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Mental Imagery for a Conversational Robot

Deb Roy, Kai-Yuh Hsiao, and Nikolaos Mavridis

Abstract—To build robots that engage in fluid face-to-face  Our current work is part of a larger effort to develop a
spoken conversations with people, robots must have ways to conversational interface for an interactive robot (see also [3]-
connect what they say to what they see. A critical aspect Of46]). The development of such a robot is of practical interest

how language connects to vision is that language encodes point d . . f lorati N t
of view. The meaning ofmy leftand your left differs due to an " domains ranging from space exploration (e.g., [7]) to

implied shift of visual perspective. The connection of language to assistive aids (e.g., [8]). Furthermore, we believe that lessons
vision also relies on object permanence. We can talk about things learned from developing robotic interfaces may have impact

that are not in view. For a robot to participate in situated spoken in numerous other natural language processing domains.
dlalog, it must hgave_the capacity to imagine shifts of perspective, A necessary step towards creating situated speech process-
and it must maintain object permanence. We present a set of . . .
representations and procedures that enable a robotic manipulator Ing systems '_S to develop representatlorjs and procedgres that
to maintain a “mental model” of its physical environment by ~€nable machines to ground the meaning of words in their
coupling active vision to physical simulation. Within this model, physical environments. In contrast to dictionary definitions
“imagined” views can be generated from arbitrary perspectives, that represent words in terms of other words (leading, in-
providing the basis for situated language comprehension and eyitaply, to circular definitions), grounded definitions anchor
production. An initial application of mental imagery for spatial . . . L L .
language understanding for an interactive robot is described. word _meamngs n non'l'ngu'suc.pr'm't'ves' Assuming that .a
machine has access to its environment through appropriate
sensory channels, language grounding enables machines to
link linguistic meanings to elements of the machine’s physical
world.
|. SITUATED LANGUAGE USE Interest has grown in the computational representation and
In using language to convey meaning to listeners, speakargjuisition of word meaning grounded in vision [9]-[18] and
leverage situational context [1], [2]. Context may includenotor action [19]-[21]. This line of research, in addition to
many levels of knowledge ranging from the details of sharedaking contributions to theoretical aspects of lexical semantics
physical environments to cultural norms. As the degree ahd cognitive modeling, has practical relevance for building
shared context decreases between communication partngitsated human-machine communication systems. A limitation
the efficiency of language also decreases since the speaKethis previous work, however, is the assumption of a fixed,
is forced to explicate increasing quantities of information théirst-person visual frame of reference.
could otherwise be left unsaid. A sufficient lack of common Our approach departs from the assumption of camera-
ground can lead to communication failures. grounded fixed perspective by introducing an implemented
If machines are to engage in meaningful, fluent, situatedodel of mental imagerydriven by active vision. Mental
spoken dialog, they must be aware of their situational contekxnhagery enables grounding of spatial language that cannot be
As a starting point, we focus our attention on physical contextandled under fixed-perspective assumptions. To understand
A machine that is aware of where it is, what it is doingthe difference betweebehind meandbehind youthe listener
the presence and activities of other objects and people intsist factor points of view into the language comprehension
vicinity, and salient aspects of recent history, can use thga®cess. Speakers must similarly take into account listeners’
contextual factors to interpret natural language. points of view to produce clear, unambiguous language. Sim-
In numerous applications of spoken language technologigler solutions such as in-plane rotation of images to correct
such as talking car navigation systems and speech-bagad perspective will not work in general, since full three-
control of portable devices, we envision machines that conngimensional changes of perspective are required in many
word meanings to the machine’s immediate environments. Rituations. Furthermore, mental imagery enables anticipation
example, if a car navigation system could see landmarksah visual occlusions which are view dependent and cannot
its vicinity based on computer vision, and anchor descriptilee predicted through image rotations. Our approach also
language to this visual perception, then the system would ham&roduces object permanence so that language can bind to
a basis for generating contextually appropriate directions sugbjects that are not in direct view of the system’s camera.
as, “Take a left turn immediately after the large red building’As a result, the system can understand and generate language
Consider also an assistive service robot that can lend a helpaimput objects which are not physically in the camera’s sight.
hand based on spoken requests from a human user. For thé/e first introduce our notion of mental imagery and its
robot to properly interpret requests such as, “Hand me the nede in language use. We then present details of an imple-
cup and put it to the right of my plate”, the robot must connechentation of a computer vision driven mental model that is
the meaning of verbs, nouns, adjectives, and spatial languaged to generate mental imagery. We conclude by presenting
to the robot’s perceptual and action systems in a situationa#lp application of language understanding grounded in mental
appropriate way. imagery. Although we build on earlier work on visually-

Index Terms— Robots, Language, Active vision, Mental mod-
els, Mental imagery, Mental Simulation, Grounding.
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grounded language cited above, this work makes a significamalysis, basic kinds of frames of reference that humans use

departure by defining a new way to connect language atwlconceptualize space include space of the body (body parts),

vision that is better able to address the needs of situatgghce around the body, and the space of navigation. Here,

language processing. we primarily address computational representations of space
around the body of a robot. The ability to shift perspectives is

II. MENTAL MODELS AND MENTAL IMAGERY: WHERE  also related to aspects of space in navigation, although verbal
LANGUAGE AND VISION MEET interaction with a mobile robot (e.g., [31]) addresses the latter

V\}nore directly.

A key aspect_of human perception I that it is active. We Using Miller and Johnson-Laird’s terminology [32], speak-
cannot move without affecting our senses, and in order to ! -
: . s may assume a first-persdeictic frame of reference (e.g.,
perceive, we must coordinate our movements. In the realm , : L :
. . n my left”), or alternatively anintrinsic perspective (e.g.,

of visual perception, movement of the head and body leads 0w

to apparent motion in the visual field. and the appearan n your left”, “in front of the house”). Intrinsic expressions
app . ' > app GEcur when spatial terms are used to indicate positions relative
/ disappearance of objects from the field of view. Yet, wi

. S " entities that have intrinsic parts (e.g., houses have fronts and
are able to conceptualize the world as stable, maintain Obj%%ltcks) and may thus serve as the bases for spatial frames of

permanence in the face of appearances and dlsappearan%%srence. One way for a listener to interpret the meaning of

and differentiate self-motion from motion in the enwronmen{ieictic references, and the approach that we have explored in

str\fj\/ceiua:ggrithtarﬁ;e:;m:;:tti ggsmtz%(;e\tgst%;hgf Crzr;(l:ifptgiou_r computational model, is to use mental imagery to visualize
. . " P ) Y, e shared scene from the speakers point of view, and within
tially a “cache” of the external world as projected throug

the observer's percentual svstem. The idea of mental mod is shifted frame, interpret spatial expressions. In other words,
. b P y : : 8 phrase “on my left” is decomposed into two parts, “my”,
is well established in the cognitive science literature (c

.dnd “on — left”. The “my” part triggers a shift of perspective
's point of view. Similar strategies can be

the construction and updates of the mental model. In Ofﬁr}rinsic frames of reference.

approach, perceptually driven mental models provide a leve Imagining how a shared environment looks from another’s

of abstraction above low level vision that is appropriate for L9 : . o
. : perspective is often crucial to effective communication. If an
connecting to language (along these lines, see also [23]).

: ) ject is in vi k li L houl
We also adopt the terrmental imagenryto refer to images object is in view to speaker S, but not listener L, S should

. - . : L ta}ke this factor into account when referring to the object. If S
that are generated by imagining viewpoints within a rnentf%‘nows that L can’t see an apple because it is behind a basket

model. The Stanford Encyclopedia of philosophy [24] defme§ might say “the apple behind the basket” rather than just
mental imagery as: . - L .
) ) the apple”. If the apple is in view to both parties, the former
Experience that resembles perceptual experience, gescription would seem odd since it specifies unnecessarily
but which occurs in the absence of the appropri- redundant details.
ate stimuli for the relevant perception [25], [26]. To summarize, language cannot be grounded directly in
Very often these experiences are understood by firstnerson visual representations. Language must instead be
their subjects as echoes or reconstructions of actual grounded through some other representational layer which
perceptual experiences from their past; at otherimes  6\ides a stable view of the environment in spite of self-
they may seem to anticipate possible, often desired q¢ion. This middle ground also enables speakers and listeners
or feared, future experiences. to imagine each other’s point of view, a necessary precondition
Our use of the term extends this definition since we afeér natural situated spoken dialog.
concerned with representations and processes that are actii@/ith this motivation in mind, we present an architecture for
during actual perceptual experience. We choose to use Hiftively constructing mental models.
same term for both cases based on our intuition that many
of the same processes used for online perception are also
used for offline reconstruction and reasoning (see [27], [28]
for psychological arguments in support of this view). Our current experiments are based on a robotic manipulator
Language refers to the stabilized conceptualization of timamed Ripley (Figure 1). Ripley has seven degrees of freedom
world provided by mental models and imagery — we do not ta(ROFs), enabling it to manipulate objects in a three-foot radius
of objects as being in motion when we know that the apparemorkspace. The robot may be thought of as an articulated torso
motion was caused by our own movements. We also talk abéetminating with a head that includes its “mouth” (a one DOF
objects that are out of view if we are certain of their locatiorgripper).
Moreover, spatial language in situated dialogs assumes &Ripley has been designed to explore situated, embodied spo-
point of view that will depend on how the speaker decidden language use. In contrast to our previous robots [13], [33],
to express herself. Perspective taking has long been studridley is able to use its gripper to manipulate small objects,
in psychology, leading to a large literature on the subjeptaving the way for grounding verbs related to manipulation
including the developmental studies of Piaget [29]. Tverslactions. The robot’'s range of motions enable it to examine
provides a useful taxonomy of spatial thinking [30]. In heobjects through vision and touch. Ripley is also able to look

IIl. PHYSICAL EMBODIMENT: RIPLEY
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Fig. 1. Ripley hands an apple to its human communication partner in response

to the phrase “Hand me the thing on your left". )
Object and Face

regions

up and make “eye contact” with its human communication

partner. This behavior plays a functional role since Ripley Rz(;;:tl?gigf& L

must keep track of the position of the partner in order to Stabilization

understand relative spatial reference. Eye contact is also, of Physical

course, important for engaging in natural face-to-face dialog. l ?};gzir:t'grs
Most of Ripley’s sensors are in its head, including two 3-D Rigid Body

color video cameras, two microphones, touch sensors, and an Mental Model

inertial sensor for gravity. Additional proprioceptive (position
and force) sensors are placed on each joint. In our current
work, only one of the cameras is used for visual inhuThe
placement of the camera on the mouth simplifies grasping
since visual servoing can be used to guide the gripper to
objects. However, the placement also leads to constant changes

|

Synthetic
Camera

1

in the robot’s field of view since any motion of the torso affects Mental Position &
the camera. For this reason, Ripley provides an excellent Im‘:gss Orientation
Control

platform for developing mechanisms for mental imagery.

Low level motor control is achieved by computing trajec-
tories of target joint configurations. An elastic force model Language
loosely inspired by motor force fields in biological motor Interpreter /
control [34] is used to provide compliant motion control Generator
[20]. Higher level motor control directives are issued from
a planning mechanism that is driven by task specific criteria.

Low level visual processing relies on color based separatigig. 2.  Architectural overview: Active vision drives the construction and

of objects from a known (fixed) background (the imag@aintenancg of a mental model. Synthetic mental images from the mental
. . . . . model are linked to language.
processing methods are described in [33]). The vision system
generates a set of foreground regions at a rate of 15Hz. These
region sets are passed to an object permanence module which
integrates region sets over time to determine the presence
and properties of objects in the scene. As we describe in theas we move around our direction of gaze, objects come in
next section, the object permanence module uses the roba#gl out of sight, but our conception of objects remains stable.
joint configurations to compensate for view points in ordeigure 2 provides an overview of Ripley’s mental model and
to maintain a view-independent model of object locations. fhagery architecture that registers and stabilizes sensory data
face detector [35] searches for faces in the visual field. Fagasm the robot’s moving camera. We begin with an overview
are treated specially, leading to a model of the communicatigh the architecture. Subsequent sections highlight technical
partner’s location in the robot’'s mental model. details of the implementation.
Ripley’s camera provides a constant stream of images to

1in ongoing work, we are introducing depth perception based on sterg%e_ image p_rocessor. The im_age processor f_inds fOfterOU“d
visual input. regions (typically corresponding to the location of objects

IV. MENTAL MODEL AND MENTAL IMAGERY



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS (IN PRESS) 4

on the robot's work surface) and face locations which are
relayed, at the 15Hz frame rate, to a registration and stabiliza
tion module. This module constructs and maintains a three
dimensional model of objects in the environment. The robot’s
joint configuration is used to perform projective transforms
on incoming images so that a three-dimensional model can b
created out of multiple two-dimensional views.
The mental model is a 3-D model consisting of a set of]
rigid body objects, and represents Ripley’s belief of the statd
of the world. The registration and stabilization module acts
as a sophisticated hysteresis function to smooth sensory da
Persistent perceptual evidence for the presence, movement,
disappearance of objects drives updates in the mental mode
A physical dynamics estimator is used to provide predic-
tions of where objects should be in incoming image frames,
given the current state of the mental model and knowledﬁ@- 3. Ripley looks down at the tabletop with four objects in view.
of Newtonian physics. This predicted model is used to align
perspective-dependent camera image regions with the Cont%‘.tsRipley's Physical Self-Model
of the 3-D mental model. The contents of the mental model
can be used to generate synthetic images using a syntheti?:—

camera and standard projective computer graphics techni )
Proj b grap q ggd in the physical robot. At each update cycle in the model,

The language processor receives these synthetic imal .
. ) . Nt angles of the virtual robot are compared to the angles of
as a basis for grounding semantics. The language proce pr

has control over the position and orientation of the synthetlce physical robot. For each joint, if the difference in angles

camera. To interpret spatial language, the synthetic Camésré;reater than a preset threshold, then an appropriate force is

can be positioned to simulate either the robot's or the hum\%ﬁgj :;d'oti% tatllgzI::?h(éo;r;ssgggggg[)\g;u3:‘ Jt‘;'gt' Ln s?::f;c:’o:)r:i
partner’s point of view. J phy: :

Since only angle differences above a threshold lead to virtual
forces, low level jitter in the physical robot is attenuated in
the mental model.

he model of the robot’s body is controlled by a simulated
ition-derivative motor controller similar to the controller

A. Representation of Mental Model State

Thg physic_al e.nvironment is modeled b)_/ a set of rigid 3. Coupling Active Vision to the Mental Model
D Ob]eCt.S Wh'Ch includes (1) a model of Ripley’s own body, A primary motivation for developing the mental model
) da lbuflltﬂ:n Lnodel of the qukstpace te;ble,’ (:;) g phyzlc to register, stabilize, and track visually observed objects
modet of the human communication pariners body, an (| Ripley’s environment. To address these needs, an object
objects situated on the work surface. The complete state of manence module, called tbjecter bridges the incoming
mental model is captured at any moment by the descrlptlonssq eam of input from the image analysis module to the contents

all qtl_)jects._EatcT_ Objeﬁt n thelmodel IS fullz delscrlltbe_(lj_hby 'tj the mental model (for other approaches to perceptually
position, orientation, snape, color, mass, and velocity. The S& bupled simulation, see [37]-[39]). When an image region

model consists of a set of four cylindrical blocks connected Y found to stably exist for a sustained period of time, an

S\;\{{i;]/el jﬁint_s t(I) agp:o?rr]nati th_e slhapg zim(:t[]anﬁe of pos“iogﬁject is instantiated by the Objecter in the mental model. The
orthe physical robot. The physicalmodet ot the human partngl . g position of the object are determined from the visual
is currently a simple sphere which is used to position synthe

10 obtain the h ) it of Vi H’Fput. It is only at this point that Ripley becomes “aware”
cameras {o obtain the human's point of view. of the object and is able to talk about it. If Ripley looks

away from an object so that the object moves out of view,
a representation of the object persists in the mental model.
When a physical object is removed from Ripley’s workspace,
The ODE (Open Dynamics Engine) rigid body dynamicpersistent perceptual evidence of its disappearance causes the
simulator [36] is used to predict future states in the mentabject to be deleted from the model.
model. ODE is an open source Newtonian physics simulatorFigure 3 shows an example of Ripley looking over its
that operates on 3-D rigid body models. At a rate of 10Hvorkspace with four objects in view. In Figure 4, the left image
the state of the mental model is copied into ODE, ODEhows the output from Ripley’'s head-mounted camera, and the
is executed to generate a prediction for the next time stefght image shows corresponding simulated objects that have
and this predicted state is integrated with perceptual evidertm®en registered and which are being tracked.
from Ripley’'s camera and joint sensors to update the state ofThe Objecter consists of three components: a 2D-Objecter,
the mental model (see below). ODE thus provides two ma@bD-Objecter, and 2D-to-3D resolver. The 2D-Objecter tracks
functions within our system: collision detection, and dynamidsvo-dimensional visual regions generated by the vision sys-
simulation. tem. The 2D-Objecter implements a hysteresis function which

B. Dynamic Prediction
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candidates are initialized by copying the output of the vision
system O «— V) so that a candidate is created corresponding
to each region in the current visual analysis frame. A con-
fidence value R¢[t].conf, is assigned to each candidate and
initialized to 0. At each successive time step, a new region set
is generated by the vision system. The 2D-Objecter attempts
to put each region i’ into one-to-one correspondence with
Fig. 4. Visual regions and corresponding simulated objects in Ripley's mengéch candidate i such that the total distance using Equation

model corresponding to the view from Figure 3. The white ellipses in the Ieit between paired regions is minimized. In general, the number
image indicate the output of the region analysis routines of the vision syste ’ !

The objects in the simulator on the right are actually spherical, but appég\}r'ViSl-'aI regionsV and 2D-Objecter candidate regiohs will

elliptical due to optical warp of the synthetic viewpoint generated by theot be equal. The alignment process aligns ithia( N, M)

simulator. subset of regions. After the optimal alignment is found, only
those whose distances resulting from the match are below

detects 2D visual regions that persist over time, and resol\ﬁes{n%)(imum aIIowaz!: distange thrEShOId arlt_a ac(cjepted. The
intra-frame region correspondences, assigning unique IDsS@fidences of candidate regions that are a||gnq _Ito regions
persistent regions. The 2D-to-3D resolver module follow&OM V' are updated (increased) using a rule similar to an
which calculates the position and pose of prospective 3_|Bf|'n|te |m.pulse response 'f|Iter, assuming positive input of
objects, based on the persistent 2-D regions it is fed. Due4B" magnitude. Thus, confidence values never reacr_l an upper
a lack of depth information, the resolver relies on projecti\}éour_‘d of 10 I”_V > M, at mpst(N - M) new canc_ildates
geometry and the assumption that objects are in contact Wit instantiated in the 2D-ObJecter., each with conf!dgnce set
Ripley's table. The 3D-Objecter brings the prospective 3 0. If N <| M, then.the con_ﬂdenpe of, at minimum,
objects into correspondence with those already existing in the® — N) unaligned candidate regions is updated (decreased)

mental model, and decides whether and how to create, up similar rule, driven by a negative input of unit magnitude.
or delete objects in the mental model At the end of this alignment and confidence update process,

J?e properties of the matched or newly instantiated regions

As Ripley moves (and thus changes its vantage poin h iod | h hed did
the 2D-Objecter continues to track visual regions until the§®™ the 2-DV are copied intcD. The unmatched candidate

leave the field of view. However, updates to the 3-D ment qegions retain their previous properties, and any of them for
model are not performed while Ripley is in motion. Thidvhich £7[t].conf <0 are destroyed. . .

simplifies the process of tracking objects and leads to great r he qutput of t_he 2D-Obje_cter at each_ time step Is t_he subset
model accuracy. Overall, as a coupled pair, the 2-D and [ candidate regions for wh|ch_ the conﬂdepce level is greater
D Objecter maintain correspondence of objects across timi&a" Confarzn. In the current implementatio/on far1v =

enabling tracking and object persistence in spite of perceptlga?' Ea(ig nﬂ/]vly mls[t)antlated cgndldate region 1s ﬁSSIgne(li a
gaps, noise, and spatial reorderings of the objects. unique ID. These IDs are persistent over time, thus imple-

More precisely, the output of the image processing modul enting region tracking. Smoothly moving objects are tracked
at each time step is a set df visual regions,V[] — y the 2D-Objecter. When an object is removed from a scene,

(RY[t], RS[t), ..., R%[1]}. In general, the ordering of regionsthe confidence value of the corresponding candidate region

within V' is arbitrary since the vision system finds regions il start dropr?ing fr?? the rgaximlgml value ﬁo"_fMAX'
each frame of video independent of knowledge of previOL'[l;‘S’:i soon as the confidence drops belGn fy 1y, it stops

frames. Thus, there is no guarantee tRaft] will correspond ng output. This use of confidence values and thresholds
to RY[t + 1] implements a hysteresis function that requires persistent visual
. .

ISyidence before either instantiating or destroying regions.

To obtain correspondence of regions over time, the 2 The 3D-Obi o infer th .
Objecter maintains its own set of regions which are candidates e 3D-Objecter uses projective geometry to inier the posi-

for being output to the 3D-Objecter. We denote the candideﬂgn of objects in three-dimensional space based on 2D regions.

region set a®|t] = {R3[t], RS[t] Re,[t]}. The purpose of Given the position and orientation of Ripley’s camera, the 2-D
- 1 s £L2 gty . . . . . . . . .

the 2D-Objecter is to maintain corres]gondence betwegir regions are linearly projected in 3-D until the projection lines

and R?[t + 1]. To maintain region correspondence, wel deﬂn@tersect Ripley’'s work surface. The location of the surface,

a tunable distance metric between two visual regions as: a round tabletop, is built into the initial state of the mental
" model. Thus, Ripley’s perceptual input is not necessary for

establishing the presence of the table.

d(R;, Rj) = ady(R;, Rj)+4ds(R;, Rj)+(1—a—pB)d.(R;, R;)  Interaction between the 2D- and 3D-Objecter proceeds as
(1) follows. Each time Ripley moves, the 3D-Objecter ignores

Whered,() is the Euclidean distance between the centroids ofitput from the 2D-Objecter, and when Ripley stabilizes its
the regionsd() is the difference in size (number of pixels) ofposition, the 3D-Objecter waits 0.5 seconds to ensure that the
regions, andl.() is the difference in average RGB color of the2D-Objecter’s region report is stable, and then resumes 3-D
regions. The tuning parametexsand are scalar values suchprocessing. When the 3D-Objecter processes a 2-D region
that(«+ ) < 1. They are used to set the relative emphasis eét, it projects each region to a corresponding 3-D object
the position, size, and color properties in comparing regionkcation. Then, the projected objects are then placed into
When Ripley moves to a new vantage point, the 2D-Objecteorrespondence with existing objects in the 3-D mental model.
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To compare projected and existing objects, a modified version
of Equation 1 is used in whick,() measures three dimen-
sional Euclidean distance, amd() measures size. The same
alignment process as the 2D-Objecter is used to align projected
objects to existing objects in the mental model. If projected
objects have no existing counterparts in the simulator, new
objects are instantiated. Conversely, if an object exists in the
mental model but no corresponding object has been projected
based on visual evidence, then the object in the mental model
is destroyed. There is no hysteresis function required in the
3D-Objecter since all 2-D regions have already passed through
a hysteresis function in the 2D-Objecter.

E. Inferring Force Vectors from Vision . - , . o
) . ) . Fig. 5. By positioning a synthetic camera at the position approximating the
In the process of updating the position of moving objectsyman’s viewpoint, Ripley is able to “visualize” the scene from the person’s

the 3D-Objecter must infer the magnitude and direction @int of view, which includes a view of Ripley.
forces which lead to observed motions. Inference of force

dynamics has been argued to be of fundamental importance
in grounding verb meanings [40] We now explain how forces

are inferred from visual observation in the Objecter.

Consider a situation in which an object, such as a ball, The mental model and mental imagery provide Ripley with
is on the workspace and in view. Once the 2D-Objecter habject permanence and imagined perspective shifts, enabling
registered the corresponding region, it will relay the regiofew forms of human-machine dialog. As a first exploration
to the 3D-Objecter which will instantiate an object in thénto its use, we have integrated the architecture into a dialog
mental model. At this point, Ripley is aware of the ballsystem that supports early forms of spoken dialog with Ripley.
Now, assume the ball begins to slowly roll. Although thdhis integrated system consists of several components includ-
visual region corresponding to the ball will be displaced frorflg & sensorimotor grounded lexicon, a speech recognition
one time step to the next, the 2D-Objecter will generallgnd robust parser, grounded semantic composition procedures,
determine the correspondence between regions over time s@p@ visually-driven language generation procedures. Although
and thus track the object. After the correspondence proc&osnplete descriptions of these modules is beyond the scope
has been run by the 3D-Objecter, a displacement in positig#isthis paper, we briefly sketch salient aspects of each module
between projected and existing objects in the simulator mst that the application of the mental model and imagery may
be accounted for. This is where the force inference step talss presented.
place. A force proportional to the displacement and in the
direction of the projected object is applied within ODE to th&. Grounded Lexicon
corresponding object. As the object accelerates (decelerates
T e e il e redse decrasen) aco e cetnes e meaning of words i erms o rehly st

' . ' |~ ~tlred sensorimotor representations. In essence, these structures
also generates a constant stream of inferred forces acting

) . ; . model the meaning of words in terms of their correspondences
each object to account for their changes in velocity. The% percepts, actions, and affordances [42]

force vectors may be used to classify self-moving objects, and
other aspects of force dynamics.

V. SITUATED SPEECHUNDERSTANDING AND
GENERATION GROUNDED IN MENTAL IMAGERY

)& central component of the system is a grounded lexicon

B. Verbs = Sensorimotor Networks

F. Generating Images within the Mental Model The meaning of manipulation verbsft pick up, touch
The mental model is integrated with a 3-D graphics rendetc grounded isensorimotor networl(SN) (a closely related

ing environment [41]. The 3-D environment may be render proach can be found in [21]). SNs can be used to execute

from an arbitrary viewpoint by positioning and orienting (,Fctlons on the robot (in that sense, they may be thought of

synthetic camera and rendering the scene from the camefa plan fragments), but they also serve as a representational

perspective. Changes in placement of the synthetic camera%@snate for the semantics of verbs, and modifiers that are

. e . : . ked to verbs.
used to implement shifts in perspective without physmallI . , _ .
moving Ripley. Figure 5 shows an example of a SyntheticASN is defined by a linked set glerceptual conditionand

view of the situation also depicted in Figures 3 and 4. Wor(ﬂgom.r _pr|m|t|ves_F|gure 6 shows the SN fauickup Percgptual
conditions are indicated by rectangles, motor primitives by

with visually referential semanticdblie, ball, left etc.) are ~. ’ :
y ' i ) Ecles. Verbs expect a single argument the patient of

grounded in terms of features extracted from these synthe@\ > . . . . .
“mental images”. As we shall see, we can ground spati e verb“. The main execution path of this SN is a single

phrases _SUCh asny |eft. as a combination of a S_h'ft of 215 ongoing work, we are expanding our formalism to accept agents,
perspective combined with a visually grounded spatial modelstruments, and manner arguments.
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in_view(x) extend(X) looming(x) grasp(X) g_touch(X) retract

w

‘ heavy(x)

!
[ ]
l
(o
i
]
i
(O
]
]
C
]

? projection function: accumulated

+ forces during retract
O-]-

grasp(x)  g_touch(x) retract

first
failure?

- lift|
t FAIL ift(x)

Fig. 7. The meaning dfieavyandlight are grounded in expected resistance
Fig. 6. A sensorimotor network that encodes the semantigscitip measurements while lifting an object.

green(x)
alternating sequence of perceptual conditions and motor prim-
itives. Thepickup SN may be interpreted as (1) ensurds
in view, (2) extend head untit is visually looming (recall
that Ripley’s cameras are mounted next to the gripper), (3)
grasp with the gripper until the gripper touch sensors are
activated, and finally, (4) retract. Errors can be sensed at each
perceptual condition. The default behavior on all errors is to
retry the previous motor action once, and then give up. All

activ ation

A I .
+ projection function:
' region averaged color

SNs terminate in either auccesr failure final state.
D N
C. Modifiers = Sensorimotor Expectations in_view(X) center(X)
Modifiers, such as color, shape, and weight, are defined lookat(x)

with respect to an underlying SN. Figure 7 illustrates the

representation ofieavyand light. This structure captures therig. 8. The meaning ofgreen and orange are grounded in expected

commonsense notion that something is heavy if it is difficuistributions of context-normalized color space measured by looking at an

to lift. The SN (bottom) grounds the meaning lft. The object

dashed line indicates projection functionthat projects the

exec_utlon of an SN, '”tP a low .dlmenS|onaI featpr_e SPaCanerated using a projection function defined in terms of the

In thls case, the 'prOJectlon function acqumglates JOIn't forc Sime SN as color terméopkas.

during the execution of theetract motor primitive, effectively

weighing the patient ofift. The meaning oheavyand light ) ) ) o

are grounded as distributions of expected values with respEet SPatial Relations and Perspective Shifting

to this projection of the underlying SN. These distributions To ground spatial words (e.gabove, to the left §fin our

are referred to aactivation functionsTo determine how well past work with two-dimensional virtual worlds (cf. [14]), we

a word fits an object, the SN underlying that word mudtave used Regier's set of three spatial features [11], which

be executed and projected using the associated projectiake into account the relative shape and size of objects. The

function. The activation function associated with the word first feature is the angle (relative to the horizon) of the line

evaluated at the projected point to determine how well tlmwnnecting the centers of area of an object pair. The second

word fits the object. Since activation functions are continuoufgature is the shortest distance between the edges of the

all scores are continuously graded. objects. The third feature measures the angle (relative to the
Categorical distinctions (e.g., determining whether an objeabrizon) of the line which connects the two most proximal

is blue or not, as a binary decision) are made using a simgeints of the objects. Spatial relations suchabsveand left

voting mechanism. Within a feature space, the most activateflare defined as Gaussian distributions in terms of these

function determines the category label of the object. three features. To apply a spatial relation, two objects must
The grounding of color terms closely parallels weight termise identified, the target and the landmark. The two-argument

(Figure 8). In place ofift, color terms are defined in terms ofstructure associated with spatial terms is encoded in the speech

the SN associated witlbokat which, when executed, causegarser as described below.

Ripley to center the object in the robot’s visual field. The Since Ripley’s mental model is three dimensional, we use

projection function computes the average value of color in glfojective transforms to capture 2-D views of the mental model

pixels of the visual region corresponding to the object. Coldusing synthetic vision). Regier’s features are then computed

terms such agreenandorangeare defined as two-dimensionalon the 2-D image. In Regier's models, and our previous

Gaussian distributions within this projected feature space. work, the perspective of the viewer has always remained
Shape descriptors are grounded using histograms of lofiged, assuming a first person perspective. Using the mental

geometric feature, described in [43]. The histograms amneodel, the synthetic camera can be moved to any 3-D location
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and orientation. Using this perspective shift operation, the Results and Discussion
semantics ofmy left versusyour left can be differentiated Ripley is able to interactively respond to a range of im-

by using the wordmy, in this linguistic context, as a trigger perative spoken commands such as “Pick up the blue cup on
for positioning the synthetic camera. Ripley’s proprioceptiveq,r |eft” and “Hand me the ball to the right of the large green
system guides the placement of the camera for first pero@nhag”. In cases where the referent of the command appears
pe.rs'pectlves, and the face.—tracker driven human model e”al?;{ﬁ?biguous, Ripley uses a simple dialog strategy to request
shifting to the human’s point of view. further descriptive terms. When an explicit spatial frame is not
. . . indicated through language, Ripley’s default is to imagine the
E. S"_’a“a”y Situated Spefach_ Understgndmg _ workspace from the user’s point of view, thereby interpreting
Using the SN and projection function representation, Weymmands from a deictic frame of reference. Ripley is able
hgve encoded a small vocabulary of words that cover vers understand commands which specify single actions to be
(pickup, touchetc.), names of objectsfple, beanbag, cup performed on single objects. More complex request sequences
etc.), and terms for color, weight, and' spatial re'lgtlons. 6f actions or manipulation on multiple objects is currently
speech recognizer, parser, and semantic composition sysi¥lond the scope of the system’s grammar.
work together to cqnvert commands into robot actions. Most |, principle, Ripley can understand reference to objects that
aspects of the lexical structures are hand coded. Only th& not in its camera’s view due to the object permanence
activation functions (e.g., color distributions associated Wiynction of the mental model. Although the physical camera
green or weight distributions associated witheavy are may not be directed towards a target object, the synthetic
trained from examples using standard statistical estimatigmera can be directed at any portion of the 3-D model of
techniques. o . the scene to ground referring expressions. We have not yet
Front end speech recognition is performed using @ HMMmplemented the procedures for controlling synthetic vision,
based decoder [44]. The single best word sequence is passqg|jiothe representational capacity for performing this kind of
a chart parser [45] which serves as the first step of a Semarl‘é'ﬁguage comprehension is in place.
composition procedure. The composition process is presentédithough this application of the mental model is too pre-
in detail in [46]. In brief, each lexical entry has a functiofiminary for formal performance analysis, three major sources
interface that specifies how it performs semantic compositiogy. processing errors are apparent, each suggesting a direction
Currently, the interface definition consists of the number ang, future work. First. the simplifying assumption of color-
arrangement of arguments the entry is willing to accepfased foreground / background separation in the low level
Semantic type mismatches are handled during compositigg,,a| analysis algorithms leads to significant problems with
rather than being enforced through the interface. Each enffy yision system. To address this, a more robust segmentation
can contain aemantic composehat encapsulates the acwabrocess based on contrast maps and depth imaging is being

function to combine this entry with other constituents d”””Eeveloped. Second, several parameters in the Objecter are

a parse. _ manually set (distance tuning weights, confidence decay rates,
The system is able to resolve the referent of utterances ng:.), leading to sub-optimal synchronization of the model

multiple modifiers. To achieve this, virtual objects consisting, the robot’s environment. Instead, these parameters can be
of one or more actual objects are internally generated duriggiomatically determined using machine learning techniques,
semantic composition. Consider the spoken command, “PigKce an annotated set of active vision data has been collected.
up the large green cup to the left of the blue plate”. To resolMgirq the speech recognizer occasionally produces errors.
the reference ofarge green cupthe innermost termeup is  There are several ways to improve robustness of speech
first bound to objects in the robot's environment based Q@.qgnition including the use of acoustic confidence scores
the visual shape models associated with the word. If multipjg reject poorly recognized words, and the integration of

cups are found, they are grouped into a virtual object. Thi$ieech processing with contextual knowledge derived from
virtual object is then composed with the representation giher sensors (see [47] for first steps in this direction).
green which will threshold and sort the contents of the virtual

object based on greenness, and pass along the new virtual
object tolarge. The landmark phradalue plateis processed in
the same way, resulting in a second virtual object. The spatialOur vision is to create interactive robots that can engage
phraseto the left ofis used to find the best pair of objectsjn cooperative tasks with humans mediated by fluid, natural
one drawn from each of the virtual objects. Finally, the bespoken conversation. To achieve this vision, the robots must
referent is passed as an argument to piekup SN, which have rich representations of the physical situations in which
actually executes the action and picks up the target objectthey are embedded. These representations must be coupled
The wordsmy, your, me andyouare given special treatmentto the robot’s physical senses so that they reflect reality, and
when adjacent to spatial terms, each triggering an approprigtevide appropriate interfaces for grounding natural language.
shift of visual perspective within Ripley's mental modéh (  Motivated by these needs, we have developed a method for
front of me to your left etc.). Subsequent spatial terms areonstructing and maintaining a physical model of a robot’s
evaluated in the shifted frame of reference. In this way, men&vironment based on active perceptual input. The mental
imagery provides the grounding for deictic and intrinsic spatiahodel provides a representational medium that is suitable for
language. grounding the semantics of referring expressions. The mental

VI. CONCLUSIONS
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model serves as the robot’s dynamically constructed “cached] J. M. Lammens, “A computational model of color perception and color
of the external world. Rather than tie the meaning of utterances naming,” Ph.D. dissertation, State University of New York, 1994.

to first-person perspective visual representations, the mental
model provides an abstracted representational layer to interfacg T. Regier and L. Carlson, “Grounding spatial language in perception:
with natural language semantics.

Understanding relativized spatial language is only one
numerous reasons for endowing Ripley with a mental model.
Consider, for example, how Ripley should generate referritif]
expressions to bring its human partner’s attention to an obj
Depending on the situation, objects in view for the robot may
be occluded from the human’s perspective. If a cup is sittin
behind an obstacle, say a box, that prevents the human frB?fH
seeing the cup, it would be ineffective for Ripley to refer to
the cup as justhe cup Instead, by taking into account the[17]
human’s viewpoint, Ripley can anticipate that the object will

not be in view and instead s#lye cup behind the boRipley’s

(18]

mental model enables this kind of situated language use.
Perhaps one of the most intuitive views of word meani
is the referential theory: words get their meaning due to their
correspondence to events, objects, properties, and relations in dissertation, Computer science division, EECS Department, University
the world. Although many other critical aspects of meani
. . . i 0
have been raised in the philosophy of language and mlnd,nI%é
referential aspect of words holds firm as a crucial part of any
complete theory of meaning. The approach we have prese

te
here enables Ripley to establish meaningful corresponderrhzcl(i|

between words and world, enabling a central aspect of situated

language understanding.

(22]

(23]
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