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Abstract— Natural language is a flexible and intuitive modal-
ity for conveying directions and commands to a robot but
presents a number of computational challenges. Diverse words
and phrases must be mapped into structures that the robot can
understand, and elements in those structures must be grounded
in an uncertain environment.

In this paper we present a micro-air vehicle (MAV) capable
of following natural language directions through a previously
mapped and labeled environment. We extend our previous
work in understanding 2D natural language directions to three
dimensions, accommodating new verb modifiers such as go up
and go down, and commands such as turn around and face the
windows. We demonstrate the robot following directions created
by a human for another human, and interactively executing
commands in the context of surveillance and search and rescue
in confined spaces. In an informal study, 71% of the paths
computed from directions given by one user terminated within
10 m of the desired destination.

I. INTRODUCTION

Micro-air vehicles (MAVs) have many applications for
surveillance and search-and-rescue in indoor environments.
Aerial vehicles have the unique ability to reach vantage
points inaccessible to most ground vehicles, a valuable asset
in environments with elevated features. However, operating
an indoor micro-air vehicle currently requires a specially
trained and highly skilled operator.

We present a system that relaxes this requirement by
providing a natural language interface for specifying motion
trajectories to the MAV. If the human issues a command such
as “Fly up to the windows,” the robot infers and executes a
corresponding path through the environment. This interface
allows the operator to flexibly and naturally describe a three
dimensional path. In such scenarios, language has a strong
advantage over other interaction modalities. Humans need
less training to interact with the robot and can keep their
hands and eyes free for other tasks. Our system supports
interactions with the robot such as the following:

Operator: Fly past room 124 and look at the windows.
Robot: Takes off, flies to the windows past room 124.
Operator: Go up.
Robot: Ascends, while transmitting video.
Operator: Go back down.
Robot: Descends back to the operator’s level.
Operator: Come back towards the tables and chairs.
Robot: Flies towards the tables and chairs.

∗The first four authors contributed equally to this paper.

Fig. 1. Our research platform is an autonomous quad-rotor helicopter
outfitted with on-board sensors, actuators, and computers.

The primary challenge in understanding such language
arises from requiring the system to take input from untrained
users. However, restricting this interaction (e.g., by limiting
users to a small vocabulary or grammar) would forfeit much
of the advantage gained by using natural language. We
therefore seek to create a system that is able to accommodate
as diverse a range of inputs as possible.

Building robust language understanding systems that can
actually robustly understand diverse language in realistic
situations requires a number of advanced capabilities. These
include speech recognition, mapping and localizing within
the environment, parsing and grounding language symbols,
and planning in uncertain environments. In this paper, we
focus on understanding natural language directions in the
context of commanding a MAV in three-dimensional envi-
ronments.

Our approach extends previous research in understanding
natural language directions [1] to infer three-dimensional
paths. We implement this system on an autonomous MAV,
so that a user can command the vehicle using phrases such
as “Fly up to the windows” (Fig. 1). The user can issue a
long sequence of commands, or interactively and iteratively
command the vehicle to move through its environment. We
evaluate the system with an informal user study and identify
both its successes and limitations.

II. SYSTEM OVERVIEW

Our system takes as input a natural language string consist-
ing of directional commands and translates the string into a



Fig. 2. System diagram. Using on-board sensors and a previously acquired
map, our system infers and executes a trajectory from natural language
directions. Arrows indicate information flow.

sequence of motion primitives to be executed by the vehicle.
We divide this task into a number of separate steps (Fig. 2).

First, the commands are parsed into spatial description
clauses (SDCs), semantic structures that robustly capture
the meaning of spatial directions [1]. Next, a probabilistic
direction understanding module uses the SDCs together with
a map of the environment to infer the maximum likelihood
path conveyed by the natural language directions. This path,
expressed as a series of 3D waypoints, is used by the
navigation and motion planning modules to plan and execute
an obstacle-free route that reaches the desired destination.

Our current work assumes that the robot is operating in a
previously visited space, has acquired a map of the environ-
ment and its salient objects, and is continuously estimating its
pose within this map using appropriate exteroceptive sensors.
Extensions to online exploration and direction understanding
are discussed in Sec. VII.

Micro-Air Vehicle

Our quad-rotor helicopter, shown in Fig. 1, is the AscTec
Pelican manufactured by Ascending Technologies GmBH.
We outfitted the vehicle with both LIDAR and camera
sensors, which allows us to obtain accurate information about
the environment around the vehicle.

In previous work [2] we developed a suite of sensing
and control algorithms that enable the vehicle to explore
unstructured and unknown GPS-denied environments. Here,
we leverage that system to localize and control the vehicle
in a previously explored, known environment [3], [4].

To compute the high-precision, low-delay state estimates
needed to control the vehicle, we employ a 3-level sensing
and control hierarchy, distinguishing processes based on the
real-time requirements of their respective outputs. A fast,
accurate, and robust scan matching algorithm generates rela-
tive vehicle position estimates. These are fused with inertial
measurements using an extended Kalman filter (EKF) to
estimate the full vehicle state, including velocity. A separate
Monte Carlo localization algorithm provides lower frequency
global position estimates within a free-space gridmap, which
are periodically fused with the EKF estimates.

The waypoints produced by the direction understanding
modules are input into a trajectory planning system, which
plans the actual path for the vehicle. The planned trajectory
accounts for obstacles and traversability constraints using a
modified version of the navigator module from the CAR-
MEN Robotics toolkit [5].

The real-time state estimation and control algorithms are
run onboard the vehicle. The computationally intensive di-
rection understanding, waypoint planning, and Monte Carlo
localization modules run on a laptop base-station, which
relays information to the vehicle via a wireless link.

III. RELATED WORK

Our previous work building systems for understanding
natural language directions modeled directions as a sequence
of landmarks [6] while accounting for spatial relations and
a limited set of verbs [1]. The notion of spatial descrip-
tion clauses is influenced by many similar formalisms for
reasoning about the semantics of natural language direc-
tions [7], [8], [9], [10], [11], [12]. The structure of the
spatial description clause builds on the work of Landau and
Jackendoff [13], and Talmy [14], providing a computational
instantiation of their formalisms.

Previous work in our group [2] and many others [4],
[15], [16] has sought to develop MAVs capable of flight
in unstructured indoor and urban canyon GPS-denied envi-
ronments. The primary challenges addressed thus far have
been in developing state estimation and control solutions to
enable flight in confined and cluttered spaces. Little attention
has been given to the human interface with a MAV, and how
a human operator can issue commands.

Commonly used unmanned aerial vehicle interfaces in-
clude direct control with a joystick or a graphical interface
with an integrated aerial map view. The former demands
constant operator attention, while the latter is awkward in
confined environments with significant 3D structure. For high
flying vehicles operating in outdoor environments, altitude is
generally a secondary concern, set based on desired viewing
resolution or stealth concerns. However for indoor MAVs,
the paths must explicitly guide the vehicle above and below
objects in the environment, requiring an effective method for
specifying 3D vehicle paths.

In this work, we leverage our experience building direc-
tion understanding systems to develop a natural language
interface for issuing task-constrained natural language direc-
tions to a MAV. In addition to demonstrating an integrated
platform, we build on our previous language model by
incorporating language relating to three-dimensional environ-
ments and provide real-world demonstrations that the overall
system can follow natural language directions.

IV. SPATIAL DESCRIPTION CLAUSES

To follow natural language commands, the system uses a
semantic structure called a spatial description clause (SDC)
that exploits the structure of language typical to directions.
In our previous work, we formalized this structure by mod-
eling each sentence in a set of directions as a hierarchy



Fig. 3. SDC for the sentence “Fly up past the windows.” Here, V is the
verb, SR is the spatial relation, L is a landmark, and the figure is implicit.

of structured clauses [1]. Each SDC consists of a figure
(the subject of the sentence), a verb (an action to take),
a landmark (an object in the environment), and a spatial
relation (a geometric relation between the landmark and the
figure, e.g., past, through, up, etc.). Any of these fields can
be unlexicalized and therefore specified only implicitly. For
example, in the sentence “Fly up past the windows,” the
figure is an implicit “you,” the verb is “fly up”, the spatial
relation is “past” and the landmark is “the windows” (Fig. 3).

V. DIRECTION UNDERSTANDING

Our system uses SDCs to follow natural language direc-
tions by finding a path that maximizes the joint distribution
of paths and SDCs, given mapped objects. To do so, it first
extracts SDCs from text input, and then grounds the SDC
components in the environment. Text input can come from
either a speech recognizer operating on spoken instructions,
or from text received directly via a keyboard interface. We
use an extended version of our previously introduced meth-
ods [1]. For brevity, we summarize the existing approach and
focus on the novel extensions when appropriate.

A. SDC parser

We automatically extract SDCs from text by using a
conditional random field (CRF) [17]. The CRF labels each
word in each sentence with one of the four possible fields
(figure, verb, spatial relation and landmark), or none. The
CRF was trained on a different corpus of route instructions
from the one used in our evaluation [1]. A greedy algorithm
groups continuous chunks together into SDCs.

B. Map Layers

Our system uses a previously acquired map of the
environment that consists of three layers: free-space, a
three-dimensional topology, and known objects. The free-
space layer, represented as a gridmap, encodes the regions
traversable by the robot and is generated offline from LIDAR
scans.

The space of all possible paths through the environment
free-space is intractably large for typical search algorithms,
so the system creates a 3D topological roadmap from the
free-space gridmap. This topological roadmap, represented
as a graph, is used during path inference to reduce the search
space on desired paths.

Fig. 4. Overhead free-space and topological maps for the environment
used in the evaluation.. A perspective view of the dashed region is shown
inset, and illustrates the 3D structure of the topology.

The three-dimensional roadmap is created by repeating
a two-dimensional roadmap at multiple heights. The two-
dimensional roadmap is, in turn, created by automatically
segmenting the free-space based on visibility and detected
objects, then extracting a topology of the environment
from this segmentation [18]. Connections in the three-
dimensional roadmap are created according to the original
two-dimensional topology: by adding connections between
the current topological node and its neighbors (at the current
height and the levels directly above and below). Fig. 4 shows
the free-space and topological layers of a map. Each node
contains four viewpoints, facing in each of the four cardinal
directions. Additional height resolution could be achieved by
adding additional levels, at the cost of graph complexity.

Finally, a third layer contains a listing of objects and their
positions in the environment. This layer provides the basis
for grounding SDC components. In our reported results, the
objects are manually annotated in the map. Our preliminary
experiments with automatic object detection from on-board
camera imagery suggest that fully automatic creation of this
map layer is feasible for future work.

C. Model

We formulate the problem of understanding natural lan-
guage directions as inferring a path (a sequence of viewpoints
vi) given a set of natural language directions (a list of
SDCs sdc1 . . . sdcM ). We can factor this distribution into
a component for the path and a component for the observed
SDCs. In particular, we assume that an SDC depends only
on the current transition vi, vi+1, and that the next viewpoint
vi+1 depends only on previous viewpoints. When P is the
path, S is the sequence of the SDCs, and O are the detected
objects, we have the following factorization:

p(P, S|O) =

[
M∏
i=1

p(sdci|vi, vi+1, O)

]
×[

M∏
i=1

p(vi+1|vi . . . v1)

]
× p(v1) (1)



We model the transition probabilities in the second term
of Eq. (1) as uniform among connected viewpoints in the
topological map, together with a constraint that disallows
backtracking. This constraint means that the path is not
allowed to revisit any location that it has previously visited.

The most important part of our model is the observation
probability, p(sdci|vi, vi+1, O). To compute this probability,
we break down the SDC into its component parts: the figure,
f , the verb or action, a, the spatial relation, s, and the
landmark, l. Given that vi is the ith viewpoint and ok is
the ith detected object, we obtain the following distribution:

p(sdci|vi, vi+1, O) = p(fi, ai, si, li, |vi, vi+1, O) (2)
≈ p(fi|vi, vi+1, o1 . . . oK)× p(ai|vi, vi+1)×
p(si|li, vi, vi+1, o1 . . . oK)× p(li|vi, vi+1, o1 . . . oK)

At this point, we have factored the distribution into four
parts, corresponding to each field of the SDC, plus transition
probabilities.

D. Grounding each SDC component

In order to convert a natural language command to robot
action, we need to ground each term in the observation
probability in terms of sensor data available to the robot.

a) Verbs: The verb component models the probability
of verbs such as “up” and “down” given two viewpoints
vi and vi+1 which define a path segment [vi, vi+1]. In our
previous work [1], we modeled three verbs: “turn left,” “turn
right,” and “go straight.” Extending our model to three-
dimensional interactive commands required modeling the
additional verbs (and verb satellites): “up,” “down,” “turn
around,” and “face.”

In order to compute this term, the system extracts the type
of the verb based on keywords in the verb field of the SDC;
the default type is “straight.” Given the verb, we compute
p(ai|vi, vi+1) according to the type of the verb. We use a
single feature that describes the probability of each path
segment. For “left,” “right,” and “straight,” the probability
of the verb is computed using the feature corresponding to
the total amount of change in orientation required to travel
between two viewpoints. We assume natural robot motion:
in order to move from one viewpoint to another the robot
must first turn to the destination, drive there, and then turn
to its final orientation. The total turn amount corresponds
to how much the robot must turn in order to achieve the
desired change in orientation. For “left,” the desired change
in orientation is 90◦; for “right,” it is −90◦. For “straight,”
it is 0◦ and for “turn around,” it is 180◦.

In order to model the new verbs such as “go up” we use the
feature of whether or not the second viewpoint has a higher
elevation than the first viewpoint. For “down” we compute
the probability using the feature of whether the second
viewpoint has a lower elevation than the first viewpoint. For
“turn around”, as we did with “right” and “left” we compute
the probability using expected turn amount of 180◦ along
with a feature that biases the robot to stay at the same
location. For “face” (as in “face the windows”) we use a

feature that is set to change uniformly to any orientation
at the same topological location. Then the landmark term
computes the probability that “the windows” are visible from
each particular orientation.

b) Landmarks: The landmark component models the
probability of a landmark in an SDC given a viewpoint
transition [vi, vi+1] and detected objects O. For example,
we might want to compute the probability that we would
see a “computer” given that a “monitor” and a “keyboard”
occur along this particular path segment. This problem is
challenging because people refer to a wide variety of objects
in natural language directions (in diverse ways), and not all
of these objects may be in our map. However, using the
notion of object-object context, we can still reason about
and ground unmapped objects [19]. Conceptually, many
objects are statistically likely to co-occur (e.g., a computer
is probably present when a monitor and keyboard are also
present). Using an object co-occurrence model built from
over a million labeled images downloaded from an online
photo-sharing website, our system can reason about many
more objects than are present in its object map.

c) Spatial Relations: The spatial relation component
models the probability of a particular spatial relation given
a landmark type, landmark location, and a path segment
[vi, vi+1]. For example, we need to compute the probability
of how well a phrase such as “past the door” describes a
particular path segment and landmark polygon. In order to
evaluate this component, the viewpoints are converted into
a sequence of points. In addition, wherever objects have
been detected are converted into polygons that represent the
geometry of a landmark.

The system extracts features from this schematic repre-
sentation that capture the semantics of spatial prepositions.
These features are functions of the geometry of the path
and landmark. For example, one of the features utilized for
the spatial preposition “to” is the distance between the end
of the path and the landmark’s location. In order to learn
this distribution we use a dataset of hand-drawn examples
of paths that matched a natural language description such as
“through the door.” Given this dataset and a set of features
(along with a target class such as “through”), we use Naive
Bayes to model the distribution p(si = past|landmark =
oi, path = vi, vi+1). Features are described in detail in [20].
We have trained classifiers for eleven spatial prepositions:
“across”, “along,” “through,” “past,” “around,” “to,” “out,”
“towards,” “down,”, “away from,” and “until.”

E. Path Inference

The goal of the path inference is to take the model
described in Eq. 1, a sequence of SDCs and a map of the
environment with the location of some objects and infer a
path through the environment. Before following directions,
the system must first learn the probability distributions
described in Eq. 2 from training data, which includes Flickr
co-occurrence statistics and examples of spatial relations and
verbs. Using these learned probability distributions, the robot
uses a variant of the Viterbi algorithm [21] to find the path



Go forward until you are able to make a left. Then move ahead
until you reach the opposite wall, then make a right. Go straight,
past one staircase and to the next staircase. At the top of this
staircase you will find a fire alarm on your left at approximately
7ft up.

Fig. 5. An example set of directions from the informal corpus collected
for MAVs.

that maximizes the joint distribution of the path and the text,
as given in Eq. (1). The inputs to the algorithm include a
starting viewpoint, a map of the environment with some
labeled objects, and the sequence of SDCs extracted from the
directions. The output of the direction understanding module
is a series of viewpoints through the environment, along with
the probability of this path.

VI. EXPERIMENTS

To evaluate our system, we conducted a number of ex-
periments in an environment resembling an indoor mall,
consisting of a cafeteria, a small library, an exercise center,
and several classrooms connected by a wide pedestrian cor-
ridor with scattered chairs and tables. The high ceilings and
interior windows in this space are too high for most ladders
to safely access, and require specialized lifting equipment
for even simple inspections and maintenance.

A. Corpus evaluation

To assess the quality of the paths inferred by our system,
we evaluated it on a corpus of directions collected from
potential users in an informal study. Users were familiarized
with the test environment and asked to instruct the pilot to
take video of 7 objects in the environment, each from a
different starting location. Objects to be inspected were dif-
ficult to see closely from the ground and included a wireless
router mounted high on the wall, a hanging sculpture, and
an elevated window. Subjects were told the vehicle’s starting
pose and asked to write down instructions for a human pilot
to fly a MAV to the desired object and take video of that
object. The corpus consists of forty-nine natural language
commands generated in this way. Fig. 5 shows an example
set of directions from this corpus. Subjects were engineering
undergraduates unfamiliar with the system.

We report the proportion of inferred paths that terminate
within a certain 2D distance of the target object. Fig. 6 shows
this metric for each subject as the distance is increased.
Performance varied widely for different subjects: the sys-
tem successfully followed 71% of the directions from two
subjects to within 10 meters of the object (subjects A and B),
but none from another (subject G). For comparison, we also
show the overall performance of an algorithm that randomly
chooses a final destination.

Examining the differences in the types of language pro-
duced by the subjects shows that the system performed best
when the subjects referred to distinctive landmarks in the
environment. Some landmarks, such as the “butterfly sculp-
ture” and the “police car”, can be resolved unambiguously

Fig. 6. System performance for each subject (black) and across all users
(dashed red) on a corpus of natural language commands collected for the
MAV. Each point represents the proportion of directions followed to within
x meters of the true destination. Performance of a system that randomly
chooses a destination is shown in blue for comparison.

by the system because that type of landmark appears only
once in the environment. Others, such as “a large circular
pillar” or “the double doors” refer to relatively unambiguous
landmarks for a human, but are not correctly identified by
our system due to its inability to reason with adjectives. In
some cases, subjects used language not well modeled by our
system. For example, in every instance where the system
failed on subjects A and B, the directions included phrases
such as “Go. . . the full length of the building” or “Proceed
all the way down the hallway.”

In the case of subject G, the language used was un-
grammatical, had no punctuation, and contained many ty-
pographical errors. For example, “you will a starcase to
your right [sic].” In addition, the language lacked distinctive
landmarks; when distinctive landmarks existed, they were
often misspelled. (e.g., “Queston Mark [sic].”) Most land-
marks from this subject were distinguished by color and
metrical distances such as “between the yellow and red wall”
and “2 meters,” which are not understood by the current
system. Finally, the subject would say “right” when the
correct turn direction was “left.” Like humans, our system
had trouble following directions with this type and frequency
of ambiguity and errors.

B. MAV Experiments

To demonstrate the overall system, we developed user
interfaces for issuing directions to the MAV using a speech
recognition system, or by typing a string into a graphical
application running on a laptop computer. Paths computed
by the natural language direction understanding module
were then executed autonomously by the MAV. Examples
of successfully executed paths are shown in Fig. 7. The
directions corresponding to these paths are:



(a) (b)

(c) (d)

(e)

Fig. 7. Example paths (green) executed by the MAV superimposed on a
map. Path start points are marked by blue squares, and end points are marked
by red circles. In (a)-(d) the path is shown from an overhead viewpoint.
In (e) both an overhead and a perspective view are given to illustrate the
elevation change of the MAV. Natural language directions corresponding to
each path are given in the text.

(a) Go past the library and tables till you see a cafe to the
left. Fly past the cafe and there will be other eateries.
Head into this area.

(b) Stand with your back to the exit doors. Pass the cafe
on your right. Make a right directly after the cafe, and
into a seating area. Go towards the big question mark.

(c) Go straight away from the door that says CSAIL,
passing a room on your right with doors saying MIT
Libraries. Turn left, going around the cafe and walk
towards the cow.

(d) Turn right and fly past the libraries. Keep going straight
and on the left near the end of the hallway there is a
set of doors that say Children’s technology center. You
are at the destination.

(e) Fly to the windows and then go up.
In addition to following individual sets of directions, the

vehicle can accept directions interactively, while relaying on-
board camera images and LIDAR measurements back to the
user in real-time. In one such interaction, the vehicle was
commanded to fly past a classroom, collect some video, and
return to the user. The commands given were:

Fly past room 124 and then face the windows.
Go up.
Go back down.

Fig. 8. (left) Photographs of the MAV executing an interactive series of
instructions. (right) Imagery from the on-board camera, transmitted to the
operator as the MAV flies. The commands issued to the MAV are given in
the text.

Come back towards the tables and chairs.
As the MAV carries out the directions, on-board sensor

data is continuously transmitted back to the user (Fig. 8). The
accompanying video shows our platform following additional
directions given by the user.1

VII. DISCUSSION AND FUTURE WORK

Our system operates in previously mapped environments,
and requires a listing of known objects and their locations.
As such, current applications are limited to situations such
as maintenance and building inspection, where the vehicle
visits previously explored areas. To enable its use in unknown
environments, we are integrating our work in autonomous
goal-directed exploration [22], direction understanding with
partial information [1], and online object recognition.

Mapping, navigation, and control in 3D environments is
still an active area of research. The current map does not
model full 3D structure, and is not sufficient in areas with
significant overhang or other environments where free space
changes with vehicle height. While the vehicle’s reactive ob-
stacle avoidance system is typically sufficient to avoid nearby
obstacles, robust and efficient 3D mapping and localization
solutions are still required.

1Also available online at: http://groups.csail.mit.edu/rrg/video/10-iros-
mav.mp4



Natural language is a compelling interface for specifying
three-dimensional trajectories through space. Expanding the
system’s repertoire of verbs and spatial relations would
make it more robust and flexible. For example, “over,”
“under,” “above,” and “through” require extracting features
from a three-dimensional schematic model of the trajectory
and landmark objects. Extending the system to understand
more complicated referring expressions is also essential for
naturalistic dialog. For example, it should be possible to
say “Fly to the windows above room 124” and resolve “the
windows above room 124” to the correct landmark. Finally,
for truly interactive dialog, the system must understand
deictic commands such as “Come back here” and be able
to ask and answer questions about its state.

VIII. CONCLUSION

Human interaction with complex robots such as au-
tonomous micro-air vehicles can be greatly simplified if
the robots are capable of understanding natural language
directions. The implementation of such a system raises a
number of technical challenges, from parsing the raw input
and estimating the desired path, to 3D navigation and control
of the vehicle.

We have presented a system that accepts natural lan-
guage input and executes the maximum likelihood trajec-
tory estimated by a direction understanding module. We
have extended our previous work in understanding natural
language directions to accommodate words such as “up”
and “down” that imply a desired change in vehicle height.
Finally, we have demonstrated these capabilities interactively
on an autonomous micro-air vehicle operating in confined
spaces.

IX. ACKNOWLEDGMENTS

Albert Huang, Abraham Bachrach, Stefanie Tellex, Deb Roy and
Nicholas Roy were supported by the Office of Naval Research under
MURI N00014-07-1-0749 and under MURI N00014-09-1-1052.
We also thank the Spoken Language Systems Group at CSAIL for
the use of the SUMMIT speech recognizer.

REFERENCES

[1] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding
natural language directions,” in Proceedings of the 4th ACM/IEEE
international conference on Human robot interaction, 2010.

[2] A. Bachrach, R. He, and N. Roy, “Autonomous flight in unstructured
and unknown indoor environments,” in Proceedings of EMAV, 2009.

[3] R. He, S. Prentice, and N. Roy, “Planning in information space for a
quadrotor helicopter in a GPS-denied environments,” in Proc. ICRA,
Los Angeles, CA, 2008, pp. 1814–1820.

[4] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system
for autonomous indoor flying,” in IEEE International Conference on
Robotics and Automation, May 2009, pp. 2878–2883.

[5] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The Carnegie Mellon Navigation
(CARMEN) Toolkit,” in Proc. IEEE Int. Conf. on Intelligent Robots
and Systems, vol. 3, October 2003, pp. 2436–2441.

[6] Y. Wei, E. Brunskill, T. Kollar, and N. Roy, “Where to go: Interpreting
natural directions using global inference,” in IEEE International
Conference on Robotics and Automation, 2009.

[7] P. Rybski, J. Stolarz, K. Yoon, and M. Veloso, “Using dialog and
human observations to dictate tasks to a learning robot assistant,”
Intelligent Service Robotics, vol. 1, no. 2, pp. 159–167, 2008.

[8] M. Levit and D. Roy, “Interpretation of spatial language in a map
navigation task,” Systems, Man, and Cybernetics, Part B, IEEE Trans-
actions on, vol. 37, no. 3, pp. 667–679, 2007.

[9] M. MacMahon, B. Stankiewicz, and B. Kuipers, “Walk the talk:
Connecting language, knowledge, and action in route instructions,”
Proceedings of the National Conference on Artificial Intelligence, pp.
1475—1482, 2006.

[10] G. Look, B. Kottahachchi, R. Laddaga, and H. Shrobe, “A location
representation for generating descriptive walking directions,” in Inter-
national Conference on Intelligent User Interfaces, 2005, pp. 122–129.

[11] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams,
M. Bugajska, and D. Brock, “Spatial language for human-robot
dialogs,” Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 34, no. 2, pp. 154–167, 2004.

[12] G. Bugmann, E. Klein, S. Lauria, and T. Kyriacou, “Corpus-based
robotics: A route instruction example,” Proceedings of Intelligent
Autonomous Systems, pp. 96—103, 2004.

[13] B. Landau and R. Jackendoff, ““What” and “where” in spatial lan-
guage and spatial cognition,” Behavioral and Brain Sciences, vol. 16,
pp. 217–265, 1993.

[14] L. Talmy, “The fundamental system of spatial schemas in language,” in
From Perception to Meaning: Image Schemas in Cognitive Linguistics,
B. Hamp, Ed. Mouton de Gruyter, 2005.

[15] S. Ahrens, D. Levine, G. Andrews, and J. How, “Vision-based guid-
ance and control of a hovering vehicle in unknown, GPS-denied
environments,” in Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, May 2009, pp. 2643–2648.

[16] S. Hrabar and G. Sukhatme, “Vision-based navigation through urban
canyons,” J. Field Robot., vol. 26, no. 5, pp. 431–452, 2009.

[17] T. Kudo, “CRF++: Yet another CRF toolkit,”
http://crfpp.sourceforge.net, 2009.

[18] E. Brunskill, T. Kollar, and N. Roy, “Topological mapping using
spectral clustering and classification,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

[19] T. Kollar and N. Roy, “Utilizing object-object and object-scene context
when planning to find things.” in IEEE International Conference on
Robotics and Automation, 2009.

[20] S. Tellex and D. Roy, “Grounding spatial prepositions for video
search,” in Proceedings of the International Conference on Multimodal
Interfaces, 2009.

[21] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” Information Theory, IEEE
Transactions on, vol. 13, no. 2, pp. 260–269, 1967.

[22] A. Bachrach, R. He, S. Prentice, and N. Roy, “RANGE-robust au-
tonomous navigation in gps-denied environments,” in Proc. IEEE Int.
Conf. Robotics and Automation, Kobe, Japan, May 2009.


