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Abstract— To build robots that engage in fluid face-to-face
spoken conversations with people, robots must have ways to
connect what they say to what they see. A critical aspect of
how language connects to vision is that language encodes points
of view. The meaning ofmy left and your left differs due to an
implied shift of visual perspective. The connection of language to
vision also relies on object permanence. We can talk about things
that are not in view. For a robot to participate in situated spoken
dialog, it must have the capacity to imagine shifts of perspective,
and it must maintain object permanence. We present a set of
representations and procedures that enable a robotic manipulator
to maintain a “mental model” of its physical environment by
coupling active vision to physical simulation. Within this model,
“imagined” views can be generated from arbitrary perspectives,
providing the basis for situated language comprehension and
production. An initial application of mental imagery for spatial
language understanding for an interactive robot is described.

Index Terms— Robots, Language, Active vision, Mental mod-
els, Mental imagery, Mental Simulation, Grounding.

I. SITUATED LANGUAGE USE

In using language to convey meaning to listeners, speakers
leverage situational context [1], [2]. Context may include
many levels of knowledge ranging from the details of shared
physical environments to cultural norms. As the degree of
shared context decreases between communication partners,
the efficiency of language also decreases since the speaker
is forced to explicate increasing quantities of information that
could otherwise be left unsaid. A sufficient lack of common
ground can lead to communication failures.

If machines are to engage in meaningful, fluent, situated
spoken dialog, they must be aware of their situational context.
As a starting point, we focus our attention on physical context.
A machine that is aware of where it is, what it is doing,
the presence and activities of other objects and people in its
vicinity, and salient aspects of recent history, can use these
contextual factors to interpret natural language.

In numerous applications of spoken language technologies
such as talking car navigation systems and speech-based
control of portable devices, we envision machines that connect
word meanings to the machine’s immediate environments. For
example, if a car navigation system could see landmarks in
its vicinity based on computer vision, and anchor descriptive
language to this visual perception, then the system would have
a basis for generating contextually appropriate directions such
as, “Take a left turn immediately after the large red building”.
Consider also an assistive service robot that can lend a helping
hand based on spoken requests from a human user. For the
robot to properly interpret requests such as, “Hand me the red
cup and put it to the right of my plate”, the robot must connect
the meaning of verbs, nouns, adjectives, and spatial language
to the robot’s perceptual and action systems in a situationally
appropriate way.

Our current work is part of a larger effort to develop a
conversational interface for an interactive robot (see also [3]–
[6]). The development of such a robot is of practical interest
in domains ranging from space exploration (e.g., [7]) to
assistive aids (e.g., [8]). Furthermore, we believe that lessons
learned from developing robotic interfaces may have impact
in numerous other natural language processing domains.

A necessary step towards creating situated speech process-
ing systems is to develop representations and procedures that
enable machines to ground the meaning of words in their
physical environments. In contrast to dictionary definitions
that represent words in terms of other words (leading, in-
evitably, to circular definitions), grounded definitions anchor
word meanings in non-linguistic primitives. Assuming that a
machine has access to its environment through appropriate
sensory channels, language grounding enables machines to
link linguistic meanings to elements of the machine’s physical
world.

Interest has grown in the computational representation and
acquisition of word meaning grounded in vision [9]–[18] and
motor action [19]–[21]. This line of research, in addition to
making contributions to theoretical aspects of lexical semantics
and cognitive modeling, has practical relevance for building
situated human-machine communication systems. A limitation
of this previous work, however, is the assumption of a fixed,
first-person visual frame of reference.

Our approach departs from the assumption of camera-
grounded fixed perspective by introducing an implemented
model of mental imagerydriven by active vision. Mental
imagery enables grounding of spatial language that cannot be
handled under fixed-perspective assumptions. To understand
the difference betweenbehind meandbehind you, the listener
must factor points of view into the language comprehension
process. Speakers must similarly take into account listeners’
points of view to produce clear, unambiguous language. Sim-
pler solutions such as in-plane rotation of images to correct
for perspective will not work in general, since full three-
dimensional changes of perspective are required in many
situations. Furthermore, mental imagery enables anticipation
of visual occlusions which are view dependent and cannot
be predicted through image rotations. Our approach also
introduces object permanence so that language can bind to
objects that are not in direct view of the system’s camera.
As a result, the system can understand and generate language
about objects which are not physically in the camera’s sight.

We first introduce our notion of mental imagery and its
role in language use. We then present details of an imple-
mentation of a computer vision driven mental model that is
used to generate mental imagery. We conclude by presenting
an application of language understanding grounded in mental
imagery. Although we build on earlier work on visually-
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grounded language cited above, this work makes a significant
departure by defining a new way to connect language and
vision that is better able to address the needs of situated
language processing.

II. M ENTAL MODELS AND MENTAL IMAGERY: WHERE

LANGUAGE AND V ISION MEET

A key aspect of human perception is that it is active. We
cannot move without affecting our senses, and in order to
perceive, we must coordinate our movements. In the realm
of visual perception, movement of the head and body leads
to apparent motion in the visual field, and the appearance
/ disappearance of objects from the field of view. Yet, we
are able to conceptualize the world as stable, maintain object
permanence in the face of appearances and disappearances,
and differentiate self-motion from motion in the environment.

We adopt the termmental modelto refer to the conceptual
structures that represent a stabilized version of reality, essen-
tially a “cache” of the external world as projected through
the observer’s perceptual system. The idea of mental models
is well established in the cognitive science literature (cf.
[22]) although it is more typically used to describe offline
cognitive processes where perception is not directly driving
the construction and updates of the mental model. In our
approach, perceptually driven mental models provide a level
of abstraction above low level vision that is appropriate for
connecting to language (along these lines, see also [23]).

We also adopt the termmental imageryto refer to images
that are generated by imagining viewpoints within a mental
model. The Stanford Encyclopedia of philosophy [24] defines
mental imagery as:

Experience that resembles perceptual experience,
but which occurs in the absence of the appropri-
ate stimuli for the relevant perception [25], [26].
Very often these experiences are understood by
their subjects as echoes or reconstructions of actual
perceptual experiences from their past; at other times
they may seem to anticipate possible, often desired
or feared, future experiences.

Our use of the term extends this definition since we are
concerned with representations and processes that are active
during actual perceptual experience. We choose to use the
same term for both cases based on our intuition that many
of the same processes used for online perception are also
used for offline reconstruction and reasoning (see [27], [28]
for psychological arguments in support of this view).

Language refers to the stabilized conceptualization of the
world provided by mental models and imagery – we do not talk
of objects as being in motion when we know that the apparent
motion was caused by our own movements. We also talk about
objects that are out of view if we are certain of their location.
Moreover, spatial language in situated dialogs assumes a
point of view that will depend on how the speaker decides
to express herself. Perspective taking has long been studied
in psychology, leading to a large literature on the subject
including the developmental studies of Piaget [29]. Tversky
provides a useful taxonomy of spatial thinking [30]. In her

analysis, basic kinds of frames of reference that humans use
to conceptualize space include space of the body (body parts),
space around the body, and the space of navigation. Here,
we primarily address computational representations of space
around the body of a robot. The ability to shift perspectives is
also related to aspects of space in navigation, although verbal
interaction with a mobile robot (e.g., [31]) addresses the latter
more directly.

Using Miller and Johnson-Laird’s terminology [32], speak-
ers may assume a first-persondeictic frame of reference (e.g.,
“on my left”), or alternatively anintrinsic perspective (e.g.,
“on your left”, “in front of the house”). Intrinsic expressions
occur when spatial terms are used to indicate positions relative
to entities that have intrinsic parts (e.g., houses have fronts and
backs) and may thus serve as the bases for spatial frames of
reference. One way for a listener to interpret the meaning of
deictic references, and the approach that we have explored in
our computational model, is to use mental imagery to visualize
the shared scene from the speakers point of view, and within
this shifted frame, interpret spatial expressions. In other words,
the phrase “on my left” is decomposed into two parts, “my”,
and “on – left”. The “my” part triggers a shift of perspective
to the speaker’s point of view. Similar strategies can be
used within this framework to shift perspectives according to
intrinsic frames of reference.

Imagining how a shared environment looks from another’s
perspective is often crucial to effective communication. If an
object is in view to speaker S, but not listener L, S should
take this factor into account when referring to the object. If S
knows that L can’t see an apple because it is behind a basket,
S might say “the apple behind the basket” rather than just
“the apple”. If the apple is in view to both parties, the former
description would seem odd since it specifies unnecessarily
redundant details.

To summarize, language cannot be grounded directly in
first-person visual representations. Language must instead be
grounded through some other representational layer which
provides a stable view of the environment in spite of self-
motion. This middle ground also enables speakers and listeners
to imagine each other’s point of view, a necessary precondition
for natural situated spoken dialog.

With this motivation in mind, we present an architecture for
actively constructing mental models.

III. PHYSICAL EMBODIMENT: RIPLEY

Our current experiments are based on a robotic manipulator
named Ripley (Figure 1). Ripley has seven degrees of freedom
(DOFs), enabling it to manipulate objects in a three-foot radius
workspace. The robot may be thought of as an articulated torso
terminating with a head that includes its “mouth” (a one DOF
gripper).

Ripley has been designed to explore situated, embodied spo-
ken language use. In contrast to our previous robots [13], [33],
Ripley is able to use its gripper to manipulate small objects,
paving the way for grounding verbs related to manipulation
actions. The robot’s range of motions enable it to examine
objects through vision and touch. Ripley is also able to look
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Fig. 1. Ripley hands an apple to its human communication partner in response
to the phrase “Hand me the thing on your left”.

up and make “eye contact” with its human communication
partner. This behavior plays a functional role since Ripley
must keep track of the position of the partner in order to
understand relative spatial reference. Eye contact is also, of
course, important for engaging in natural face-to-face dialog.

Most of Ripley’s sensors are in its head, including two
color video cameras, two microphones, touch sensors, and an
inertial sensor for gravity. Additional proprioceptive (position
and force) sensors are placed on each joint. In our current
work, only one of the cameras is used for visual input1. The
placement of the camera on the mouth simplifies grasping
since visual servoing can be used to guide the gripper to
objects. However, the placement also leads to constant changes
in the robot’s field of view since any motion of the torso affects
the camera. For this reason, Ripley provides an excellent
platform for developing mechanisms for mental imagery.

Low level motor control is achieved by computing trajec-
tories of target joint configurations. An elastic force model
loosely inspired by motor force fields in biological motor
control [34] is used to provide compliant motion control
[20]. Higher level motor control directives are issued from
a planning mechanism that is driven by task specific criteria.

Low level visual processing relies on color based separation
of objects from a known (fixed) background (the image
processing methods are described in [33]). The vision system
generates a set of foreground regions at a rate of 15Hz. These
region sets are passed to an object permanence module which
integrates region sets over time to determine the presence
and properties of objects in the scene. As we describe in the
next section, the object permanence module uses the robot’s
joint configurations to compensate for view points in order
to maintain a view-independent model of object locations. A
face detector [35] searches for faces in the visual field. Faces
are treated specially, leading to a model of the communication
partner’s location in the robot’s mental model.

1In ongoing work, we are introducing depth perception based on stereo
visual input.
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Fig. 2. Architectural overview: Active vision drives the construction and
maintenance of a mental model. Synthetic mental images from the mental
model are linked to language.

IV. M ENTAL MODEL AND MENTAL IMAGERY

As we move around our direction of gaze, objects come in
and out of sight, but our conception of objects remains stable.
Figure 2 provides an overview of Ripley’s mental model and
imagery architecture that registers and stabilizes sensory data
from the robot’s moving camera. We begin with an overview
of the architecture. Subsequent sections highlight technical
details of the implementation.

Ripley’s camera provides a constant stream of images to
the image processor. The image processor finds foreground
regions (typically corresponding to the location of objects
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on the robot’s work surface) and face locations which are
relayed, at the 15Hz frame rate, to a registration and stabiliza-
tion module. This module constructs and maintains a three-
dimensional model of objects in the environment. The robot’s
joint configuration is used to perform projective transforms
on incoming images so that a three-dimensional model can be
created out of multiple two-dimensional views.

The mental model is a 3-D model consisting of a set of
rigid body objects, and represents Ripley’s belief of the state
of the world. The registration and stabilization module acts
as a sophisticated hysteresis function to smooth sensory data.
Persistent perceptual evidence for the presence, movement, or
disappearance of objects drives updates in the mental model.

A physical dynamics estimator is used to provide predic-
tions of where objects should be in incoming image frames,
given the current state of the mental model and knowledge
of Newtonian physics. This predicted model is used to align
perspective-dependent camera image regions with the contents
of the 3-D mental model. The contents of the mental model
can be used to generate synthetic images using a synthetic
camera and standard projective computer graphics techniques.

The language processor receives these synthetic images
as a basis for grounding semantics. The language processor
has control over the position and orientation of the synthetic
camera. To interpret spatial language, the synthetic camera
can be positioned to simulate either the robot’s or the human
partner’s point of view.

A. Representation of Mental Model State

The physical environment is modeled by a set of rigid 3-
D objects which includes (1) a model of Ripley’s own body,
(2) a built in model of the workspace table, (3) a physical
model of the human communication partner’s body, and (4)
objects situated on the work surface. The complete state of the
mental model is captured at any moment by the descriptions of
all objects. Each object in the model is fully described by its
position, orientation, shape, color, mass, and velocity. The self-
model consists of a set of four cylindrical blocks connected by
swivel joints to approximate the shape and range of positions
of the physical robot. The physical model of the human partner
is currently a simple sphere which is used to position synthetic
cameras to obtain the human’s point of view.

B. Dynamic Prediction

The ODE (Open Dynamics Engine) rigid body dynamics
simulator [36] is used to predict future states in the mental
model. ODE is an open source Newtonian physics simulator
that operates on 3-D rigid body models. At a rate of 10Hz,
the state of the mental model is copied into ODE, ODE
is executed to generate a prediction for the next time step,
and this predicted state is integrated with perceptual evidence
from Ripley’s camera and joint sensors to update the state of
the mental model (see below). ODE thus provides two main
functions within our system: collision detection, and dynamics
simulation.

Fig. 3. Ripley looks down at the tabletop with four objects in view.

C. Ripley’s Physical Self-Model

The model of the robot’s body is controlled by a simulated
position-derivative motor controller similar to the controller
used in the physical robot. At each update cycle in the model,
joint angles of the virtual robot are compared to the angles of
the physical robot. For each joint, if the difference in angles
is greater than a preset threshold, then an appropriate force is
applied to align the corresponding virtual joint. In effect, the
virtual joint tracks the associated DOF of the physical robot.
Since only angle differences above a threshold lead to virtual
forces, low level jitter in the physical robot is attenuated in
the mental model.

D. Coupling Active Vision to the Mental Model

A primary motivation for developing the mental model
is to register, stabilize, and track visually observed objects
in Ripley’s environment. To address these needs, an object
permanence module, called theObjecter, bridges the incoming
stream of input from the image analysis module to the contents
of the mental model (for other approaches to perceptually
coupled simulation, see [37]–[39]). When an image region
is found to stably exist for a sustained period of time, an
object is instantiated by the Objecter in the mental model. The
color and position of the object are determined from the visual
input. It is only at this point that Ripley becomes “aware”
of the object and is able to talk about it. If Ripley looks
away from an object so that the object moves out of view,
a representation of the object persists in the mental model.
When a physical object is removed from Ripley’s workspace,
persistent perceptual evidence of its disappearance causes the
object to be deleted from the model.

Figure 3 shows an example of Ripley looking over its
workspace with four objects in view. In Figure 4, the left image
shows the output from Ripley’s head-mounted camera, and the
right image shows corresponding simulated objects that have
been registered and which are being tracked.

The Objecter consists of three components: a 2D-Objecter,
3D-Objecter, and 2D-to-3D resolver. The 2D-Objecter tracks
two-dimensional visual regions generated by the vision sys-
tem. The 2D-Objecter implements a hysteresis function which
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Fig. 4. Visual regions and corresponding simulated objects in Ripley’s mental
model corresponding to the view from Figure 3. The white ellipses in the left
image indicate the output of the region analysis routines of the vision system.
The objects in the simulator on the right are actually spherical, but appear
elliptical due to optical warp of the synthetic viewpoint generated by the
simulator.

detects 2D visual regions that persist over time, and resolves
intra-frame region correspondences, assigning unique IDs to
persistent regions. The 2D-to-3D resolver module follows,
which calculates the position and pose of prospective 3-D
objects, based on the persistent 2-D regions it is fed. Due to
a lack of depth information, the resolver relies on projective
geometry and the assumption that objects are in contact with
Ripley’s table. The 3D-Objecter brings the prospective 3D
objects into correspondence with those already existing in the
mental model, and decides whether and how to create, update
or delete objects in the mental model.

As Ripley moves (and thus changes its vantage point),
the 2D-Objecter continues to track visual regions until they
leave the field of view. However, updates to the 3-D mental
model are not performed while Ripley is in motion. This
simplifies the process of tracking objects and leads to greater
model accuracy. Overall, as a coupled pair, the 2-D and 3-
D Objecter maintain correspondence of objects across time,
enabling tracking and object persistence in spite of perceptual
gaps, noise, and spatial reorderings of the objects.

More precisely, the output of the image processing module
at each time step is a set ofN visual regions,V [t] =
{Rv

1 [t], R
v
2 [t], . . . , R

v
N [t]}. In general, the ordering of regions

within V is arbitrary since the vision system finds regions in
each frame of video independent of knowledge of previous
frames. Thus, there is no guarantee thatRv

i [t] will correspond
to Rv

i [t + 1].
To obtain correspondence of regions over time, the 2D-

Objecter maintains its own set of regions which are candidates
for being output to the 3D-Objecter. We denote the candidate
region set asO[t] = {Ro

1[t], R
o
2[t], . . . , R

o
M [t]}. The purpose of

the 2D-Objecter is to maintain correspondence betweenRo
i [t]

andRo
i [t + 1]. To maintain region correspondence, we define

a tunable distance metric between two visual regions as:

d(Ri, Rj) = αdp(Ri, Rj)+βds(Ri, Rj)+(1−α−β)dc(Ri, Rj)
(1)

Wheredp() is the Euclidean distance between the centroids of
the regions,ds() is the difference in size (number of pixels) of
regions, anddc() is the difference in average RGB color of the
regions. The tuning parametersα andβ are scalar values such
that (α+β) ≤ 1. They are used to set the relative emphasis of
the position, size, and color properties in comparing regions.

When Ripley moves to a new vantage point, the 2D-Objecter

candidates are initialized by copying the output of the vision
system (O ← V ) so that a candidate is created corresponding
to each region in the current visual analysis frame. A con-
fidence value,Ro

i [t].conf , is assigned to each candidate and
initialized to 0. At each successive time step, a new region set
is generated by the vision system. The 2D-Objecter attempts
to put each region inV into one-to-one correspondence with
each candidate inO such that the total distance using Equation
1 between paired regions is minimized. In general, the number
of visual regionsN and 2D-Objecter candidate regionsM will
not be equal. The alignment process aligns themin(N,M)
subset of regions. After the optimal alignment is found, only
those whose distances resulting from the match are below
a maximum allowable distance threshold are accepted. The
confidences of candidate regions that are aligned to regions
from V are updated (increased) using a rule similar to an
infinite impulse response filter, assuming positive input of
unit magnitude. Thus, confidence values never reach an upper
bound of 1.0. IfN > M , at most(N −M) new candidates
are instantiated in the 2D-Objecter, each with confidence set
to 0. If N < M , then the confidence of, at minimum,
(M −N) unaligned candidate regions is updated (decreased)
by a similar rule, driven by a negative input of unit magnitude.
At the end of this alignment and confidence update process,
the properties of the matched or newly instantiated regions
from the 2-DV are copied intoO. The unmatched candidate
regions retain their previous properties, and any of them for
which Ro

i [t].conf < 0 are destroyed.
The output of the 2D-Objecter at each time step is the subset

of candidate regions for which the confidence level is greater
thanConfMIN . In the current implementation,ConfMIN =
0.9. Each newly instantiated candidate region is assigned a
unique ID. These IDs are persistent over time, thus imple-
menting region tracking. Smoothly moving objects are tracked
by the 2D-Objecter. When an object is removed from a scene,
the confidence value of the corresponding candidate region
will start dropping from the maximum value ofConfMAX .
As soon as the confidence drops belowConfMIN , it stops
being output. This use of confidence values and thresholds
implements a hysteresis function that requires persistent visual
evidence before either instantiating or destroying regions.

The 3D-Objecter uses projective geometry to infer the posi-
tion of objects in three-dimensional space based on 2D regions.
Given the position and orientation of Ripley’s camera, the 2-D
regions are linearly projected in 3-D until the projection lines
intersect Ripley’s work surface. The location of the surface,
a round tabletop, is built into the initial state of the mental
model. Thus, Ripley’s perceptual input is not necessary for
establishing the presence of the table.

Interaction between the 2D- and 3D-Objecter proceeds as
follows. Each time Ripley moves, the 3D-Objecter ignores
output from the 2D-Objecter, and when Ripley stabilizes its
position, the 3D-Objecter waits 0.5 seconds to ensure that the
2D-Objecter’s region report is stable, and then resumes 3-D
processing. When the 3D-Objecter processes a 2-D region
set, it projects each region to a corresponding 3-D object
location. Then, the projected objects are then placed into
correspondence with existing objects in the 3-D mental model.
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To compare projected and existing objects, a modified version
of Equation 1 is used in whichdp() measures three dimen-
sional Euclidean distance, andds() measures size. The same
alignment process as the 2D-Objecter is used to align projected
objects to existing objects in the mental model. If projected
objects have no existing counterparts in the simulator, new
objects are instantiated. Conversely, if an object exists in the
mental model but no corresponding object has been projected
based on visual evidence, then the object in the mental model
is destroyed. There is no hysteresis function required in the
3D-Objecter since all 2-D regions have already passed through
a hysteresis function in the 2D-Objecter.

E. Inferring Force Vectors from Vision

In the process of updating the position of moving objects,
the 3D-Objecter must infer the magnitude and direction of
forces which lead to observed motions. Inference of force
dynamics has been argued to be of fundamental importance
in grounding verb meanings [40] We now explain how forces
are inferred from visual observation in the Objecter.

Consider a situation in which an object, such as a ball,
is on the workspace and in view. Once the 2D-Objecter has
registered the corresponding region, it will relay the region
to the 3D-Objecter which will instantiate an object in the
mental model. At this point, Ripley is aware of the ball.
Now, assume the ball begins to slowly roll. Although the
visual region corresponding to the ball will be displaced from
one time step to the next, the 2D-Objecter will generally
determine the correspondence between regions over time steps
and thus track the object. After the correspondence process
has been run by the 3D-Objecter, a displacement in positions
between projected and existing objects in the simulator must
be accounted for. This is where the force inference step takes
place. A force proportional to the displacement and in the
direction of the projected object is applied within ODE to the
corresponding object. As the object accelerates (decelerates),
the inferred forces will be increased (decreased) accordingly.
To summarize, in the process of tracking objects, the Objecter
also generates a constant stream of inferred forces acting on
each object to account for their changes in velocity. These
force vectors may be used to classify self-moving objects, and
other aspects of force dynamics.

F. Generating Images within the Mental Model

The mental model is integrated with a 3-D graphics render-
ing environment [41]. The 3-D environment may be rendered
from an arbitrary viewpoint by positioning and orienting a
synthetic camera and rendering the scene from the camera’s
perspective. Changes in placement of the synthetic camera are
used to implement shifts in perspective without physically
moving Ripley. Figure 5 shows an example of a synthetic
view of the situation also depicted in Figures 3 and 4. Words
with visually referential semantics (blue, ball, left, etc.) are
grounded in terms of features extracted from these synthetic
“mental images”. As we shall see, we can ground spatial
phrases such asmy left as a combination of a shift of
perspective combined with a visually grounded spatial model.

Fig. 5. By positioning a synthetic camera at the position approximating the
human’s viewpoint, Ripley is able to “visualize” the scene from the person’s
point of view, which includes a view of Ripley.

V. SITUATED SPEECHUNDERSTANDING AND

GENERATION GROUNDED IN MENTAL IMAGERY

The mental model and mental imagery provide Ripley with
object permanence and imagined perspective shifts, enabling
new forms of human-machine dialog. As a first exploration
into its use, we have integrated the architecture into a dialog
system that supports early forms of spoken dialog with Ripley.
This integrated system consists of several components includ-
ing a sensorimotor grounded lexicon, a speech recognition
and robust parser, grounded semantic composition procedures,
and visually-driven language generation procedures. Although
complete descriptions of these modules is beyond the scope
of this paper, we briefly sketch salient aspects of each module
so that the application of the mental model and imagery may
be presented.

A. Grounded Lexicon

A central component of the system is a grounded lexicon
that defines the meaning of words in terms of richly struc-
tured sensorimotor representations. In essence, these structures
model the meaning of words in terms of their correspondences
to percepts, actions, and affordances [42].

B. Verbs = Sensorimotor Networks

The meaning of manipulation verbs (lift, pick up, touch)
are grounded insensorimotor networks(SN) (a closely related
approach can be found in [21]). SNs can be used to execute
actions on the robot (in that sense, they may be thought of
as plan fragments), but they also serve as a representational
substrate for the semantics of verbs, and modifiers that are
linked to verbs.

A SN is defined by a linked set ofperceptual conditionsand
motor primitives. Figure 6 shows the SN forpickup. Perceptual
conditions are indicated by rectangles, motor primitives by
circles. Verbs expect a single argumentx, the patient of
the verb2. The main execution path of this SN is a single

2In ongoing work, we are expanding our formalism to accept agents,
instruments, and manner arguments.
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Fig. 6. A sensorimotor network that encodes the semantics ofpickup.

alternating sequence of perceptual conditions and motor prim-
itives. Thepickup SN may be interpreted as (1) ensurex is
in view, (2) extend head untilx is visually looming (recall
that Ripley’s cameras are mounted next to the gripper), (3)
grasp with the gripper until the gripper touch sensors are
activated, and finally, (4) retract. Errors can be sensed at each
perceptual condition. The default behavior on all errors is to
retry the previous motor action once, and then give up. All
SNs terminate in either asuccessor failure final state.

C. Modifiers = Sensorimotor Expectations

Modifiers, such as color, shape, and weight, are defined
with respect to an underlying SN. Figure 7 illustrates the
representation ofheavyand light. This structure captures the
commonsense notion that something is heavy if it is difficult
to lift. The SN (bottom) grounds the meaning oflift . The
dashed line indicates aprojection functionthat projects the
execution of an SN into a low dimensional feature space.
In this case, the projection function accumulates joint forces
during the execution of theretract motor primitive, effectively
weighing the patient oflift . The meaning ofheavyand light
are grounded as distributions of expected values with respect
to this projection of the underlying SN. These distributions
are referred to asactivation functions. To determine how well
a word fits an object, the SN underlying that word must
be executed and projected using the associated projection
function. The activation function associated with the word is
evaluated at the projected point to determine how well the
word fits the object. Since activation functions are continuous,
all scores are continuously graded.

Categorical distinctions (e.g., determining whether an object
is blue or not, as a binary decision) are made using a simple
voting mechanism. Within a feature space, the most activated
function determines the category label of the object.

The grounding of color terms closely parallels weight terms
(Figure 8). In place oflift , color terms are defined in terms of
the SN associated withlookat, which, when executed, causes
Ripley to center the objectx in the robot’s visual field. The
projection function computes the average value of color in all
pixels of the visual region corresponding to the object. Color
terms such asgreenandorangeare defined as two-dimensional
Gaussian distributions within this projected feature space.

Shape descriptors are grounded using histograms of local
geometric feature, described in [43]. The histograms are

grasp(x) retractg_touch(x)
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projection function:  accumulated
forces during retract

Fig. 7. The meaning ofheavyand light are grounded in expected resistance
measurements while lifting an object.
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Fig. 8. The meaning ofgreen and orange are grounded in expected
distributions of context-normalized color space measured by looking at an
object.

generated using a projection function defined in terms of the
same SN as color terms (lookat).

D. Spatial Relations and Perspective Shifting

To ground spatial words (e.g.,above, to the left of) in our
past work with two-dimensional virtual worlds (cf. [14]), we
have used Regier’s set of three spatial features [11], which
take into account the relative shape and size of objects. The
first feature is the angle (relative to the horizon) of the line
connecting the centers of area of an object pair. The second
feature is the shortest distance between the edges of the
objects. The third feature measures the angle (relative to the
horizon) of the line which connects the two most proximal
points of the objects. Spatial relations such asaboveand left
of are defined as Gaussian distributions in terms of these
three features. To apply a spatial relation, two objects must
be identified, the target and the landmark. The two-argument
structure associated with spatial terms is encoded in the speech
parser as described below.

Since Ripley’s mental model is three dimensional, we use
projective transforms to capture 2-D views of the mental model
(using synthetic vision). Regier’s features are then computed
on the 2-D image. In Regier’s models, and our previous
work, the perspective of the viewer has always remained
fixed, assuming a first person perspective. Using the mental
model, the synthetic camera can be moved to any 3-D location
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and orientation. Using this perspective shift operation, the
semantics ofmy left versusyour left can be differentiated
by using the wordmy, in this linguistic context, as a trigger
for positioning the synthetic camera. Ripley’s proprioceptive
system guides the placement of the camera for first person
perspectives, and the face-tracker driven human model enables
shifting to the human’s point of view.

E. Spatially Situated Speech Understanding

Using the SN and projection function representation, we
have encoded a small vocabulary of words that cover verbs
(pickup, touch, etc.), names of objects (apple, beanbag, cup,
etc.), and terms for color, weight, and spatial relations. A
speech recognizer, parser, and semantic composition system
work together to convert commands into robot actions. Most
aspects of the lexical structures are hand coded. Only the
activation functions (e.g., color distributions associated with
green, or weight distributions associated withheavy) are
trained from examples using standard statistical estimation
techniques.

Front end speech recognition is performed using a HMM-
based decoder [44]. The single best word sequence is passed to
a chart parser [45] which serves as the first step of a semantic
composition procedure. The composition process is presented
in detail in [46]. In brief, each lexical entry has a function
interface that specifies how it performs semantic composition.
Currently, the interface definition consists of the number and
arrangement of arguments the entry is willing to accept.
Semantic type mismatches are handled during composition
rather than being enforced through the interface. Each entry
can contain asemantic composerthat encapsulates the actual
function to combine this entry with other constituents during
a parse.

The system is able to resolve the referent of utterances with
multiple modifiers. To achieve this, virtual objects consisting
of one or more actual objects are internally generated during
semantic composition. Consider the spoken command, “Pick
up the large green cup to the left of the blue plate”. To resolve
the reference oflarge green cup, the innermost term,cup, is
first bound to objects in the robot’s environment based on
the visual shape models associated with the word. If multiple
cups are found, they are grouped into a virtual object. This
virtual object is then composed with the representation of
green, which will threshold and sort the contents of the virtual
object based on greenness, and pass along the new virtual
object tolarge. The landmark phraseblue plateis processed in
the same way, resulting in a second virtual object. The spatial
phraseto the left of is used to find the best pair of objects,
one drawn from each of the virtual objects. Finally, the best
referent is passed as an argument to thepickup SN, which
actually executes the action and picks up the target object.

The wordsmy, your, me, andyouare given special treatment
when adjacent to spatial terms, each triggering an appropriate
shift of visual perspective within Ripley’s mental model (in
front of me, to your left, etc.). Subsequent spatial terms are
evaluated in the shifted frame of reference. In this way, mental
imagery provides the grounding for deictic and intrinsic spatial
language.

F. Results and Discussion

Ripley is able to interactively respond to a range of im-
perative spoken commands such as “Pick up the blue cup on
your left” and “Hand me the ball to the right of the large green
beanbag”. In cases where the referent of the command appears
ambiguous, Ripley uses a simple dialog strategy to request
further descriptive terms. When an explicit spatial frame is not
indicated through language, Ripley’s default is to imagine the
workspace from the user’s point of view, thereby interpreting
commands from a deictic frame of reference. Ripley is able
to understand commands which specify single actions to be
performed on single objects. More complex request sequences
of actions or manipulation on multiple objects is currently
beyond the scope of the system’s grammar.

In principle, Ripley can understand reference to objects that
are not in its camera’s view due to the object permanence
function of the mental model. Although the physical camera
may not be directed towards a target object, the synthetic
camera can be directed at any portion of the 3-D model of
the scene to ground referring expressions. We have not yet
implemented the procedures for controlling synthetic vision,
but the representational capacity for performing this kind of
language comprehension is in place.

Although this application of the mental model is too pre-
liminary for formal performance analysis, three major sources
of processing errors are apparent, each suggesting a direction
for future work. First, the simplifying assumption of color-
based foreground / background separation in the low level
visual analysis algorithms leads to significant problems with
the vision system. To address this, a more robust segmentation
process based on contrast maps and depth imaging is being
developed. Second, several parameters in the Objecter are
manually set (distance tuning weights, confidence decay rates,
etc.), leading to sub-optimal synchronization of the model
to the robot’s environment. Instead, these parameters can be
automatically determined using machine learning techniques,
once an annotated set of active vision data has been collected.
Third, the speech recognizer occasionally produces errors.
There are several ways to improve robustness of speech
recognition including the use of acoustic confidence scores
to reject poorly recognized words, and the integration of
speech processing with contextual knowledge derived from
other sensors (see [47] for first steps in this direction).

VI. CONCLUSIONS

Our vision is to create interactive robots that can engage
in cooperative tasks with humans mediated by fluid, natural
spoken conversation. To achieve this vision, the robots must
have rich representations of the physical situations in which
they are embedded. These representations must be coupled
to the robot’s physical senses so that they reflect reality, and
provide appropriate interfaces for grounding natural language.

Motivated by these needs, we have developed a method for
constructing and maintaining a physical model of a robot’s
environment based on active perceptual input. The mental
model provides a representational medium that is suitable for
grounding the semantics of referring expressions. The mental
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model serves as the robot’s dynamically constructed “cache”
of the external world. Rather than tie the meaning of utterances
to first-person perspective visual representations, the mental
model provides an abstracted representational layer to interface
with natural language semantics.

Understanding relativized spatial language is only one of
numerous reasons for endowing Ripley with a mental model.
Consider, for example, how Ripley should generate referring
expressions to bring its human partner’s attention to an object.
Depending on the situation, objects in view for the robot may
be occluded from the human’s perspective. If a cup is sitting
behind an obstacle, say a box, that prevents the human from
seeing the cup, it would be ineffective for Ripley to refer to
the cup as justthe cup. Instead, by taking into account the
human’s viewpoint, Ripley can anticipate that the object will
not be in view and instead saythe cup behind the box. Ripley’s
mental model enables this kind of situated language use.

Perhaps one of the most intuitive views of word meaning
is the referential theory: words get their meaning due to their
correspondence to events, objects, properties, and relations in
the world. Although many other critical aspects of meaning
have been raised in the philosophy of language and mind, the
referential aspect of words holds firm as a crucial part of any
complete theory of meaning. The approach we have presented
here enables Ripley to establish meaningful correspondence
between words and world, enabling a central aspect of situated
language understanding.
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