in the closed captioning, only the keyword 

“strikeouts” is recognized by the ASR system using the grounded language model.  Further, 

neither keyword is recognized by the ASR system using the grounded language model.   

This example demonstrates how a grounded language model biases a system to correctly 

recognize phrases that describe what is currently happening.  Similar to the effect seen in 
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Section 6.2, the grounded language model thus reduces the likelihood of false positive results.  

However, in Section 6.2 it was shown that video search performance is significantly improved 

by interpolating a closed caption based system (CC) with a grounded language model.  This 

interpolated model, in fact, performs better than the ASR-GLM system in Figure 7-3.  So, an 

interesting question is how such an interpolation would affect the search results for a system 

using automatic speech recognition with a grounded language model (ASR-GLM).   

Figure 7-4 shows this effect, along with the effect of interpolating CC with a grounded 

language model (repeated from Figure 6-3).  Note that the precision of each condition at 

alpha=0 (from Equation 6-3) is the same value that is reported in Figure 7-3.  Recall that as alpha 

increases, and context from the grounded language model is added, the closed captioning (CC) 

system significantly improves.  That precision improves beyond what is seen for the ASR-GLM 

system implies that it is better to search over cleaner transcriptions interpolated with contextual 

information, than over noisy transcriptions that were generated by exploiting contextual 

information.  This is not surprising given that the word accuracy of the ASR-GLM system is still 

relatively poor, and thus, many keywords that might be useful to search are incorrectly 

recognized.  More interesting though, is that interpolating the ASR-GLM system with a 

grounded language model improves the system, but not significantly.  This implies that the 

benefit of interpolating with a grounded language model is largely redundant when using 

speech recognized with that same model.   

Table 7-2.  Transcriptions of speech in a baseball video event.  CC is from the closed 

captioning, ASR-GLM and ASR-LM are output by a speech recognizer using 

grounded and text-based language models respectively. 

 

Method Transcription 

C C  “ N o  w a lk s  a n d  th r e e  s tr ik e o u ts  fo r  th e  B ig  U n it”  

A S R -G L M  “ N o  o n e  s o n  a n d  fo r  y o u  s tr ik e o u ts  to  b e g in ”  

A S R -L M  “ N o  o n e  s o n  a n d  b r e e z e  I  c o u n s e lin g ”  
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However, that both ASR and closed captioning based search system improve when 

exploiting grounded language models highlights the benefit of incorporating non-linguistic 

context in multimodal applications. 

7.2 Discussion 
In this section grounded language models were shown to have improved the performance of an 

automatic speech recognition (ASR) system on the audio from broadcast baseball games.  The 

benefit of the grounded language model lies in ability to bias the ASR system to recognize 

words that relate to what is actually occurring in the video.  This not only improves the overall 

performance of speech recognition (in terms of word accuracy and error rate), but also improves 

the performance of applications that rely on ASR performance (such as video search).   

The results of these experiments (as well as the results of the experiments in Chapter 6) 

suggest that grounded language models may benefit many other multimodal applications.  The 

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

alpha=

 M
e
a
n

 P
re

c
is

io
n

 o
f 

T
o

p
 5

ASR-GLM CC

Figure 7-5.  Baseball video search using ASR as a function of non-

linguistic context.  Results are presented using closed captioning (CC; 

repeated from Figure 6-3) and automatically recognized speech with a 

grounded language model (ASR-GLM).  Higher alpha means more 

linguistic context. 
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probabilistic form of the model allows it to be easily integrated into other applications that 

exploit a probabilistic framework.  This is particularly true of natural language applications that 

use a noisy channel framework (such as ASR).  For such applications, the text-based language 

model can easily be expanded to include information from the grounded language model (as 

was done here, using a simple backoff strategy).  Perhaps the most obvious application where 

this could be applied is in Machine Translation, where a grounded language model could be 

used to bias a system to translate words that correspond to the events shown in the video.  In 

the next section, other future directions for using and designing grounded language models will 

be more fully discussed. 
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Chapter 8 

Conclusions 

8.1 Contributions 
In this thesis we have presented a methodology for representing events in a grounded 

language model.  The contributions of this work are as follows: 

• A top-down approach to modeling events based on the use of grammars of 
behavior to explicitly represent the context of the situation in which events occur.  
Behavior grammars are used to parse out event structures used for language 
grounding.  These event structures enable language understanding in virtual 
domains that is robust to noise and parallels aspects of human language acquisition. 

• A bottom-up approach to modeling events in which temporal data mining is used 
to automatically learn event representations from a large corporus of unlabeled 
video.  Unlike the behavior grammars used in the top-down approach, the mined 
event structures are not dependent on hand designed production rules, making 
them flexible enough to be used to model language in broadcast sports video. 

• A methodology for learning grounded language models that are designed to 
facilitate the incorporation of non-linguistic context into practical multimedia 
applications.  This methodology is:  
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o Principled: by encoding grounded language models as conditional probability 
distributions we can exploit a wide variety of algorithms designed for 
parameterizing such models.  Further, the use of probability distributions 
enables grounded language models to be easily applied to nearly any 
application with a probabilistic framework.  This thesis demonstrated three 
such applications: natural language understanding, information retrieval, and 
automatic speech recognition.  Additional applications that operate using 
similar frameworks (e.g., machine translation) are left for future work. 

o Unsupervised: the method for learning grounded language models requires 
no human annotation of the events being represented and learns entirely from 
paired data of language and the events it describes.  This distinguishes the 
work from previous multimodal research which often requires costly human 
annotation.  

o Non-trivial: grounded language models are trained on a real world domain 
and evaluated on practical multimodal applications.  Unlike most of the 
previous work on grounded language models that learn only from data 
collected in highly controlled settings, our approach operates on non-toy 
environments with both academic and commercial implications.  

8.2 Future Directions 
The research described in this thesis leaves open a number of possible directions for future 

work.  Many of these directions relate to practical issues involved in the generation of 

grounded language models and their applications.  For example, the tuning of parameter 

settings, the use of more sophisticated speech alignment techniques, and the addition of 

more low level visual features, are just a few of the many ways in which the models 

described in this thesis could be improved.  Although such practical directions are 

important, this section focuses on more theoretical directions for exploring future work. 

8.2.1 Effect of Syntax 

The grounded language modeling approach presented here makes the simplifying 

assumption that words in an utterance are independent of each other.  Although bigrams 

and trigrams are used, no higher level syntactic information is incorporated into the 

linguistic mapping approach.  This is in spite of psychological evidence that such syntactic 

information is critical to humans when learning words for events (Snedeker and Gleitman, 

2004).   
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Fleischman and Roy (2007c) describe a simple extension to the linguistic mapping 

algorithm described in Section 3.3.  The extension exploits syntactic phrase boundaries 

automatically identified in utterances (Daume and Marcu, 2005) to better learn the meaning 

of verbs in a grounded language model.  A promising future direction is to examine ways 

to incorporate more complex statistical information, as is currently being explored in work 

on statistical machine translation (e.g., Yamada and Knight, 2001). 

8.2.2 Merging Top-Down and Bottom-Up Methods 

In addition to exploiting more information from the linguistic stream, another important 

direction for future work is to examine ways to improve representations of the non-

linguistic events for grounded language models.  One such promising direction examines 

the question of whether top-down and bottom-up methods for representing events can be 

combined into one hybrid approach.  Such a hybrid method could have significant 

advantages for representation of events.  As this thesis has shown, learning event structure 

bottom-up from data provides for robust representations which can be exploited in very 

noisy domains such as broadcast video.  The approach we describe is entirely 

unsupervised, and learns without assistance from human teachers.  This approach, while 

economical, is perhaps overly conservative regarding the use of human supervision.  In 

fact, there is a great deal of high level knowledge about particular domains (especially 

sports) which can be exploited without excessive cost in human-hours of labor. 

Continuing with the domain of baseball, an ideal method would allow humans to write 

out some or all of the rules of baseball (much like grammars of behavior are written out) 

and then use those rules to guide the learning of event structures directly from data.  

Similar combinations of top-down and bottom-up methods have been suggested to play a 

role in many aspects of human cognition, for example, word learning (Xu and Tenenbaum, 

2007) and perceptual learning (Hinton, 2007).  ).  Embracing such a framework for learning 

grounded language models represents a promising direction for future research. 
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8.2.3 Generalizing to Additional Domains 

Although this thesis presents evaluations of grounded language models in two very 

different domains (i.e. virtual worlds and broadcast sports video), the generality of the 

approach to many other domains is still in question.  We posit that the generality of 

grounded language modeling to additional domains is limited by two factors: how easily 

low level features of the domain can be represented; and how much situated language use 

occurs in the domain. 

The limiting factor of both the top-down and bottom-up approaches to representing 

events is the ability to extract low level features from the domains.  In order to get a wedge 

into the very challenging problem of grounding language for events, we purposefully 

selected domains which facilitated such low level feature extraction.  For sports games, 

exploiting information in how sports are filmed made extracting low level features 

relatively easy.  While, for videogames games, access to near-perfect information about low 

level actions obviated the need for computer vision entirely.   

In moving to additional video domains, the ability of computer vision to identify low 

level features will limit the ability to represent high level features, and thus, the ability to 

learn grounded language models. However, computer vision technology is advancing all 

the time and promises to have a dramatic impact on multimedia applications.  For example, 

improvements in object/person tracking will allow for much finer grained analysis of 

events in many sports domains such as American football (see Intille and Bobick, 2001).  

Also, designing large ontologies of image classifiers that can identify commonly observed 

scenes and objects will enable more detailed representations of elements of news video 

(Naphade et al., 2006).  Finally, advances in affective computing will open the door to 

recognizing the emotional states of people in video (Picard, 1997).  Modeling patterns in 

how a person’s emotions change (and cause changes in others) is essential for moving 

beyond representations of strictly physical events, and into the world of social interaction.   

The second limitation to our grounded language modeling approach lies in the amount 

of situated language that occurs in the domain.  “Situated language” is that subset of 

language in a domain that refers to, or describes, what is actually happening in the “here 

and now.”  Our approach depends on situated language use because of its reliance on 
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learning algorithms that exploit the recurrence of words and event representations in 

parallel training data.  If a domain does not have enough situated language, no amount of 

such data will enable the training of a model. 

Again, the domains chosen in this thesis purposefully contained sufficient situated 

language use, but it is an open question as to how much, and how situated, the language 

must be.  Certainly there are other domains with situated language; for example, infants 

interacting with caregivers, cooperative games where agents communicate about their 

state, and broadcast television programming, such as news shows, cooking shows, home 

shopping shows, game shows, etc.  If the definition of situated language is loosened, other 

domains become possibilities; for example, soap operas do not necessarily involve much 

discussion of the here and now, but the language used (e.g., “love,” “jealousy,” “revenge,” 

etc.) often corresponds with visual patterns in the video (e.g. music rising, zooming into a 

close up, fading to black, etc.).  By incorporating richer features as they become available 

(e.g. affective information), we begin to see how the limitations described here can be 

stretched and how extremely complex domains could be tackled using the methods 

described in this thesis. 

8.3 Concluding Remarks 
This thesis introduced methods for learning models of the meaning of words for events.  It 

pushed the boundaries of previous work in two directions.  First, by focusing on events, 

this thesis has tackled a significantly more challenging class of words than previous work 

on grounded models of meaning.  Second, by designing robust representations, this thesis 

shows the practical advantages of using grounded language models in multimodal 

applications. 

It is true that only a few domains have been addressed in this thesis, and that they are 

the ones most amenable to our approach.  We have no illusions that this thesis presents a 

final optimal solution to the challenges of modeling meaning.  Rather, this thesis represents 

a proof of concept.  It is less about specific representations or models, but rather, about a 
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general method for teaching machines about the world.  This thesis shows that machines 

can be built to learn about the world by simply watching lots of television.   

If machines are to be truly intelligent, they must be designed to learn.  Although there is 

much to learn from books and the internet, these resources have little to say about most of 

human knowledge.  Books cannot teach us about common sense.  The web has little to offer 

on the meaning of words.  But television (and video, in general) provides information 

richer than any text-based medium could ever hope to.  Although extremely complex, 

video can be harvested for building artificially intelligent machines.  And while much more 

work is required for machines to fully take advantage of such information, the hope is that 

this thesis will guide others toward that goal. 
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Appendix A 

Virtual Environments 

A.1 Mission Rehearsal Exercise 

RuleRuleRuleRule    ProbProbProbProb    
complete_mission -> collision help_boy support_inspection  .5 
complete_mission -> collision support_inspection help_boy  .083 
complete_mission -> collision help_boy support_inspection reinforce_lz  .25 
complete_mission -> collision support_inspection help_boy reinforce_lz  .083 
complete_mission -> collision help_boy reinforce_lz support_inspection .083 
help_boy -> secure_area evaluate_boy medevac .5 
help_boy -> secure_area evaluate_boy ambulance .083 
help_boy -> evaluate_boy secure_area medevac .25 
help_boy -> evaluate_boy secure_area ambulance .083 
help_boy -> evaluate_boy treat_on_scene .083 
medevac -> secure_lz call_medevac .777 
medevac -> call_medevac secure_lz  .222 
ambulance -> call_ambulance 1 
Support_inspection -> squad_to_celic 1 

Figure A-1.  Behavior grammar rules converted from MRE task model and their probabilities. 
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HumanHumanHumanHuman    
TranscribedTranscribedTranscribedTranscribed    

ASRASRASRASR    
TransTransTransTranscribedcribedcribedcribed    

[collision] 
sergeant secure the assembly area i sergeant secure the assembly 

area 
[secure_area] 
[evaluate_boy] 

eagle base this is eagle two six over  out eagle base this is eagle two 
six over 

roger we have an injured boy that's 
been struck by one of our vehicles we 
need to get him medevaced asap over 

 roger will injured what what 
medevac asap over 

[call_medevac] 
sergeant have third squad secure the lz  that sergeant have third squad 

secure the l z 
sergeant have third squad secure the lz that's sergeant have third squad 

secure the l z 
do it Do it 

[secure_lz] 
sergeant send fourth squad to celic i sergeant send one squad tucci 

what 
roger eagle one six this is eagle two six 
we are at a medevac site 

 roger eagle one six is eagle two 
six we have a medevac site 

roger eagle eagle one six i have one 
squad inbound over 

i route to eagle one six that was 
squad about 

sergeant send fourth squad to celic  sergeant send one squad the 
child's 

[squad_to_celic] 
sergeant let's move the boy to the lz sergeant what happened to the l z 
sergeant move the boy to the lz sergeant move the boy to the l z 
sergeant control the crowd I sergeant route 
sergeant have first sergeant have third 
sergeant have first squad reinforce the lz  that sergeant have third squad 

reinforce the l z 
[reinforce_lz] 

Figure A-2.  Human and automatic transcripts of sample run of MRE scenario. 
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A.2 NeverWinter Nights 

RuleRuleRuleRule    FreqFreqFreqFreq    
 CHANGE_ROOM ->  OPEN_DOOR GO_THROUGH 206 
 OPEN_CHEST ->  MOVE>Chest  151 
 CLOSE_CHEST ->  CLICK_ON>Chest 148 
 OPEN_DOOR ->  ASK_OTHER 72 
 ATTACK_AT>Door ->  ATTACK_AT>Door 61 
 TRY_DOOR ->  TRY_DOOR 48 
 BREAK_DOWN ->  ATTACK_AT>Door 46 
 GetPassword ->  GOTO_Password TakePassword 40 
 GetBlueKey ->  GOTO_BlueKey TakeBlueKey 40 
 Exit ->  GOTO_Exit LEAVE 40 
 OPEN_DOOR ->  PULL_LEVER 37 
 TakeBlueKey ->  OPEN_CHEST TAKE>Blue_Key CLOSE_CHEST 35 
 ASK_OTHER ->  GIVE_GYPSY_DIAMOND 35 
 CHANGE_ROOM ->  TRY_DOOR OPEN_DOOR GO_THROUGH 34 
 CHANGE_ROOM ->  OPEN 34 

Figure A-8-3  Most frequent non-motion rules and their frequencies. 

 

RuleRuleRuleRule    FreqFreqFreqFreq    
 GOTO_Exit ->  MOVE>green_chest CHANGE_ROOM MOVE>enterance 8 
 GOTO_Password ->  MOVE>enterance MOVE>red_man CHANGE_ROOM MOVE>red_corridor 
CHANGE_ROOM MOVE>green_woman CHANGE_ROOM MOVE>green_chest 7 
 GOTO_Exit ->  MOVE>blue_chest MOVE>blue_lever MOVE>enterance CHANGE_ROOM MOVE>exit 7 
 GOTO_BlueKey ->  MOVE>green_chest CHANGE_ROOM MOVE>enterance CHANGE_ROOM 
MOVE>blue_lever CHANGE_ROOM MOVE>blue_chest 7 
 GOTO_Password ->  MOVE>blue_chest CHANGE_ROOM MOVE>gold_lockpick CHANGE_ROOM 
MOVE>gold_portal MOVE>gold_corridor CHANGE_ROOM MOVE>green_woman CHANGE_ROOM 
MOVE>green_chest 4 
 GOTO_LockPick ->  MOVE>blue_chest CHANGE_ROOM 4 
 GOTO_BlueKey ->  MOVE>enterance CHANGE_ROOM MOVE>blue_lever CHANGE_ROOM 4 
 GOTO_Axe ->  MOVE>enterance MOVE>red_man CHANGE_ROOM MOVE>gold_axe 4 
 GOTO_Password ->  MOVE>gold_axe CHANGE_ROOM MOVE>gold_portal MOVE>gold_corridor 
CHANGE_ROOM MOVE>green_woman CHANGE_ROOM MOVE>green_chest 3 
 GOTO_Password ->  CHANGE_ROOM MOVE>gold_portal MOVE>gold_corridor CHANGE_ROOM 
MOVE>green_woman CHANGE_ROOM MOVE>green_chest 3 
 GOTO_LockPick ->  MOVE>enterance MOVE>red_man CHANGE_ROOM MOVE>gold_lockpick 3 
 GOTO_Exit ->  MOVE>gold_lockpick CHANGE_ROOM MOVE>gold_portal CHANGE_ROOM 
MOVE>enterance 3 
 GOTO_Exit ->  MOVE>blue_chest MOVE>blue_lever MOVE>enterance CHANGE_ROOM 3 
 GOTO_Exit ->  CHANGE_ROOM MOVE>gold_portal CHANGE_ROOM MOVE>enterance 3 
 GOTO_BlueKey ->  MOVE>gold_lockpick CHANGE_ROOM MOVE>gold_portal CHANGE_ROOM 
MOVE>enterance CHANGE_ROOM MOVE>blue_lever CHANGE_ROOM MOVE>blue_chest 3 

Figure A-4  Most frequent motion rules and their frequencies. 
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BEGIN_TRIAL 
there is a red archway on your right 
go through that 
go straight through that to the other side of the room 
go through the door there 
go through this hallway to the end 
there is a door on your right 
get the gem from the chest 
talk to the person 
go through that door 
get the password from the chest 
now activate the portal 
allright now bash the door directly in front of you 
go through it 
flip the floor lever to open the door in front of you 
go through that 
get the key from the chest 
there is a door behind you 
on your right 
get the lockpicks from the chest 
the door in front of you that you didnt come through 
go through that 
turn around 
there is a door behind you 
bash it 
actually it should open 
open it 
now open that door 
EXIT_COMPLETE 

Figure A-5.  Human transcription of sample NeverWinter Nights trial 
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Appendix B 

Evaluation of Event Representations 

Our methodology for representing events in sports video is to extract multiple streams of 

features that are then mined for temporal patterns which correlate with high level events (see 

Section 5.2 for more detail).  In this appendix, evaluations are presented showing both the 

performance of the feature extraction techniques, as well as, the informativeness of the temporal 

patterns mined from the video. 

B.1 Evaluating Visual Context Features 
Visual context features encode general properties of the visual scenes in a video.  These features 

are generated by first segmenting a raw video into shots, extracting individual (key) frames 

from those shots, and classifying those key frames into sports-specific categories useful for 

representing events.  The following sections describe experiments run to evaluate the 

performance of feature extraction in broadcast baseball and American football. 
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B.1.1 Baseball 

Classifying frames of broadcast baseball games is treated as a two step, hierarchical process.  In 

the first step, three key frames are extracted from each shot and classified into one of three 

categories: pitch-shot, field-shot, and other-shot.  In the next step, all field-shots are resampled at 

finer granularity (one key frame extracted per 10 frames of video) and classified into one of 

eight categories: audience-frame, on-base-frame, infield-frame, outfield-frame, deep-outfield-frame, full-

field-frame, misc-frame, and running-frame.  In both stages, key frames are represented using the 

set of features described below: 

• Duration: the duration (in frames) of the shot from which the frame was extracted. 

• Camera motion: the median values of camera motion detected in the pan, tilt, and zoom 
dimensions of the shot from which the frame was extracted.  Motion is detected using 
the implementation of Bouthemy et al. (1999). 

• Grass and soil pixels, the number of pixels with color values characteristic of grass 
(hue=0.19-0.46; sat.=0.2-0.7; bright >0.3) and soil (hue=0.06-0.15; sat.=0.25-0.8; bright 
>0.5) in the key frame.  Values are reported for the entire frame as well as just the top, 
bottom, left, and right halves of the frame. 

• Grass and soil ratios: the ratio of grass and soil colored pixels by region of key frame 
(e.g., number of grass pixels in whole frame vs. number of soil pixels in whole frame).  
Ratios include grass vs. soil, grass vs. grass, and soil vs. soil, in the regions whole frame 
vs. whole frame, top vs. bottom, and left vs. right. 

• Grass histogram stats: statistics measuring the distribution of grass pixels within a 
frame.  This feature is taken from work on pitch-shot detection (Pei and Chen, 2003), and 
exploits the fact that pitching shots have very characteristic distributions of grass 
colored pixels (see Figure B-1).  To create these features, a histogram is generated which 
bins the number of grass colored pixels along the vertical and horizontal axes of the 
frame.  The features used for classification represent the number of bins in those 
histograms that have values above the mean bin value in the entire histogram, in the 
first half of the histogram, and in the first ¾ of the histogram. 

• Entropy: the entropy of the intensity values of the image frame in the following regions: 
the whole frame, the center of the frame, the top, bottom and each quadrant of the 
frame. 

• Entropy ratios: the ratio of entropy values in the top vs. bottom of the frame and the 
center vs. whole frame. 

• Line stats: the number, maximum length and slop of max length line found in the frame. 
Lines are discovered using Canny edge detection and Hough transforms. 

• Color histogram stats: the frame is histogramed by color into 16 bins and the number of 
pixels in each bin are used. 
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• Face and uniform colors: connected components of skin colored pixels (hue<0.138; 
sat.=0.23-0.68; bright=0.35-0.95) are found and features are generated based on the 
number, maximum size, mean size, and standard deviation of those components.  
Features are also generated for connected components of the most prominent color in 
the image (which is often a players’ uniforms). 

 

Classification evaluations were run on a corpus of hand-labeled frames from a held-out set of 

baseball games (i.e. games not used in the grounded language modeling experiments described 

in Chapter 6 or Chapter 7).  The labeling was performed iteratively by first hand labeling frames 

for part of one game, training a classifier with those labels, running the classifier over a set of 

new games, correcting the errors and repeating.  This procedure allowed a very large set of 

frames to be labeled (approximately 14,000 frames for each classifier) with relatively little 

human effort (approximately 5 human hours).  Figure B-2 shows results of 10-fold cross 

validation experiments run on the entire training set for both stages of classification.  Classifiers 

are decision trees trained with boosting and bagging (with five subcommittees, run for 50 

iterations) using the WEKA machine learning tookit (Witten and Frank, 2005). 

B.1.2 Football 

Extracting visual context features from football video operates just as described above for 

baseball.  Classification operates in two stages, first key frames are classified into one of the 

following categories: field-shot, goal-post-shot, umpire-shot, and misc-shot.  Then all shots not 

classified as misc-shot are resampled (at one key frame per 10 frames).  However, unlike 

Figure B-1.  Characteristic distributions of grass colored pixels in pitching-frame. 
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baseball, these resampled shots are classified into one of the same four categories.  Thus only 

one classifier is trained for the football experiments.  Also unlike baseball, a different set of 

features is used to represent each key frame.  The set of features is described below: 

• Duration: the duration (in frames) of the shot from which the frame was extracted. 

• Camera motion: the median values of camera motion detected in the pan, tilt, and zoom 
dimensions of the shot from which the frame was extracted.  Motion is detected using 
the implementation of Bouthemy et al. (1999). 

• Grass pixels: the total number of grass colored pixels. 

• Goal-post lines: a mask is used to identify all pixels of the characteristic color associated 
with goal posts (hue=0.16-0.24; sat.=0.3-0.75; bright>0.65).  Canny edge detection and 
hough transforms are used to identify goal post colored lines, and features are generated 
representing the number, total length, maximum length, mean length, median length, 
and standard deviation of lengths for those lines. 

• Striped lines: similar to the goal-post line features, these features look for high contrast 
lines indicative of black and white striping (useful for identifying shots of the umpire).  
Canny edge detection is used on the intensity image, with a threshold set to 0.15.  
Features are generated representing the number, total length, maximum length, mean 
length, median length, and standard deviation of lengths for lines output by the Hough 
transform. 

• Face detection features:  a face detection algorithm is used to put bounding boxes on 
faces in the frame (Kienzle, et al., 2005).  These features represent the size of the largest 
face found, the mean size and standard deviation of all faces, and the number of faces 
found in the whole/top/bottom/left/right of the image.  Features are generated for two 
threshold settings: 5 and -5. 

• Region stats: in addition to the above stats, the frame is split into 9 equal sized regions 
and further features are generated for each of these individual regions.  These features 
are: 

o Total number of grass/black/white pixels in the region 
o Entropy of the region 
o Stripe features: the number of stripes in region, the ratio of stripes in region to total 

stripes in frame, the maximum/mean/median/standard deviation of stripes in the 
region. 

 

Training of the classifier proceeded as with the baseball video.  Figure B-2 reports results of 

10 fold cross validation on a set of approximately 10,000 frames from games not used in 

grounded language model evaluations.  Classifiers are decision trees trained using boosting and 

bagging (with three subcommittees, run for 25 iterations) with the WEKA machine learning 

toolkit (Witten and Frank, 2005). 
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B.2 Evaluating Audio Context Features 
Audio context features are generated from video by sampling a sequence of 30ms overlapping 

frames, representing those frames as a vector of low level features, and then classifying each 

frame using a series of binary classifiers for the classes: speech, music, and cheering.  Each 

frame is represented using mel-frequency cepstral coefficients (MFCCs), energy in the audio 

signal, the number of zero crossings, spectral entropy, and relative power between different 

frequency bands.  Training data is generated using a similar technique to that used for visual 

context features.  A small set of audio segments are hand annotated using the Transcriber tool 

(Barras et al., 2000).  Overlapping frames from these segments are extracted and represented as 

feature vectors.  These instances are used to train a decision tree with boosting and bagging 
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Figure B-2.  Precision/recall results of shot classifiers for baseball and American football. 
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(with three subcommittees, run for 75 iterations) using WEKA (Witten and Frank, 2005).  This 

classifier is then used to label more held out data, which is corrected by hand, and then the 

process is repeated.  The final training set contained approximately 60,000 training frames 

(30,000 for speech, 10,000 for music, 20,000 for cheering).  Figure B-2 shows the 10-fold cross 

validation performance for the three binary classifiers used to extract audio content features. 

B.3 Evaluating Temporal Patterns 
Grounded language models represent the non-linguistic context of sports video using temporal 

patterns automatically mined from a large corpus of video.  The corpus is represented as 

multiple streams of features that describe the visual context, audio context, and camera motion 

occurring during each frame of video.  By representing events as temporal patterns mined from 

such features, we are able to encode complex relationships that often co-occur with high level 

events in sports.  The experiments described in Chapter 6 and Chapter 7 implicitly justify the 

use of such event representations based on extrinsic evaluations of information retrieval and 

automatic speech recognition.  Below we describe a more explicit evaluation in which temporal 

Table B-1.  Confusion matrices or baseline classifier (above) and 

classifier using temporal pattern features of depth 5 (below) 
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patterns are used to improve the ability of a system to distinguish between different types of 

events in baseball video. 

A test set was created by extracting 237 events from 6 baseball games in which nine teams 

played in four stadiums which were broadcast on four US television stations.55  Following Gong 

et al (2004), each highlight was hand labeled into one of seven categories: homerun, outfield hit, 

infield hit, strikeout, outfield out, infield out, and walk.  We train a decision tree with bagging and 

boosting using leave on out cross-validation (with five subcommittees, run for 50 iterations) 

using the WEKA machine learning toolkit (Witten and Frank, 2005).   

In order to examine the informativeness of temporal patterns, we set up a baseline 

classification system which follows Gong et al. (2004) and is trained only on the low level 

features used to train the visual context features.  Temporal patterns are evaluated by iteratively 

adding pattern features mined by the algorithm to these baseline features. 

                                                 
55

 These games are the same as those used in the test set described in Section 6.2.1. 
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Figure B-3.  Comparison of classifiers using temporal pattern features.  Depth 

level corresponds to complexity of temporal features (i.e., number of iterations of 

algorithm).  Baseline uses only low level features. 
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Figure B-3 shows the accuracy of the baseline system compared to systems using temporal 

patterns of increasing levels of complexity.  Here the level refers to the maximum depth of the 

temporal pattern mined (i.e. the number of iterations used by the data mining algorithm), 

where depth 0 refers to only using the duration of the visual context, audio context, and camera 

motion features (e.g. pitching-scene for 90 frames, cheering for 20 frames, etc.), depth 1 refers to 

relations between two categories (e.g., [BEFORE, pitching-shot, field-shot] for 90 frames), etc.   

These results demonstrate statistically significant improvement (p<0.05; n=237, one-tail) 

using temporal patterns of depth two and greater, with a peak performance at depth five.  In 

order to understand the nature of this performance increase, we show the confusion matrices 

 

Figure B-4.  ROC curve for classification of left field highlights (above) and 

fly ball highlights (below).  Baseline is compared to classifier using temporal 

pattern feature.  AUC reports area under the curve for each classifier. 



  131 

for these two systems (baseline and depth five) in Table B-1.  These tables show that temporal 

feature induction improves precision and recall for all classes, with the most notable increases 

coming from the categories walk and outfield out.  As can be seen in the confusion matrices, these 

two categories are often confused in the baseline system with the visually similar categories 

strikeout and outfield hit, respectively.  The system using temporal features is less prone to such 

confusions, because of the finer grained temporal information that it captures.   

The benefit of this finer grained information is even more pronounced when finer grained 

classifications are required.  For highlight classes focusing on specific types of hits (e.g. fly balls) 

or specific locations of hits (e.g. left field), using temporal features becomes increasingly useful.  

Figure B-4 show ROC curves for these example classes.56   

The results of these experiments show that temporal pattern features encode information 

useful for distinguishing events in sports video.  This supports the intuition that temporal 

patterns between contextual features of video provide a useful basis for representing events in 

grounded language models of sports video.  

 

                                                 
56

 ROC curves plot the tradeoff between the true positive and false positive rates as the threshold used for 

classification is changed.   
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Appendix C 

Workflow for Grounded Language Modeling 

The following describes the process workflow for generating grounded language models from 

the collection of videos from broadcast cable to the modeling of the relationship between event 

representations and words from the closed captioning.  The Figure C-1 illustrates this process 

with different colored boxes representing the type of tools used: red boxes indicate 3rd party 

software implementations, dark blue boxes indicate the use of 3rd party toolkits, and light blue 

boxes indicate code generated entirely by the author.  Descriptions of each box are further 

described below with references to the locations of software used given as footnotes.   

 

• Raw MPEG video: raw video is captured from broadcast television (at a rate of 29.97 

frames/sec) using the commercially available EyeTV mpeg encoder from Elgato 

Systems. 

• Remove commercials: commercials are identified using free software called comskip
57

 

and ignored throughout the remainder of video processing   

• Extract raw camera motion: camera motion is computed using free software called 

Motion2D.
58

  The output of this system is converted using equations (Bouthemy et al., 

1999) into three value output for pan, tilt, and zoom. 

                                                 
57

 http://www.kaashoek.com/comskip/ 
58

 http://www.irisa.fr/vista/Motion2D/index.html 
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• Cluster motion:  the raw camera motion is clustered using an HMM trained with Jeff 

Blimes Graphical Modeling Toolkit (GMTK).
59

 

• Demux Audio and Video: the raw video is demuxed into separate audio and video files 

using the BBDEMUX.exe tool available with the comclean software utility.
60

 

• Shot boundary detection: shot boundary detection is performed using an 

implementation of Tardini et al. (2005) built by the researchers.  Thanks to Constantino 

Grana for help obtaining the software. 

• Image feature extraction:  image features were extracted using scripts written with the 

Matlab image processing toolkit.
61

 

• Shot classification:  shots were categorized using classifiers trained with the WEKA 

machine learning toolkit.
62

  

• Event segmentation:  events are segmented based on the output of shot classification.  

Individual event clips are cut from the larger video using mpgtx.exe available with the 

comclean software.
63

 

• Sound classification: sound classification operates on MFCC audio features extracted 

using sphinx 4 tool.
64

  Audio is first normalized using the lame free audio software.
65

  

Classification was based on classifiers trained using the WEKA machine learning 

toolkit.
66

  Thanks to Brandon Roy for implementing the majority of sound classification. 

• Temporal Pattern Mining: temporal pattern mining was implemented by the author in 

the JAVA programming language.
67

   

• Automatic Speech Recognition:  ASR was performed using the sphinx 3 tool.
68

 

                                                 
59

 http://ssli.ee.washington.edu/~bilmes/gmtk/ 
60

 http://www.kaashoek.com/comskip/ 
61

 http://www.mathworks.com/ 
62

 http://www.cs.waikato.ac.nz/ml/weka/ 
63

 http://www.kaashoek.com/comskip/ 
64

 http://cmusphinx.sourceforge.net/ 
65

 http://audacity.sourceforge.net/download/windows 
66

 http://www.cs.waikato.ac.nz/ml/weka/ 
67

 http://www.java.com/en/ 

Figure C-1.  Workflow of video processing. 
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• Extract raw Closed Captioning: raw closed captioning is extracted using the 

commercially available software, MPEG STRIP.
69

 

• Convert raw CC to text format: raw closed captioning is converted to text using the 

free tools SCC tools.
70

 

• Align text to ASR output: closed captioning to ASR alignment was implemented by the 

author in the JAVA programming language.
 71

 

• Linguistic mapping: linguistic mapping is performed using the freely available Topic 

Modeling Toolbox for Matlab.
72

  The toolbox was modified slightly such that the 

function GibbsSamplerAT in file GibbsSamplerAT.cpp was changed to incorporate the 

probability of author k when calculating the probability of assigning a word token to a 

topic j and an author k. 

                                                                                                                                                             
68

 http://cmusphinx.sourceforge.net/ 
69

 http://homepage.mac.com/dvd_sp_helper/ 
70

 http://www.geocities.com/mcpoodle43/SCC_TOOLS/DOCS/SCC_TOOLS.HTML 
71

 http://www.java.com/en/ 
72

 http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm 
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