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Abstract—Speaking using unconstrained natural language is
an intuitive and flexible way for humans to interact with robots.
Understanding this kind of linguistic input is challenging because
diverse words and phrases must be mapped into structures that
the robot can understand, and elements in those structures must
be grounded in an uncertain environment. We present a system
that follows natural language directions by extracting a sequence
of spatial description clauses from the linguistic input and then
infers the most probable path through the environment given
only information about the environmental geometry and detected
visible objects. We use a probabilistic graphical model that
factors into three key components. The first component grounds
landmark phrases such as “the computers” in the perceptual
frame of the robot by exploiting co-occurrence statistics from
a database of tagged images such as Flickr. Second, a spatial
reasoning component judges how well spatial relations such as
“past the computers” describe a path. Finally, verb phrases
such as “turn right” are modeled according to the amount of
change in orientation in the path. Our system follows 60% of
the directions in our corpus to within 15 meters of the true
destination, significantly outperforming other approaches.

Index Terms—spatial language, direction understanding, route
instructions

I. INTRODUCTION

Natural language is an intuitive and flexible modality for
human-robot interaction. A robot designed to interact naturally
with humans must be able to understand instructions without
requiring the person to speak in any special way. Understand-
ing language from an untrained user is challenging because
we are not asking the human to adapt to the limitations of the
system, i.e., to limit their instructions to a small vocabulary
or grammar. Rather, we want a system that understands
naturalistic language directly as produced by people.

Our work is directed toward understanding naturalistic lan-
guage as part of a larger multi-university effort to develop
autonomous robot teammates that collaborate naturally and
effectively with humans in a civilian response after a mass
casualty event. Two types of robots take part in the scenario:
quadrotor helicopters and the Mobile Dexterous Social robot
(MDS), an expressive, mobile humanoid (Figure 1(a)). In the
first-responder scenario, robots will need to interact with both
trained and untrained humans to aid the rescue effort. For
example, a robot might engage in the following dialog when
it finds a human victim:
• Robot Someone is on the way to get you out of here.

Are there any other people around who need help?
• Victim I saw someone in the main lobby.
• Robot Where is the main lobby?

*The first two authors contributed equally to this paper.

(a) humanoid (b) helicopter
Fig. 1. Robot platforms

With your back to the windows, walk straight through the door
near the elevators. Continue to walk straight, going through one
door until you come to an intersection just past a white board.
Turn left, turn right, and enter the second door on your right (sign
says “Administrative Assistant”).

Fig. 2. A typical set of directions from the corpus described in Section III.

• Person Exit this room and turn right. Go down the
hallway past the elevators. The lobby is straight ahead.

• Robot Understood.
In such scenarios, language has a strong advantage over

other interaction modalities because humans do not need
special training to interact with the robot, and can keep their
hands and eyes free for other tasks. However building robust
language understanding systems that can actually engage in
dialog in realistic situations remains a challenging problem.
The management of this interaction requires at least four
abilities: speech recognition, dialogue management, state es-
timation (e.g. parsing and grounding of the symbols in the
percepts of the robot) and planning, any one of which could
fail.

We are taking steps towards building a robust natural
language system by focusing on understanding a subset of
the tasks in the first-responder scenario, that of direction
understanding (see Figure 2). We focus on direction un-
derstanding for several reasons. First, following directions
requires the ability to understand spatial language. Because
spatial language is pervasive, this ability is important for
almost any application of natural language to robotics. Second,
a system that understands directions is useful in many other
scenarios, including health care and companion robots. Third,
it is natural to ask humans to create a set of directions through
an environment, yielding an open-ended yet task-constrained
corpus of language. Finally, there is a natural correctness
metric when evaluating a robot’s performance at following
natural language directions: did it reach the correct final desti-
nation? The availability of a corpus and a concrete correctness
metric enable an offline component-based evaluation of our



system, which is critical for achieving robustness, because we
can quickly test new models on linguistic input from many
different users.

Given the scenario of direction understanding, our goal
is to create a system that will take as input a direction,
as in Figure 2, and infer the intended path through the
environment. We do this by extracting shallow linguistic
structure from the directions, grounding elements from that
structure in the environment, and performing inference to find
the most probable path through the environment given the
directions and observations. The text of the directions is first
parsed to a sequence of spatial description clauses (SDCs).
Our system then takes the sequence of SDCs, a partial or
complete semantic map of the environment, and a starting
location, and it outputs a sequence of waypoints through
the environment, ending at the destination. Planning a path
is formulated as finding the maximum probability sequence
of locations in a map. This inference uses a probabilistic
graphical model that is factored into three key components.
The first component grounds novel noun phrases such as
“the computers” in the perceptual frame of the robot by
exploiting object co-occurrence statistics between unknown
noun phrases and known perceptual features. These statistics
are learned from a large database of tagged images such as
Flickr. Second, a spatial reasoning component judges how well
spatial relations such as “past the computers” describe a path.
Third, verb phrases such as “turn right” are modeled according
to the amount of change in orientation in the path. Once
trained, our model requires only a grid-map of the environment
together with the locations of detected objects in order to
follow directions through it. This map can be given a priori
or created on the fly as the robot explores the environment.

At this stage of our work, we are focusing more on the
technical feasibility of our approach at the specific subtask
of direction giving, rather than on the overall usability of
a fully-functional natural language interface. To evaluate the
technical feasibility, we collected a corpus of 150 natural
language route instructions from fifteen people, through one
floor of two adjoining office buildings. An example set of
directions from the corpus is shown in Figure 2. Following
these directions is challenging because they consist of natural
language constrained only by the task and as a result may use
any of the complicated linguistic structures associated with
free-form natural language. The highest performing model
searches the entire semantic map to successfully follow 60%
of the directions in our corpus, significantly outperforming a
baseline that uses only landmark phrases in the directions. We
also tested our approach with an exploration-based algorithm
that does not have a map of the environment a priori, showing
that spatial relations improve performance in unknown envi-
ronments.

II. RELATED WORK

Many authors have proposed formalisms similar to spatial
description clauses for enabling systems to reason about the se-
mantics of natural language directions. For example, Bugmann
et al. [1] identified a set of 15 primitive procedures associated
with clauses in a corpus of spoken natural language directions.
Our work follows their methodology of corpus-based robotics
but focuses on achieving robust understanding of natural

language directions rather than an end-to-end system. Levit
and Roy [2] designed navigational informational units that
break down instructions into components. MacMahon et al. [3]
represented a clause in a set of directions as a compound action
consisting of a simple action (move, turn, verify, and declare-
goal), plus a set of pre- and post-conditions. Our local search
algorithm most closely corresponds to this system. Look et al.
[4] created an ontology for modeling the relationships between
spaces, and used it for generating natural language directions.
Many of these representations are more expressive than SDCs
but are more difficult to automatically extract from text; many
authors sidestep this problem by using human annotations
(e.g., [2, 3]).

Others have created language understanding systems that
follow natural language commands, but without using a
corpus-based evaluation to enable untrained users to interact
with the system (e.g., [5, 6]). Bauer et al. [7] built a robot that
can find its way through an urban environment by interacting
with pedestrians using a touch screen and gesture recognition
system.

The structure of the spatial description clause builds on the
work of Landau and Jackendoff [8], and Talmy [9], providing
a computational instantiation of their formalisms. We are
currently drawing from Levin [10] to develop a richer model
of verbs, including ditransitive verbs such as “bring.” Many of
the features used to model the semantics of spatial prepositions
are directly inspired from their work. Building on the paradigm
of testing the semantics of spatial prepositions against human
judgments [11, 12], this work applies the models to under-
standing natural language directions in realistic environments.

In previous work, we have built direction understanding
systems that model the directions as a sequence of land-
marks [13]. This work builds on the previous system by
introducing the SDC formalism and adding models for spatial
relations and verbs, enabling system to more completely model
the natural language, while still exploiting the structure of
landmarks in the map to follow the directions.

III. NATURAL LANGUAGE DIRECTIONS

To understand the language used to give directions, and to
evaluate the technical feasibility of our system, we collected
a corpus of natural language directions through an office
environment in two adjoining buildings at MIT. Our goal in
collecting this corpus was to evaluate the accuracy of our
system at following natural language directions rather than to
perform an end-to-end usability evaluation. We asked fifteen
subjects to write directions between 10 different starting and
ending locations, for a total of 150 directions. Subjects were
solicited by placing flyers around MIT and were selected for
inclusion in the study if they were between the ages of 18 and
30 years old, were proficient in English, and were unfamiliar
with the test environment. The pool was made up of 47%
female and 53% male subjects from the MIT community,
primarily students or administrators.

When collecting directions, we first gave subjects a tour of
the building to familiarize them with the environment. Then
we asked subjects to write down directions from one location
in the space to another, as if they were directing a friend.
Subjects were allowed to wander around the floor as they
wrote the directions and were not told that this data was for
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Fig. 3. Histogram showing the most frequent words that appear in each of the fields of an SDC from our corpus. For Figures and Landmarks, similar phrases
have been grouped together.

a robotics research experiment. Experimenters did not refer to
any of the areas by name, instead using codes labeled on a
map. After writing these directions, the subjects were asked
to follow a different set of directions that another subject had
created, in order to understand if there were certain people
who were better or worse at giving point-to-point directions.
The experimenter would read the directions to the subject and
follow the subject as the subject followed directions. When
the subject became lost, they were asked to report this and
the trial was concluded. Subjects successfully followed 85%
of the directions in the corpus used in our evaluation. 100%
of the directions of the best direction giver were successfully
followed, while only 30% of the directions from the worst
direction giver could be followed.

In order to enable an offline evaluation, our corpus included
a log of a robot’s observations of the environment. To collect
the dataset, we used a mobile robot instrumented with a
LIDAR and camera. The log thus contains odometry, laser
scans, and camera images. The laser scans and odometry were
used by a SLAM module in order to create a map as the robot
explores the environment [14], while the camera was used
to detect baseline objects in order to create a semantic map.
The log enables us to test our models at following directions
from the corpus offline, without the overhead of deploying a
physical robot in a user study.

IV. SPATIAL DESCRIPTION CLAUSES

In order to follow the directions in our corpus, the system
exploits the structure of the language in the directions. First,
directions are sequential: in most cases each phrase in the
directions refers to the next region in the environment on
the way to the final destination. Second, directions contain
references to landmarks that the person is meant to see along
the path to the destination region. Next, spatial relations
such as “past” and “through” describe how a person should
move relative to these landmarks. Finally, directions contain
imperative verbs which tell a person what to do and where
to go. The hierarchical structure of language relates all these
components together.

We formalized this structure by modeling each sentence
in a set of directions as a hierarchy of structured clauses.
Each spatial description clause (SDC) consists of a figure
(the subject of the sentence), a verb (an action to take), a
landmark (an object in the environment), and a spatial relation
(a geometric relation between the landmark and the figure).
Any of these fields can be unlexicalized and therefore only
specified implicitly. For example, in the sentence “Go down
the hallway,” the figure is an implicit “you,” the verb is
“go,” the spatial relation is “down” and the landmark is “the

hallway.” SDCs are also hierarchical. For the sentence “Go
through the set of double doors by the red couches,” the top
level SDC has a verb, “go,” a spatial relation, “through,” and
a landmark, “the set of double doors by the red couches,”
while the landmark contains a nested SDC with figure “the
set of double doors,” spatial relation “by” and landmark “the
red couches.” Figure 4(a) shows the hierarchy of SDCs for a
sentence in our corpus.

We hand-annotated the text of 150 directions in our corpus
with the SDCs in order to verify that SDCs are capable
of capturing the linguistically expressed structure of the di-
rections. Nearly all of the sentences in the dataset can be
parsed into SDCs that correctly preserve the semantics of each
word in the sentence, with very few (7.29%) orphaned words,
virtually all stop words. Figure 3 shows the top ten words that
appeared in each field of an SDC in our corpus. Some types of
sentences could not be parsed into the SDC formalism, such
as commands not to do something, multi-argument verbs, and
ambiguous prepositional phrase attachment (e.g., “Follow the
wall to the small kitchen”). These limitations of SDCs could be
addressed with a more complex framework. However, SDCs
capture important parts of the semantics of route instructions
in our corpus, and they are efficient to extract and use in
inference.

V. SYSTEM

Our system uses SDCs to follow natural language directions
by finding a path that maximizes the joint distribution of paths
and SDCs, given detected objects. In order to implement this
model, we must automatically extract SDCs from the text, and
then ground each of the parts of the SDC in the environment.

A. Automatically Extracting Spatial Description Clauses
We designed SDCs to capture the hierarchical structure of

directions since this structure seems important when grounding
landmarks. However, to make our model tractable, we approx-
imated the hierarchical structure of SDCs as a sequence. A
conditional random field (CRF) model automatically extracts
SDCs from text [15]. The CRF labels each word in each
sentence with one of the four possible fields (figure, verb,
spatial relation and landmark), or none. (The CRF was trained
on a different corpus of route instructions from the one used
in our evaluation.) A greedy algorithm groups continuous
chunks together into SDCs. Figure 4(b) shows the SDCs
generated by this component for one sentence. Although it
lacks the hierarchical structure of the annotated data (as in
Figure 4(a)), the SDCs capture the sequential structure of
the directions, and segments the key components of each
phrase. Quantitatively, 60% of the SDCs produced by the
CRF correspond exactly to an SDC in the hand-annotated
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Fig. 4. Ground-truth and automatically extracted SDCs for the sentence,
“Continue to walk straight, going through one door until you come to an
intersection just past a white board.” Here, S is the entire sentence, SDC is
a spatial description clause, F is the figure, V is the verb, SR is the spatial
relation, and L is a landmark.

ground truth created by one of the authors. To measure inter-
annotator agreement, a second person annotated the SDCs in
our corpus, and also had 60% agreement with one of the
authors. When the automatic algorithm makes a mistake, it is
usually a boundary problem, for example including the spatial
relation and landmark, but excluding the verb. In these cases,
the annotations still contain structured information that can be
used to follow the directions.

B. Topological Map

Rather than searching all possible paths through the en-
vironment, the system first creates a topological roadmap
from the gridmap of the environment and searches for a path
within this graph. The roadmap is created by automatically
segmenting spaces based on visibility and detected objects
and then extracting a topology of the environment from this
segmentation, building on techniques described by Brunskill
et al. [16]. Figure 5 shows a floorplan of the environment
used in our corpus, together with the nodes and edges in
this roadmap. Each starred location in Figure 5 contains four
viewpoints vi facing in each of the four cardinal directions.

C. Model

We formulate the problem of understanding natural lan-
guage directions as inferring a sequence of viewpoints given
a set of natural language directions. When P is the path, S is
the sequence of the SDCs, and O are the detected objects, we
want to compute:

Fig. 5. A map of the environment used to collect our corpus of natural
language directions, together with the automatically extracted roadmap. Each
star is a node in the topological map. (Distances are in meters.)

arg max
P
p(P, S|O) = p(S|P,O)× p(P |O) (1)

We model paths as transitions between viewpoints in the
environment vi, and the directions as a list of SDCs. We also
assume the path is independent of the detected objects, leading
to:

p(P, S|O) ≈ p(sdc1 . . . sdcM |v1 . . .vM+1, O)× p(v1 . . . vM+1)

We can factor this distribution into a component for the
path and a component for the observed SDCs. In particular,
we assume that an SDC depends only on the current transition
vi, vi+1, and that the next viewpoint vi+1 depends only
on previous viewpoints. These two assumptions lead to the
following factorization:

p(P, S|O) =

[
M∏
i=1

p(sdci|vi, vi+1, O)

]
×[

M∏
i=1

p(vi+1|vi . . . v1)

]
× p(v1) (2)

The most important part of our model is the observation
probability, p(sdci|vi, vi+1, O). To compute this probability,
we break down the SDC into its component parts: the figure, f ,
the verb or action, a, the spatial relation, s, and the landmark,
l. Given that vi is the ith viewpoint and ok is the ith detected
object, we can obtain the following distribution:

p(sdci|vi, vi+1, O) = p(fi, ai, si, li, |vi, vi+1, O) (3)
≈ p(fi|vi, vi+1, o1 . . . oK)× p(ai|vi, vi+1)×
p(si|li, vi, vi+1, o1 . . . oK)× p(li|vi, vi+1, o1 . . . oK)

At this point, we have factored the distribution into four
parts, corresponding to each field of the SDC, plus transition
probabilities. We model the transition probabilities in the
second term of equation 2 as uniform among connected
viewpoints in the topological map, together with a constraint
that disallows backtracking. This constraint means that the
path is not allowed to revisit any location that it has previously
visited. The following sections describe the other terms.

D. Grounding the verb field
The verb/action field models verbs in one of three ways:

“turn left,” “turn right,” and “go straight.” The type of the
verb is computed based on keywords in the verb field of the



Fig. 6. Transitions for “straight,” in four different orientations. The thickness
of the line corresponds to the probability of the transition. There is a high
probability of transition to viewpoints directly in front of the current location,
and a lower probability of transition to viewpoints to one side or the other.

SDC; the default type is “straight.” The probability of the
verb is computed according to the total amount of change
in orientation required to travel between two viewpoints:

p(ai|vi, vi+1) ≈ max(1− C

π
[turn(vi, vi+1)− θ], 0) (4)

We assume natural robot motion: in order to move from one
viewpoint to another the robot must first turn to the destination,
drive there, and then turn to its final orientation. The total turn
amount corresponds to how much the robot must turn in order
to achieve this. For “left,” θ is 90◦; for “right” it is −90◦
while C is 2.5. For “straight,” θ is 0 and C is 1.75. θ sets the
desired orientation changed associated with the verb, while
C sets how much this error penalizes the transition. Figure 6
shows a visualization of these values. In the future we plan to
expand our model of verbs to distinguish between directives
to move, directives to change orientation, and descriptions of
expected landmarks in the environment.

E. Grounding the figure and landmark fields
The system models the likelihood of the landmarks in an

SDC given a viewpoint transition and detected objects. This
problem is challenging because people refer to a wide variety
of objects in natural language directions, and use diverse ex-
pressions to describe them. In our corpus people utilized more
than 150 types of objects as landmarks, ranging from “the
door near the elevators” to “a beautiful view of the domes.”
(Figure 3 shows the most frequent landmarks.) To ground
landmark phrases, the system takes a semantic map seeded
with the locations of 21 types of known objects, and uses
object-object context to predict the locations of the unknown
landmark terms, following Kollar and Roy [17]. Object-object
context allows the system to predict that a computer is nearby
if it can directly detect a monitor and a keyboard.

To predict where a novel landmark may occur, we down-
loaded over a million images, along with their associated
labels. We used the photo-sharing website Flickr to accomplish
this, although any dataset where the images and co-occurrence
counts were available could have been used. Using the co-
occurrence counts we computed the probability of seeing a
novel landmark li given the detected objects ok:

p(li|vi, vi+1, o1 . . . oK) = p(li|visible objects(vi)) (5)
≈ max

ok∈visible objects(vi)
p(li|ok) (6)

We use the maximization heuristic as a way to smooth
the distribution because detecting additional landmarks in
the environment usually only increases the probability of
seeing the landmark phrase from the directions. For example,
p(kitchen|microwave, toaster) should always be larger than

Fig. 7. When treating the spatial relation probability as a classifier, above is
the performance on the corpus of examples drawn for a particular path. On
the horizontal axis of the ROC curve is the false positive rate (FP) and on
the vertical axis is the true positive rate (TP).

p(kitchen|microwave). This heuristic tries to pick the subset of
visible objects that minimizes the entropy of the distribution.
When there is a noun phrase in the figure field besides “you,”
we model it in the same way as the landmark field.

F. Grounding Spatial Relations

To use spatial relations to follow directions in our model,
we need to compute how well a phrase such as “past the
door” describes a particular path segment, [vi, vi+1]. Here
we focus on dynamic spatial prepositions that describe the
properties of a path, as opposed to static spatial prepositions
that localize an object, since almost all of the most frequent
spatial prepositions in our corpus describe a path (Figure 3).
We conceive of spatial relations as two-argument functions that
take a figure and a landmark. For dynamic spatial prepositions,
the figure is a path, represented as a sequence of points, and
the landmark is a point or a polygon. We want to compute
the following, where si is ith spatial relation, li is the ith
landmark, and ok are the detected objects, which consist of a
location and a bounding polygon.

p(si = past|li = door, vi, vi+1, o1 . . . oK) =∑
ok

p(si = past|landmark = ok, path = vi, vi+1)×

p(li = door|visible objects(ok)) (7)

We sum over all possible landmark locations because the
system does not know which physical door is referred to by
the phrase “the door.” This marginalization causes the system
to prefer paths that pass many doors to those that pass only a
few. By taking the path that goes past many doors, the system
is more likely to pass the one referred to in the directions.

To model the first term in equation 7, we introduce features
that capture the semantics of spatial prepositions. These fea-
tures are functions of the geometry of the path and landmark.
For example, one of the features utilized for the spatial
preposition “to” is the distance between the end of the path
and the landmark’s location. We used Naive Bayes to model
the distribution p(si = past|landmark = oi, path = vi, vi+1).
Features are described in detail in Tellex and Roy [18].

To integrate these features into our model, our system
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learns the distribution in equation 7 from a dataset created
by hand-drawing examples of paths that matched a natural
language description such as “through the door.” In this data
set, positive examples of one spatial relation were taken to be
negative examples of others. Some pairs of spatial relations,
such as “to” and “towards,” which are very similar, were
excluded from each other’s training sets. This dataset was
collected from a different training environment and generalizes
across environments. If we treat the resulting distribution as a
classifier for a particular spatial relation, then the performance
on a held-out test set from this corpus is shown in Figure 7.
Some of the highest and lowest scoring examples are shown in
Figure 8. We trained classifiers for eleven spatial prepositions:
“across”, “along,” “through,” “past,” “around,” “to,” “out,”
“towards,” “down,”, “away from,” and “until.” (“Until” is not
a spatial relation in general, but we modeled it as one here
because it almost always refers to an arrival event in our
corpus, as in “until you come to an intersection just past a
whiteboard.”)

G. Performing Inference
Once the model is trained, our system can infer paths

through any environment. If the robot has explored the entire
area a priori and has access to a map of the environment,
global inference searches through all possible paths to find the
global maximum of the joint distribution. When a full map is
unavailable, the robot uses a greedy local inference algorithm
that searches for paths using only local information. We per-
form global inference using a Viterbi-style algorithm [19] that
finds the most probable sequence of viewpoints corresponding
to a given sequence of SDCs. The algorithm takes as input
a starting viewpoint, a map of the environment with some
labeled objects, and the sequence of SDCs extracted from
the directions. It outputs a series of viewpoints through the
environment, using the model described above to compute the
probability of a transition between two viewpoints.

The local inference algorithm iterates over the SDCs and
at each step chooses the next viewpoint vi+1 that maximizes
p(sdci|vi+1, vi, o1 . . . oK) ∗ p(sdci+1|vi+1, vi+2, o1 . . . oK) ∗
p(vi+1|vi) ∗ p(vi+2|vi+1). In other words, it looks ahead
two SDCS, and chooses the best transition from among the
children and grandchildren of the current node. We expect
global inference to perform better because it searches through
all possible paths to find the one that best matches the
descriptions. However, the local inference is more practical
for a real robot, because it does not require the robot to have
built a complete map of the environment and objects in it
before following directions.

TABLE I
THE PERFORMANCE OF OUR MODELS AT 10 METERS.

% correct
Algorithm Max Prob Best Path

Global inference w/spatial relations 48.0% 59.3%
Global inference w/o spatial relations 48.0% 54.7%
Local inference w/ spatial relations 28.0% 42.0%
Local inference w/o spatial relations 26.7% 30.7%
Wei et al. [13] 34.0% 34.0%
Last SDC only 23.0% 24.0%
Random 0.0% –

VI. EVALUATION

To evaluate the technical feasibility of our approach, we
performed a component-level evaluation of our system, mea-
suring its performance at following natural language directions
from our corpus. For each set of directions, the system
tried all four possible starting orientations. We chose two
evaluation metrics. For the maximum probability metric, only
the highest probability path from the four starting orientations
is evaluated. In the best-path metric, only the path that ended
up closest to the true destination is evaluated. We chose the
latter metric because the true starting orientation of the subject
at the beginning of each set of directions was difficult to
automatically determine. Figure 9 shows a comparison of our
model to three baselines: on the horizontal axis is the distance
from the final location of the inferred path to the correct
destination, on the vertical axis is the percentage correct at
that distance. Performance differences at 10 meters are shown
in Table I. We present performance at a threshold qualitatively
close to the final destination in order to compare to human
performance on this dataset, which is 85%.

The first baseline (Random) is the expected distance be-
tween the true destination and a randomly selected viewpoint.
The second (Last SDC) returns the location that best matches
the last SDC in the directions. The third baseline (Landmarks
Only) corresponds to the method described by Wei et al. [13],
which performs global inference using landmarks visible from
any orientation in a region, and no spatial relations or verbs.
Our global inference model significantly outperforms these
baselines, while the local inference model slightly outperforms
Wei et al. [13] despite not performing global search.

We were especially interested in the performance of our
model with and without spatial relations, since they are
a key difference between our model and previous work.
Figure 10 shows the performance of these models for all
subjects, while Figure 11 shows the performance for the



Fig. 9. Comparison of our model to baselines. Versions of our model are
shown in red; baselines are in blue.

subject whose directions had the highest performance with
the global inference algorithm with spatial relations. Spatial
relations do not contribute much to the performance of the
global inference algorithm, but do increase the performance
of the local inference algorithm. For one of our subjects, they
raise the performance of the local search algorithm into the
range of the global inference algorithms. Possibly this effect
is because when deciding to go through a particular door,
the global inference algorithm searches on the other side of
that door, and if landmarks farther along in the sequence
of SDCs match that path, then it will go through the door
anyway. In contrast, the local search approach benefits more
from spatial relations because it cannot see the other side of
the door, so relying on the geometric features of the path
helps to disambiguate where it should go. Figure 12(a) and
Figure 12(b) show the paths inferred by the two models for
the set of directions from Figure 2. Without spatial relations,
the model is content to stay in the first room, from which
it can see objects, such as a whiteboard and a door, that
occur in the directions. In contrast, the model that uses spatial-
relations goes through the first door when told to “walk straight
through the door near the elevators” and ends up at the correct
final destination. This result suggests that the role of spatial
relations in natural language directions is to help the direction
follower disambiguate these local decisions, so that they do
not have to perform a full search of the environment in order
to follow the directions.

The most significant improvement in performance over the
system corresponding to Wei et al. [13] comes from the
model of verbs with viewpoints as described in Section V-D,
suggesting that the combination of verbs and landmarks is
critical for understanding natural language directions. We were
surprised that a relatively simple model of verbs, involving
only left, right, and straight, caused such a large improvement
compared to the effect of spatial relations.

VII. CONCLUSION

In this work, we have presented a system that understands
task-constrained natural language. Although the results we
have shown are promising, they are not yet definitive. Because
of parser failures, access to only 21 known object types, and
few distinguishing features at some destinations, we expect the
system’s performance to be below that of humans. In doing

Fig. 10. Comparison of global inference algorithm with local inference, with
and without spatial relations, using the best-path metric.

Fig. 11. Comparison of the global inference algorithm with the greedy
approach, with and without spatial relations for directions from one of the
best-performing subjects, using the best-path evaluation metric.

(a) Without spatial relations.

(b) With spatial relations.

Fig. 12. Paths outputted by the local inference system with and without
spatial relations. The path without spatial relations is extremely short and
completely incorrect.



a failure analysis, many directions could not be followed be-
cause they used landmarks which the system failed to resolve.
For example, subjects often referred to places where the carpet
changed color. Incorporating models of color adjectives might
address some of these problems. Also, our model of spatial
relations sees landmarks only as points. As a result, sentences
like “Go down the hallway” probably did not add much
information to the inference because the system does not know
the actual geometry of the hallway. Modeling the expected size
of a landmark phrase could address this issue. Although local
inference is important for understanding directions in new
environments, our local inference algorithm did not perform as
well as global inference. To fix this problem, we are develop-
ing algorithms that explore the environment, build a semantic
map on the fly, and backtrack to try another route if an error
is detected. Our model already achieves a significant fraction
of human performance, and by exploiting more linguistic
information from the directions and contextual information
from other large corpora, we hope to make our system even
more robust. We have shown the technical feasibility of our
approach; in the future we intend to show that it generalizes
to other environments and evaluate its usability as part of a
complete natural language understanding system.1

Robustly following natural language directions is only part
of a complete natural language interface. A complete system
requires the ability to understand many more commands in
different scenarios, the ability to engage in dialogue with
people, and, for many applications, speech recognition. While
many are focusing on the latter two aspects, we are currently
investigating a richer model that will allow us to understand
natural language queries in more general scenarios, such as
“Is Daniela in her office?” or “Wait for John at the elevators.
When he arrives, bring him here.” Our approach is to develop
a corpus of commands that people use in natural situations,
find models for the meanings of the most relevant words,
then formulate a probabilistic model to compose the meanings
together to infer a plan for the robot.

In this work, we have demonstrated an approach to enable
a robot to infer a plan from natural language directions.
We developed spatial description clauses, a formalism that
captures the semantics of natural language directions. Our
system automatically extracts SDCs from natural language
input and uses them to find a path through the environ-
ment corresponding to the directions. In order to connect
SDCs to the environment, our system builds a semantic map,
that contains some detected landmarks, and then utilizes co-
occurrence statistics from Flickr to predict the locations of
objects referred to in the directions. It uses models of the
meanings of spatial prepositions to understand spatial relations
that appear in directions. A probabilistic model connects these
pieces together, finding the path through the environment that
maximizes the probability of the directions. Our system takes
as input free-form natural language directions and infers paths
through real environments.
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