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ABSTRACT

We present a trainable, visually-grounded, spoken language
understanding system. The system acquires a grammar and vo-
cabulary from a “show-and-tell” procedure in which visual scenes
are paired with verbal descriptions. The system is embodied in a
table-top mounted active vision platform. During training, a set
of objects is placed in front of the vision system. Using a laser
pointer, the system points to objects in random sequence, prompt-
ing a human teacher to provide spoken descriptions of the selected
objects. The descriptions are transcribed and used to automati-
cally acquire a visually-grounded vocabulary and grammar. Once
trained, a person can interact with the system by verbally describ-
ing objects placed in front of the system. The system recognizes
and robustly parses the speech and points, in real-time, to the ob-

ject which best fits the visual semantics of the spoken description. _ . o )
Fig. 1. In response to a spoken object description, Newt (right part

of photo) points its laser at the best matching object (path of laser
1. INTRODUCTION indicated with a dashed line).

A central problem in the design of speech and text understand-
ing systems is the representation of the meaning of words and
sequences of words. We are investigating applications in which
spoken language is used to refer to objects in physical environ-
ments. These applications highlight the importance of designingthe
semantic representations that bridge the linguistic world of sym-
bolic structures and the continuous, non-symbolic world of visual
observations. Emerging application domains that require visually-

grounded language understanding include verbal ComrT]lm'c"’lt'or\‘erring phrases. Additionally, the synthetic visual input used in

with robots and video retrieval by natural language (cf. [1, 2, 3]). DESCRIBER has been replaced by a real-time color visual system

We describe a visually-grounded spoken language understandl-n Newt

ing system named Newt. Newt processes spoken referring expres-" .0 paper proceeds by first describing Newt's visual and speech

fr']c;n; sur(c)h r?af’[eToht?e%:eiinaa\E)iFs):fa‘I[OS(t:Z?]LEﬂNoefvf/rt]?sC:r?]b?)gide:jofr?t;r?processmg sub-systems, and then its language acquisition and un-
pprop : : derstanding components.

active vision system mounted on a two degree-of-freedom pan-

tilt base (Figure 1). The vision system includes two color video

cameras. The system reported here, however, uses only monocu- 2. VISUAL SYSTEM

lar vision. A small laser mounted between the cameras is used to

point to objects on a table top in response to spoken utterances. Newt's visual system tracks solid-colored objects placed on a ta-
This investigation builds on previous work in which we de- ble top in real-time. The system extracts object properties and

veloped a trainable speeghneration system called DESCRIBER  inter-object spatial relationships which are passed to the language

[4]. For DESCRIBER, training input consists of a set of syn- processing system.

thetically generated scenes of rectangles of varying shape, color,

;ize, a_nd_ location paired with spoken descriptions of target ob-5 4 Object Tracking

jects within the scenes. DESCRIBER learns a three-level visually-

grounded language model based on this input. The trained systenWe model the color distribution of objects using mixtures of Gaus-

generates syntactically correct, semantically accurate, and consian distributions. Although all objects are constrained to be single-

textually appropriate referring expressing of objects in synthetic colored, shadow effects of three-dimensional objects necessitate

scenes. A typical utterance produced by DESCRIBER is “the
bright red square to the right of the large rectangle”.

The goal of the work reported in this paper was to ‘invert’
processes in DESCRIBER, resulting in a speech understand-
ing system for a related but more difficult task. Instead of gener-
ating referring phrases of selected objects, we are now interested
in finding objects which match the meaning of novel spoken re-



the use of a mixture of Gaussian distributions. The distance between two object shapes is estimated by computing
For each object used in the experiments, a color model is cre-the x* divergence between the objects’ shape histograms.

ated by collecting training images of each object and manually  an additional set of four shape related features is computed
specifying the region within each image that corresponds to thepased on the bounding box of each object. These parameters are:
object. The Expectation Maximization (EM) algorithm is used to pejght, width, height-to-width ratio, and area.
estimate both the mixture weights and the underlying Gaussian
parameters for each object. K-means clustering is used to provide
initial estimates of the parameters.
2.3. Inter-object Spatial Relations

Local edge detection
To enable the system to ground the semantics of spatial terms such
as “above” and “to the left of”, a set of spatial relations similar to

Input Image Object tracker output [7] is measured between each pair of objects. The first feature is
the angle (relative to the horizon) of the line connecting the cen-

Eﬁ:‘ ters of area of an object pair. The second feature is the shortest

! distance between the edges of the objects. The third spatial fea-

\ \ / ! ture measures the angle of the line which connects the two most
proximal points of the objects.
. In summary, the vision system provides real-time tracking of

multiple objects at approximately 15 frames per second. For each
Color model matching frame, the system determines the number of objects in the scene, a
set of object properties and spatial relations.
Fig. 2. Object detection combines local edge finding with color-
based figure-ground separation.

As shown in Figure 2, input images are split into two parallel 3. SPEECH RECOGNITION

processing paths. The first process performs local edge detection
in each of the RGB color planes. The outputs from the edge detec-We have significantly extended our continuous speech recognition
tors of all three planes are summed to provide an overall estimatesystem [8] to support processing of interactive spoken language.
of local edges. This image is thresholded, resulting in a binary im- The recognizer performs real-time medium vocabulary (up to 1000
age in which pixels located at edges are set to 0. We refer to thisword) recognition. We chose to develop our own recognizer in
image as the edge mask. In the second process, each 5x5 patch afticipation of non-standard decoder features which will be nec-
pixels is classified as belonging either to one of the known set of €ssary to support rich integration with visual processing. The cur-
objects or to the background. This is done by evaluating each colorrent system uses a 24-band Mel cepstra representation of acoustics.
model (described above) for each pixel patch and thresholding theSubword units consist of triphone modeled by continuous density,
resulting values. Patches which have high matches with any colorthree state, Hidden Markov Models. A back-off trigram language
model are set to 1 and the remainder are classified as 0. The lowemodel is trained from a mixture of domain specific and domain
middle image in Figure 2 shows the result of this stage. We refer general speech transcriptions. Speech decoding is accomplished
to this as the object mask. using a time-synchronous Viterbi beam search. A tree-based lex-
A final step merges the information from the two processes icon network represented by a finite state transducer constitutes
by performing a pixel-wise multiplication of the edge and object the search space in our implementation. The finite state transducer
masks. A contour finding algorithm [5] identifies connected re- incorporates language model parameters dynamically.
gions in the resulting binary image. The integration of edge masks  In the standard MAP decoding approach, the recognizer out-
and color based object masks deals effectively with partial occlu- puts a string of words corresponding to the most likely state se-
sions of different colored objects. In Figure 2, four objects are quence. Relying on a single word recognition hypothesis, how-
identified and assigned unique indices. ever, leads to brittle behaviour since recognition errors are inevitable.
To gain robustness in our system, acoustic ambiguities are com-
pactly represented using a reduced word lattice structure based on
the methods reported in [9]. The word lattice incorporates poste-
Once object contours are determined, object properties are ex+tior probabilities based on acoustic and language model parame-
tracted and passed to the language acquisition / understanding sysers. The lattice possesses the topology of a directed acyclic graph
tem. The features extracted include object color, shape, center othat is represented as a weighted Non-deterministic Finite State
area coordinates and bounding box parameters. Acceptor (NFSA). The NFSA is determinized and minimized to
The color of an object is represented by the mean of 10x10 yield a compact posterior word graph representing the set of can-
pixels centered on the object. The shape of an object is representedidate hypotheses. Such a word graph represents edge weighted
by a visual distance metric first proposed in [6]. For each pair-wise word level confusions in a compact sequential format. Ambiguous
pixel on the edge of an objedt, j), the Euclidean distancg; is representations are preferred since they retain multiple hypotheses
computed and normalized by the mean distance between all pairsvhich are better resolved in later stages of processing. Currently,
of edge points. A one-dimensional histogrdiis accumulated Newt only uses the best hypothesis, but we plan in the near future
for all such pair-wise edge pixel combinations. The inter-pixel to consider multiple parses within the word lattice, constrained by
distances are divided into 8 bins, i.€1, is composed of 8 bins.  semantic possibilities encoded by the visual system.

2.2. Object Properties



4. LANGUAGE ACQUISITION FROM SHOW-AND-TELL
KL(w) — KL, ()

Newt learns visually grounded language by a ‘show-and-tell’ pro- KL(w) — KL
cedure. During training sessions, Newt randomly points (using s(w) = .
its laser pointer) to one of the objects in its view and waits for -
the trainer to speak. Newt then forwards the features extracted by KL(w) — KLz

the visual system and the utterance detected by the speech réCO4yhere K L+ is the Kullback-Leibler distance computed after re-
nizer as a training example to its language acquisition system, andyoying featurei from the Gaussian. This profile measures how
proceeds to point to another object on the table. The language acpch each feature contributes to the overall grounding strength of

quisition system is distributed amongst a large number of separatgne word. The grounded distance is then calculated as
processes, each responsible for a different aspect of learning to

robustly parse visually-grounded language. The system includes
T
w-procs - word processes, that each attach to a single unique word d(s(wi), s(w;)) = (s(wi)/|s(wi)])" (s(w;)/|s(w;)])

and estimate context-free visual semantics for this word, which measures the degree of overlap between the feature of two
c-procs - cluster processes, that measure similarities between thewords. If the similarity is greater than a threshold, the two c-procs

w-procs and encapsulate the output of similar w-procs to combine into one, relinking all w-procs associated with either to

make them appear to originate from a single process, feed into the new c-proc. For a c-proc with multiple associated

g-procs - grammar processes, that combine the outputs of severaword groundings, all combinations of similarities between words
other processes covering adjacent parts of an utterance usare calculated and averaged to give a consensus similarity. In ef-
ing a set of possible combination functions, and an fect, c-procs funnel the activations of multiple similar w-procs to

a-proc - an action process, that listens to all other process ac- make them look identical in origin to higher level processes.

tivations occurring for a given utterance and rewards cor- _
rect outputs or acts according to the outputs, depending on4-2. Learning Grounded Grammar Fragments
whether the utterance appears to be a training example (i.e.A

h . ) o . S W-procs begin to be activated by words and c-procs channel
is paired with an indicated object) or a command. P g y P

their outputs, they take responsibility for parts of the utterance
The central idea is to gain robustness in parsing by using aheard. For example, the ‘blue’ w-proc signals that it can inter-
distributed set of processes, each of which parses only an islandgret, in a context-free sense, the occurrence of the word ‘blue’ in
of words within the utterance. The processes self-assemble in hi-a specific location in the current utterance. Whenever two pro-
erarchical structures to explain complete utterances and bind thentesses cover utterance fragments either next to each other (where
to visual referents. We describe the acquisition of this distributed ungrounded words are ignored or taken as arguments, as discussed

grammar in the following sections. below), the spawning process ensures that grammar processes (g-
proc) exist to attempt to combine the outputs of these processes.
4.1. Visually-Grounded Word Learning Each g-proc is linked to two other processes’ output and performs

a specific function to attempt to combine them. For example, a

Training examples consist of visual features of a target object andg-proc might perform logarithmic pooling on the Gaussians it re-
its spatial relation to other objects paired with transcriptions of ceives. For Newt, such a process accounts for the concept asso-
spoken descriptions provided by a human trainer. As training ex- ciated with the phrase ‘yellow cone’, made up of the concepts
amples arrive, a spawning process ensures that a process is Creitached to ‘yellow’ and ‘cone’. During training, other g-procs
ated for each unique word encountered. These word processeRientify the objects best indicated in the current visual scene by
(w-procs) are responsible for modeling the visual grounding of a the two Gaussians they receive, and compute a new Gaussian on
word in a context-free manner. For example, the w-proc respon-the spatial features measured between these objects. G-procs are
sible for ‘blue’ tries to answer the question: How did the objects also spawned for grounded concepts that occur with ungrounded
I saw when | heard ‘blue’ differ from the other objects | have en- words in between them or surrounding them. In this way, ‘rect-
countered? To do so, each w-proc estimates a multivariate Gausangle above the’ is grounded in spatial features, where ‘rectangle’
sian over all the features offered by the visual system, conditioneddescribes every object ever encountered and thus turns up as un-
on the occurrence of its assigned word. When the word aSSOCiatedJrounded, Notice that g-procs can stack to arbitrary depths, pars-
with the w-proc occurs, the process both gives the features of theing phrases like ‘the large horizontal blue rectangle below the thin
object that Newt is pointing to as an example to the Gaussian, andred square’.
publishes the current Gaussian to other running processes. When-
ever act_ivated this way, the w-proc also measures how strongly its4.3. Reinfor cement Eeedback
word w is grounded by computing the Kullback-Leibler distance
K L(w) between the word-conditioned Gaussian and a GaussianAn active process (a-proc) listens to the output of all processes
background model that is compiled from all objects ever encoun- and tries to account for fragments of an utterance. It computes the
tered. If its grounding strength is ever below a certain threshold, probabilities for each object in the scene based on each process’
the process dies. This happens for words that are not grounded iroutput, and sends a reward to the process that assigns the highest
basic visual features in Newt's world, like ‘the’. probability to the object actually indicated and that covers the most

Along with each w-proc a clustering process (c-proc) is spawnedords in the utterance. The reward is proportional to the normal-
and attached to the w-proc. Periodically this c-proc polls all other ized difference between the probability of the correct object and
c-procs for their grounded similarity to itself. This grounded sim- the probability of the closest runner-up. Together with this reward
ilarity is computed by first forming the semantic word profile the a-proc sends back the object indicated during training. Each



"horizontal purple

"horizontal"/"horizontal"” [

=

7

"below"
g-proc

Shape
c-proc

Color
c-proc

" , \ "horizontal green"

Shape/Color
R \ "purple"/"green”

hN

"horizontal"
w-proc

"purple”
w-proc

"horizontal"

W-proc

"green”
W-proc

"the horizontal purple rectangle below the horizontal green rectangle"

6. CONCLUSIONSAND FUTURE DIRECTIONS

We have presented a complete speech understanding system which
maps spoken referring expressions to visually-observed objects.
The semantics of referring expressions are grounded in visual prim-
itives provided by a real-time color vision system which tracks
multiple objects and extracts their properties and inter-object rela-
tions. The system understands color, shape, and spatial language.
This work is part of our long term effort to develop a complete se-
mantic representation of spoken language which is based in large
part on sensory-motor grounding.

We are expanding on this work in two significant ways. First,
we are investigating semantic representations which integrate mo-
tor control primitives to encode meanings of words such as “give”,

Fig. 3. A sample parse by the language understanding processes.neavy” and “soft”. Second, we are developing a comprehensive

semantic framework which also grounds non-sensory-motor words

such as “not”, “because”, and “happen”.

process that receives a reward in turn sends this reward to the pro-
cesses that it used to cover a part of the current utterance. If it
used different parts of the utterance to designate different objects
(as in the case of spatially grounded words like ‘above’) it sends [1]
back the appropriate object with the reward message. G-agents
maintain an energy measure that they subtract from each time they
send a message and add to when they get rewarded. Processes with
energy below zero die, trimming useless functions like measuring 2]
spatial features to explain ‘yellow cone’. C-agents currently do
not use the reward message, but could do so to adjust their clus-
tering threshold and re-cluster to make themselves more useful[
W-agents, finally, can be caused to take a different object than the
one indicated by the reward message, making sure that the ‘green’
w-proc learns from the right object in ‘the square above the green
rectangle’. [4]

5. LANGUAGE UNDERSTANDING
5
The language acquisition process described in the preceding sec[- ]
tions is an on-line process, meaning that the system easily switches
from learning to understanding at any point and does the best it can
with the examples encountered so far. This switch merely implies
that if no object is currently indicated, the w-procs do not take any
exam - éG]
ples, and the a-proc does not send a reward message. Rather;
the a-proc sends the most likely object indicated by the process
that covers the most words in the sentence to Newt’s motor con-
troller, which in turn points at the object. Figure 3 shows a sample
utterance parsed by the relevant processes, leaving out the a-proc
which gathers all other processes’ results. [7]
As a preliminary evaluation, we collected a small dataset of
303 utterances from two trainers in two sessions per trainer. Eachyg]
utterance describes one object in a scene of four objects chosen
from a collection of about 10 objects total, including objects with
like shapes but different colors and vice versa. When trained on
three of the sessions and evaluated on the fourth for all four ses{®]
sions in turn, Newt achieves 82% accuracy in picking out the cor-
rect object, compared to a random baselin@&f. Due to the
small size of the dataset, we allowed Newt to use an example in
the fourth session as a training example after Newt had selected
an object for the example’s utterance. Doing this increases perfor-
mance by almost0%, indicating that the dataset size is too smalll
to achieve full performance. However, even this preliminary study
shows that Newt does learn the correct visual groundings for words
and their combinations.

7. REFERENCES

D. Perzanowski, A. Schultz, W. Adams, K. Wauchope,
E. Marsh, and M. Bugajska, “Interbot: A multi-modal in-
terface to mobile robots,” ifProceedings of Language Tech-
nologies 2001, Carnegie Mellon University, 2001.

Kobus Barnard and David Forsyth, “Learning the semantics
of words and pictures,” .

3] G. lyengar, H. Nock, C. Neti, and M. Franz, “Semantic in-

dexing of multimedia using audio, text and visual cues,” in
IEEE International Conference on Multimedia and Expo (In
review), 2002.

Deb Roy, “Learning visually-grounded words and syntax for
a scene description taskComputer Speech and Language, In
review.

T. Westman, D. Harwood, T. Laitinen, and M. Pietikinen,
“Color segmentation by hierarchical connected components
analysis with image enhancement by symmetric neighborhood
filters,” in Proceedings of the 10th International Conference

on Pattern Recognition, 1990, pp. 796-802.

Deb Roy, Bernt Schiele, and Alex Pentland, “Learning audio-
visual associations from sensory input,” Rnoceedings of
the International Conference of Computer Vision Workshop

on the Integration of Speech and Image Understanding, Corfu,
Greece, 1999.

Terry Regier,The human semantic potential, MIT Press, Cam-
bridge, MA, 1996.

Benjamin Yoder, “Spontaneous speech recognition using hid-
den markov models,” M.S. thesis, Massachusetts Institute of
Technology, Cambridge, MA, 2001.

L. Mangu, E. Brill, and A. Stolcke, “Finding consensus among
words: Lattice-based word error minimization,” Fmoceed-
ings of EUROSPEECH’ 99, Budapest, 1999, vol. 1, pp. 495—
498.



