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ABSTRACT

We are developing a system which learns words from
co-occurring spoken and visual input. The goal is to au-
tomatically segment continuous speech at word boundaries
without a lexicon, and to form visual categories which cor-
respond to spoken words. Mutual information is used to
integrate acoustic and visual distance metrics in order to
extract an audio-visual lexicon from raw input. We re-
port results of experiments with a corpus of infant-directed
speech and images.

1. INTRODUCTION

We are developing systems which learn words from co-occurring
audio and visual input [5, 4]. Input consists of naturally
spoken mutliword utterances paired with visual representa-
tions of object shapes (Figure 1). Output of the system is
an audio-visual lexicon of sound-shape associations which
encode acoustic forms of words (or phrases) and their vi-
sually grounded referents. We assume that, in general, the
audio and visual signals are uncorrelated in time. However,
when a word is spoken, its visual representation will some-
times be present in close temporal proximity. The goal is
to detect and model such cross-modal structure.

The problem of �nding structure from this data may
be viewed as both a supervised and unsupervised learning
problem. Viewed as unsupervised learning, the only data
available to the system is raw acoustic and visual input
without any clean training labels. On the other hand, each
stream of data may be treated as noisy labels for the other.
Speech segments embedded within spoken utterances may
be labels for co-occurring images, and images may be labels
for segments of co-occurring speech. This paper reports on
recent advances in multimodal integration using mutual in-
formation as a measure to combine audio and visual dis-
tance metrics. The system has been evaluated on a corpus
of infant directed audio-visual data.

This work is motivated by two goals. First, automatic
language learning systems may be used to create robust
human-computer spoken language interfaces which adapt to
individual di�erences and preferences [1]. Second, we are
interested in using computational models to gain insights
into infant language acquisition [3].
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Figure 1: Input consists of spoken utterances paired with
images of objects. Audio-visual clustering extracts visual
shape categories and corresponding spoken names.

2. THE AUDIO-VISUAL CORPUS

We have gathered a corpus of audio-visual data from infant-
directed interactions [3]. Six caregivers and their pre-linguistic
infants (aged 7-11 months) were asked to play with objects
while being recorded. We selected 7 classes of objects com-
monly named by young infants: balls, shoes, keys, toy cars,
trucks, dogs, and horses. A total of 42 objects, six objects
for each class, were obtained. The objects within each class
varied in color, size, texture, and shape.

Each caregiver-infant pair participated in 6 sessions over
a course of two days. In each session, they played with 7
objects, one at a time. All caregiver speech was recorded
using a wireless head-worn microphone onto DAT. In to-
tal we collected approximately 7,600 utterances comprising
37,000 words across all six speakers. Most utterances con-
tained multiple words with a mean utterance length of 4.6
words. Speech segmentation could not rely on the existence
of isolated words since these were rare in the data.

The 42 objects were imaged from various perspectives
using a small CCD camera mounted on a four degree-of-
freedom robot shown in Figure 2. A total of 209 images
from di�erent perspectives were collected for each of the 42
objects resulting in a database of 8,778 images.

To prepare the corpus for processing, we performed the
following steps: (1) The audio was segmented at utterance
boundaries. This was done automatically by �nding con-
tiguous frames of speech detected by a recurrent neural net-
work (see below), and (2) For each utterance, we selected
a random set of 15 images of the object which was in play
at the time the utterance was spoken. Video recordings of
the caregiver-infant interactions were used to determine the
correct object for each utterance. Each utterance-image set
is referred to as an AV-event (audio-visual event). Input to
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Figure 2: Photograph and drawing of a robot with four
degrees of freedom used to capture images of objects. The
CCD camera was mounted in the right eyeball. A turntable
provided a �fth degree of freedom for viewing objects.

the learning system consists of a sequence of AV-events.

3. SPEECH REPRESENTATION,

SEGMENTATION, AND COMPARISON

Spoken utterances were represented as arrays of phoneme
probabilities and corresponding hidden Markov models (HMMs).
A recurrent neural network processed RASTA-PLP coe�-
cients [2] to estimate phoneme and speech/silence proba-
bilities. The RNN had 12 input units, 176 hidden units,
and 40 output units. The 176 hidden units were connected
through a time delay and concatenated with the RASTA-
PLP input. The RNN was trained o�-line using the TIMIT
database resulting in 69.4% accuracy using the standard
TIMIT training and test datasets.

Spoken utterances were segmented along phoneme bound-
aries, providing hypotheses of potential word boundaries.
To locate phoneme boundaries, the RNN outputs were treated
as state emission probabilities in an HMM framework. Viterbi
search was used to obtain the most likely phoneme sequence
for a given phoneme probability array. Viterbi decoding
of an utterance obtained: (1) The most likely sequence of
phonemes in the utterance, and (2) The location of each
phoneme boundary for the sequence. Any subsequence within
an utterance terminated at phoneme boundaries could form
a word hypothesis.

We de�ned a distance metric, dA(), which measured
the dissimilarity between two speech segments. One pos-
sibility was to treat the phoneme sequence of each speech
segment as a string and use string comparison techniques.
This method has been applied to the problem of �nding
recurrent speech segments in continuous speech [7]. A lim-
itation of this method is that it relies on only the single
most likely phoneme sequence. To make more complete use
the entire phoneme probability array, we developed a novel
distance metric.

Let Q = fq1; q2; : : : ; qNg be a sequence of N phonemes
observed in a speech segment. This sequence may be used
to generate a HMM model � by assigning an HMM state for
each phoneme in Q and connecting each state in a strict left-
to-right con�guration. State transition probabilities are in-
herited from a context-independent set of phoneme models
trained from the TIMIT training set. Consider two speech
segments, �i and �j with phoneme sequences Qi and Qj .
From these sequences, we can generate HMMs �i and �j .

We wish to test the hypothesis that �i generated �j, and
that �j generated �i.

The Forward algorithm can be used to compute P (�ij�j)
and P (�jj�i), the likelihood that the HMM derived from
speech segment �i (�i) generated speech segment �j and
that the HMM from �j (�j) generated �i. However, these
likelihoods are not an e�ective measure for our purposes
since they represent the joint probability of a phoneme se-
quence and a given speech segment. An improvement is to
use a likelihood ratio test to generate a con�dence metric.
In this method, each likelihood estimate is scaled by the
likelihood of a default alternate hypothesis, �A:

L(�;�; �A) = P (�j�)

P (�j�A)

We set the alternative hypothesis to be the HMM de-
rived from the speech sequence itself, i.e. �Ai = �j and
�Aj = �i. The symmetric distance between two speech seg-
ments was de�ned as:

dA(�i; �j) = � 1
2
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4. VISUAL REPRESENTATION AND

COMPARISON

Three-dimensional objects were represented using a view-
based approach in which histograms of local image features
from multiple two-dimensional images of an object repre-
sented the shape and color of the object. Figure 3 shows
the stages of visual processing. Figure-ground segmentation
was simpli�ed by assuming a uniform background. A Gaus-
sian model of the illumination-normalized background color
was estimated and used to classify background/foreground
pixels. Large connected regions near the center of the image
indicated the presence of an object 1.

object mask

mask-edge
spatial derivative

analysis

color image

foreground bitmap

connected
regions analysis

CCD
camera

Shape histogram

masked
color image

Color histogram
foreground

segmentation

Figure 3: Extraction of object shape and color representa-
tions from a raw image.

Based on methods developed by Schiele and Crowley
[6], objects were represented by histograms of local features
derived from multiple 2D views of an object. Shape was
represented by locating all boundary pixels of an object in
an image. For each pair of boundary points, the normal-
ized distance between points and the relative angle of the

1The robot's motion control was learned o�-line by automati-
cally creating joint angle tables for centering objects in the cam-
era's �eld of view [3]



object edge at each point were computed. All pair-wise
values were accumulated in a 2D histogram to represent an
image. The shape representation was invariant to trans-
formations in position, scale and in-plane rotation. Using
multidimensional histograms to represent object shapes al-
lowed the use of information theoretical or statistical diver-
gence functions for the comparison of object models. We
used the �2{divergence:

dV (X;Y ) = �2(X;Y ) =
P

i

(xi�yi)
2

xi+yi

where X = [ixi and Y = [iyi are two histograms in-
dexed by i and xi and yi are the values of a histogram cell.

The representation of 3D shapes was based on a collec-
tion of 2D shape histograms, each corresponding to a par-
ticular view of the object. Each 3D object was represented
by 15 shape histograms. Histogram sets were compared by
summing the divergences of the four best matches between
individual histograms.

5. AUDIO-VISUAL INTEGRATION

Integration of audio and visual input consisted of two steps.
In the �rst step, the AV-events were passed through a �rst-
in-�rst-out (FIFO) bu�er. The bu�er had a capacity of �ve
events. Each time a new event was inserted into the bu�er,
a recurrence �lter searched for repeating audio and visual
patterns within the bu�er. If a speaker repeated similar
sounding words or phrases at least twice within �ve contigu-
ous utterances while playing with similar shaped objects,
the �lter would select that recurrent sound-shape pair as
a potential lexical item. The recurrence �lter used the au-
dio and visual distance metrics presented earlier to look for
matches. It performed an exhaustive search over all possible
image sets and speech segments (at phoneme boundaries)
in the bu�er. By using the FIFO bu�er as a front-end for
processing, the system exhibited on-line learning since AV-
events were discarded once they passed through the bu�er.
Output from the recurrence �lter consisted of speech seg-
ments and their hypothesized visual referents represented
with phoneme probability arrays, HMMs, and visual his-
tograms.

In the second step, the hypotheses generated by the
recurrence �lter were clustered, and the most reliable clus-
ters were used to generate audio-visual lexical items. Let
us assume that after processing a particular speaker's data,
N sound-shape hypotheses were generated. The cluster-
ing process would proceed by considering each hypothesis
as a reference point, in turn. Let us assume one of these
hypotheses, X, has been chosen randomly as a reference
point. Each remaining N � 1 hypotheses may be compared
to X using dV () and dA(). Let us further assume that two
thresholds, tV and tA are de�ned (we show how their values
are determined below). Two indicator variables are de�ned
with respect to X:

A =
n
0 if dA(X;hi) > tA
1 if dA(X;hi) � tA

V =

n
0 if dV (X;hi) > tV
1 if dV (X;hi) � tV

where hi is the i
th hypothesis, for i = 1 : : :N� 1. For a

given setting of thresholds, the A and V variables indicate
whether each hypothesis matches the reference X acous-
tically and visually, respectively. The mutual information
between A and V is de�ned as:

I(A;V ) =
P
i

P
j

P (A = i; V = j) log
h

P (A=i;V =j)

P (A=i)P (V =j)

i

The probabilities required to calculate I(A;V ) can be
estimated from smoothed frequency counts of the indicator
variables. Note that I(A;V ) is a function of the thresholds
tV and tA. To determine tV and tA, the system searches for
the settings of these thresholds which maximizes the mutual
information between A and V .

Each hypothesis is taken as a reference point and the
maximum mutual information (MMI) is found by searching
all values of tV and tA. The hypotheses which result in
the highest MMI are are selected as output of the system.
The result is a set of audio-visual prototypes (the selected
hypotheses) and radii (tV and tA) which specify allowable
divergence from these prototypes.

The process we have described e�ectively combines acous-
tic and visual distance metrics via the MMI search proce-
dure. The mutual information metric is used to determine
the goodness of a hypothesis. If knowledge of the presence
of one cluster (acoustic or visual) greatly reduces uncer-
tainty about the presence of the other cluster (visual or
acoustic), then the hypothesis is given a high goodness rat-
ing and is more likely to be selected as output by the system.

An interesting aspect of using MMI to combine distance
metrics is the invariance to scale factors of each distance
metric. Each distance metric organizes sound-shape hy-
potheses independently of the other. The MMI search �nds
structural correlations between the modalities without di-
rectly combining distances. As a result, the clusters which
are identi�ed by this method can locally and dynamically
adjust to variances in each modality. Locally adjusted vari-
ances cannot be achieved by any �xed scheme of combining
distance metrics.

A �nal step is to threshold the MMI score of each hy-
pothesis and select those which exceed the threshold. The
threshold was set manually for experiments reported below.
In the future, reinforcement feedback from higher levels in
the system could be used to learn the threshold value.

6. RESULTS

The audio-visual data corresponding to each of the six speak-
ers was processed separately. For each dataset, the AV-
events were processed in the order they were generated in
the sessions. The top 15 items resulting from the MMI
maximization step were assessed for each speaker.

For a selected reference sound-shape hypothesis gener-
ated by the recurrence �lter, a two-dimensional space of
acoustic and visual radii is searched to locate the point of
maximum mutual information. Figure 4 presents two exam-
ples of mutual information surfaces from the corpus. In each
plot, the height of the surface shows mutual information as
a function of the radii. On the left, the speech segment
corresponding to the word \yeah" was incorrectly paired
with images of a shoe. The resulting surface is relatively
low for all values of radii. The lexical candidate on the
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Figure 4: Mutual information as a function of L-radius and
S-radius for two lexical candidates.

right correctly paired a speech segment of the word \dog"
with images of a dog. The result is a strongly peaked sur-
face form indicating that this pairing captures useful cross-
modal structure.

We evaluated the six lexicons (one for each speaker)
extracted from the corpus using three measures. The �rst
measure, M1, was the percentage of lexical items with bound-
aries at English word boundaries. The second, M2, was
the percentage of lexical items which were complete En-
glish words with an optional attached article. M2 accepted
single-phoneme segmentation errors. The third measure,
M3, was the percentage of lexical items which satis�ed M2
and additionally were paired with semantically correct vi-
sual models.

For comparison, we also ran the system with only acous-
tic input. In this case it was not meaningful to use the MMI
maximization so instead the system searched for globally
recurrent speech patterns, i.e. speech segments which were
most often repeated in the entire set of recordings of each
speaker. This acoustic-only model may be thought of as a
rough approximation to a minimum description length ap-
proach in which the underlying assumption is that stable
and often-repeated sound patterns are likely to be words of
the language.

Table 1: Results of evaluation on three measures (see text)
averaged across all six speakers.

M1 M2 M3
audio only 7�5% 31�8% 13�4%
audio-visual 28�6% 72�8% 57�10%

Results of the evaluation are shown in Table 1. The
second measure, M2, showed that 72% of the lexical items
were English words with possible single-phoneme segmenta-
tion errors. This is a signi�cant result given the extremely
natural style of speech collected from the infant interac-
tions. Typical entries in the lexicons corresponded to the
names of all six objects in the study, as well as onomatopo-
etic sounds such as \ruf-ruf" for dogs, and \vroooom" for
cars. The third measure, M3, indicated that 57% of the
lexical items associated acoustic forms with correct visual
semantics. In some cases, words with no concrete visual
grounding (ex. \good") were acquired which passed M2
but not M3.

The comparison with the audio-only system clearly demon-
strates the greatly improved performance in all three mea-

sures when visual context is combined with acoustic ev-
idence in the lexical learning process. The segmentation
accuracy, though relatively low at 28%, is impressive for
such natural speech, and surprisingly, is four times higher
than the acoustic-only output of only 7%.

7. CONCLUSIONS

Systems which process multiple input modalities typically
rely on the fact that correlated features of the input streams
are synchronized in time. This assumption may hold in
certain cases such as lip reading. In many situations, how-
ever, precise time synchronized input cannot be assumed.
We have presented an approach which combines multiple
modalities without reliance on time synchronization. Al-
though each modality is noisy, integrating them signi�-
cantly improves performance for the word learning task.
The maximization of mutual information e�ectively com-
bines arbitrary distance metrics without need for an ad hoc
method for directly combining metrics.

Future directions include the application of these meth-
ods to building adaptive human-computer spoken interfaces.
The learning mechanisms may be used to provide adaptive
vocabularies in speech systems which not only acquire per-
sonalized acoustic forms of words, but in certain domains
where semantics may be grounded in input, the system may
also learn person-speci�c semantics of words.
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