
Spatial Routines for a Simulated Speech-Controlled Vehicl e

Stefanie Tellex
MIT Media Lab

20 Ames St. Rm. 486
Cambridge, MA 02141

stefie10@media.mit.edu

Deb Roy
MIT Media Lab

20 Ames St. Rm. 483
Cambridge, MA 02141

dkroy@media.mit.edu

ABSTRACT
We have defined a lexicon of words in terms of spatial rou-
tines, and used that lexicon to build a speech controlled
vehicle in a simulator. A spatial routine is a script com-
posed from a set of primitive operations on occupancy grids,
analogous to Ullman’s visual routines. The vehicle under-
stands the meaning of context-dependent natural language
commands such as “Go across the room.” When the system
receives a command, it combines definitions from the lexicon
according to the parse structure of the command, creating
a script that selects a goal for the vehicle. Spatial routines
may provide the basis for interpreting spatial language in a
broad range of physically situated language understanding
systems.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing; I.2.9 [Artificial Intelligence]: Robotics

General Terms
algorithms, human factors

Keywords
visual routines, spatial routines, wheelchair, spatial language,
situated language processing, language grounding

1. INTRODUCTION
A robot capable of understanding spatial language could

be controlled by a novice user naturally to perform complex
tasks using succinct, intuitive commands. Moreover, there
is evidence that spatial reasoning underlies many parts of
human cognition (e.g., [3]); a system that performs spatial
reasoning may allow us to bootstrap our understanding of
many other facets of intelligence. By trying to build spa-
tially competent machines, we create a useful system in it-
self and also provide insight into possible mechanisms for
modeling human cognition (cf. [7]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HRI’06, March 2–4, 2006, Salt Lake City, Utah, USA.
Copyright 2006 ACM 1-59593-294-1/06/0003 ...$5.00.

Spatial language use is often situated in space and time:
the meanings of many spatial utterances depend on the
shared environment of the speaker and the listener. For ex-
ample, if one person asks another to “sneak into the room,”
the same verbal request could have very different meanings
depending on social and physical context: if there are people
or windows in the room, these will affect how the listener
decides to act. We seek to build a machine that grasps the
situation-dependent meaning of spatial language.

Landau and Jackendoff [8] divide spatial processing into
object recognition, and specifying paths and locations. We
focus on specifying paths and locations by developing a
speech controlled wheelchair that understands high level
natural language commands such as “take a left.” In this
problem domain, linguistic commands map to physical move-
ments. This domain makes the problem tractable, while still
preserving the context dependence that makes the open do-
main problem hard: to act correctly, a system must take
into account the environment in which a command is is-
sued. For example, if the vehicle is the center of a room, the
command “Go right” specifies a different trajectory than the
same command issued in a corridor near an intersection. See
Figure 1 for an illustration.

Inspired by Ullman’s [15] visual routines, we created a set
of primitive spatial/motor operations over occupancy grids.
We defined words in terms of these primitives, creating spa-
tial routines. The system combines these definitions based
on the parse structure of the utterance received from the
speech recognition engine and uses the resulting script to
control the behavior of the vehicle. Our system can be used
to navigate around a simulated world. A sample interaction
with the system follows:

User says “Go forward.”

Robot begins moving forward, following the cor-
ridor, avoiding obstacles as necessary.

User says “Go right.”

Robot moves towards the first opening in the
wall on its right.

User says “Go across the room.”

Robot computes the convex hull of the obstacles
it sees (the walls of the room), then goes through
the center of mass to the edge of the region.

2. RELATED WORK
First, we review the work done by Ullman and others de-

veloping visual routines as cognitive models for image pro-
cessing. Second, there is a large set of work on mobile robots



Figure 1: The command “Go right” means different things in different situations. In the situation to the
left, it means to go to the intersection and turn right; in the second situation, it means turn roughly 90o and
go forward.

and robotic wheelchairs, of which we review selected works
most relevant to our current system.

2.1 Visual Routines
Ullman [15] suggests a set of four primitive operations that

process images to perform visual tasks. The primitives op-
erate on an image bitmap and points within the map. Some
operations run on all elements of the grid, and others run
at specified locations. For example, the indexing primitive
identifies odd-man out locations in the base representation;
humans do something analogous when they find the odd-
colored object in a group. The coloring operation spreads
activation in the base representation, stopping at bound-
aries. This can be used to identify whether a point is inside
a bounded region.

Rao [11] presents the “Reverse Graphics” system which
uses a visual routine-based architecture to process black and
white images. This builds on Ullman’s ideas and adds a
concrete implementation. His base data types are extremely
similar to the ones used in our system:

• Location Map – Bitmap selecting a location.

• Property Map – Matrix of numeric values.

• Summary Value – Numeric value for a region (e.g.,
perimeter, area).

He organizes his operations based on the function type:

• Location Map −→ Property Map

– Region-bounded operations – Functions that char-
acterize regions in the location map, for example
area, perimeter, connected components.

– Diameter-bounded operations – Properties within
some radius of locations in the mask, for example
orientation, size, density.

– Relative spatial properties – One pixel might point
to another one, for example, to the region nearest
that pixel .

• Property Map −→ Location Map

– Select locations – Based on property value, using
a threshold or some other function.

– Coloring – Select locations connected to seed lo-
cations.

• Property Map × Location Map −→ Summary Values

– Area of a region.

– Min, Max.

– Direction towards a point.

Rao sees routines as a language for the focus of atten-
tion. Inherent biases in visual attention guide processing,
and create patterns of routine calls. These patterns become
a way of identifying and predicting visual events. Once it
recognizes the beginning of a pattern, the system can predict
which calls might come next, and use that to bias further
visual processing. In addition, a system can assign labels to
patterns of interesting sequences of primitives. These labels
could map to natural language, and provide an interface
to understand and talk about the visual field. Rao refers
to the elementary operations as primitives, and groups of
primitives chained together as visual routines.

2.2 Mobile Robots
In order to better understand the kinds of commands that

make sense in a linguistic interface we performed a prelimi-
nary study involving six subjects. Subjects were instructed
to give verbal instructions to a human driver to navigate
through a simulated maze. We observed that many of the
instructions that subjects used mapped to “left,” “right,”
and “straight,” where the exact goal depended on the sit-
uation. In contrast, most previous work on mobile robots
has focused on a set of context independent commands com-
bined with obstacle avoidance. Table 1 shows the command
sets from selected systems. Note that the left/right com-
mand variants generally turn a fixed amount regardless of
the environment, relying on obstacle avoidance to take into



RobChair [10] NavChair [13] Wheelesley [17] Current System
Stop Stop Stop Stop
Go forward Forward Forward Go straight
Go backward Left/right (turn 30o) Back Face left/right (turn 90o)
Rotate right/left Turn left/right (turn continuously) Left/right Go left/right
Hard right/left (turn 20o) Pass door Turn around
Soft right/left (turn 10o) Approach desk Go across the room

Follow wall Go to the object
Go to the left/right of the object

Table 1: Command sets for several speech controlled wheelchairs. Boldface indicates the command takes into
account the robot’s current situation.

SPOTT [18]
Verb Destination Direction Speed

Preposition Target Orientation Path
Go across door forward/backward along slowly

against hallway north/south/east/west around quickly
along room left/right via normal
alongside wall to
to the right of chair toward

from
away from

Table 2: Command set for Zelek’s SPOTT architecture.

account the situation. We review relevant systems and the
ways that they use context in their command set.

The NavChair system ([13], [9]) is a wheelchair designed
to reduce the cognitive and physical load required of the
user. It has three modes: general obstacle avoidance, door
passage, and automatic wall following. The user controls the
chair with a set of speech commands. The chair uses a Bayes
net to decide what mode to activate based on the chair’s
current location; if it is near a wall or a door, it is more likely
to be in wall following or door passage mode respectively.
Its right/left commands, however, do not depend on context
except for obstacle avoidance.

RobChair [10] uses fuzzy logic to blend user speech and
joystick commands with obstacle avoidance goals. It has
three control modes: intelligent obstacle avoidance, collision
detection, and contour following. It uses a simple arbitrator
to select between modes. When near an obstacle, it goes into
collision detection mode and only allows backwards move-
ment. Otherwise, the system selects the control mode based
on the user command.

Yanco [17] built a robotic wheelchair named Wheelesley
which understands high level commands. When it is moving
forward it avoids obstacles and follows hallways. She did not
build a speech interface, although this would be a straight-
forward extension as her system was designed to support
many different control interfaces.

Gribble et al. [5] describe a plan for a robotic wheelchair
with an interface derived from Kuipers’ Spatial Semantic Hi-
erarchy. At the highest level, the user can select a location
on a map and the robot will navigate to it. At the middle
level, users select commands analogous to the ones we de-
scribe: “turn right/left”,”go straight” and “stop.” Finally
at the lowest control level, the user can select the control law
the chair is using, causing it to rotate clockwise or follow a
corridor.

Closest to our work, Skubic et al. [14] developed Coyote,
a mobile robot that can understand spatial commands and

generate spatial linguistic descriptions of its environment. It
can obey commands like “Go to the right of the object” and
describe where objects are relative to itself (e.g., “The ob-
ject # 1 is behind me but extends to the left relative to me.
The object is very close.”) Coyote differs from our system
in the way it maps language and spatial information gained
from sensors. Our system converts a linguistic utterance
into a set of operations on sensor data, which then extract
spatial relations appropriate to the utterance. In contrast,
Coyote extracts spatial relations directly from sensory in-
formation, independent of the utterance, and converts them
to linguistic constructs. This approach may be less scalable
because it must search the space of all possible relations to
find one that maps to the utterance, rather than computing
them based on the utterance.

Zelek [18] specifies a lexicon template that he uses to con-
trol a mobile robot. Commands are formalized as specifying
a verb, destination, direction, and speed. Spatial prepo-
sitions form part of the destination and trajectory specifi-
cations for a command. He claims the lexicon is a mini-
mal spanning semantic set for two dimensional navigational
tasks. Although his architecture supports a large vocabulary
of commands, it can only combine them in ways specified by
the template. In contrast, our framework has the potential
to combine meanings more flexibly.

In general, previous work has focused on developing vari-
ous command sets for mobile robots and robotic wheelchairs,
without directly addressing the situated aspects of language.
We chose to implement the commands with algorithms that
use the environment to plan a context-sensitive trajectory
based on available pathways.

3. ARCHITECTURE
Our system is unified by a high level module that receives

the output from the speech recognition system and simu-
lated sensor data, creates a script using the lexicon and the



parse structure of the command, and then sends appropriate
commands to the simulated robot.

3.1 Robot Simulation
We implemented the system in simulation in order to

quickly test possible design choices while initially sidestep-
ping issues with sensor reliability and hardware failure. Our
ultimate goal is to build an actual hardware system. We
used the Gazebo simulator with the Player robot control
server. The Player/Stage/Gazebo [1] project is an open
source robot simulator and control architecture. The Gazebo
simulator sends sensor output to the Player robot control
server, and receives commands from it. The Player server
can interface with a wide variety of robot platforms, as well
as the simulator. We are using Gazebo to simulate a Pio-
neer 2 AT robot equipped with a SICK LMS LIDAR unit,
and the Pioneer’s 16 on-board sonar sensors. For debug-
ging purposes we also used a camera mounted on the virtual
robot, although we only used range data in the system be-
cause of its simplicity and increased robustness in the real
world. Eventually we plan to migrate this system to the
physical robot. To run on a given platform, the system re-
quires at least 180 degrees of range sensor data, as well as
an odometry/motor control interface.

3.2 Language Understanding
We use the Sphinx speech recognizer [2] and Gorniak and

Roy’s speech understanding system [4] to convert the speech
signal into user commands. We handcrafted a grammar and
a lexicon for the system based on the types of utterances we
wished to cover. Gorniak and Roy’s parser searches among
possible utterances generated by Sphinx to find the most
probable parse. For testing purposes, we also implemented
a textual interface where commands are typed to the robot.
This appears as noise-free speech recognition output to the
system.

3.3 Semantic Representation
The parser creates a series of nested procedure calls based

on the grammatical structure of the utterance. Each pro-
cedure call generated by the parser maps to a word in the
lexicon. The content of the procedure is the definition of
that word in terms of its associated spatial routine.

For example, if the user says “Go right,” the parser cre-
ates the following representation: go(right()). In the dic-
tionary, the “right” procedure is executed, and its results
are passed to the “go” procedure. The result of this is a
script that when executed yields a goal and a path to the
goal. The robot then follows the path to reach the goal.

3.4 Routines
The fundamental data structure that routines operate on

is an occupancy grid. The data structures are as follows:

Numeric Grid Real numbers range [0, 1].

Path Grid Integers in the range [0, 7] specifying one of the
eight neighboring points. This is used to specify paths.

GridMask Boolean grid; used to select regions in the grid.

Region Contiguous region; represented as a grid mask where
all unmasked points are connected.

Point A point in the grid.

Direction A unit vector.

The routines below are defined as functions on the above
data types.

Gradient Takes a goal point and finds paths to that goal
point using Dijkstra’s algorithm. This algorithm is
described by Konolige [6].

TraceLine Calls a function on each point in a ray. Writes
the output of the function to an output grid.

ColorRegion Calls a function on each point in a region.
Writes the output of the function to an output grid.

UnmaskCircle Returns a region unmasked around a spec-
ified point and a specified radius.

Salience Returns a grid marking each point with a baseline
salience based on whether it is in front or behind the
robot and how far it is from the robot. Close points
near the front are considered more salient.

ConvexHull Returns the convex hull of a mask.

Area Returns a grid where each point is labeled with the
area of the region it is part of.

Max/Min Returns the point where a grid takes on its max-
imum/minimum value.

CenterOfMass Returns the center of mass of a region.

BlockedScore Scores a point based on how many direc-
tions obstacles are visible for a given radius.

Distance Computes the Euclidean distance between two
points.

Divide Divides one occupancy grid by another, element
wise.

The lexicon in the current implementation is grounded in
spatial routines as follows:

go Takes a numeric grid, a region, or a point. Converts
the first two to a point by taking the max or center
of mass respectively. Finds a path to that goal using
Gradient. Words like “sneak” and “hide” could be
defined similarly, using a different cost function for the
gradient algorithm.

face Takes a numeric grid. Normalizes the points by divid-
ing by the distance from the goal point, then takes the
minimum adjacent point as the goal. This is used for
“face right.”

left/right Returns a numeric grid. Reachable points far to
the left/right are scored high. When passed a point
as an optional argument, it returns a grid assigning
an attention vector sum [12] score to points around its
argument, as in “the left of the object.”

stop Returns a zero length path ending at the current po-
sition.

around Returns a numeric grid where points immediately
behind the robot are scored high. This is used for
“turn around.”



room Returns a region that is the convex hull of the obsta-
cles currently visible to the robot’s range sensors. This
relies on the finite range and resolution of the range
sensors.

object Returns the smallest most salient contiguous region
visible to the robot. This algorithm is not very robust.
Skubic et al. [14] describe an algorithm for smoothing
occupancy grids that could make it more reliable.

across Takes a region. Finds its center of mass. Traces
a line from the robot’s current location through the
center of mass to the edge of the region. Returns the
end of the line segment.

We developed these lexical definitions manually, based on
our intuitive sense of what the robot should do when given
the corresponding command. In the future, we plan to in-
vestigate automatic learning algorithms that acquire such
definitions from examples of robot movements paired with
linguistic descriptions.

3.5 Robot Control
The system analyzes the path and goal received from the

language processing module in order to chose one of the
following three controllers:

FollowSpline Causes the robot to follow a path generated
by executing a script, and stop at the end.

MoveToAngle Rotates the robot in place. Executed when
the goal point is very close; causes the robot to turn
in place to face the goal.

Stop Stops the robot. Executed when the goal point is the
robot’s current location.

For following corridors, it uses a control algorithm that
guides the robot towards the longest open pathway in front
of it. If there are multiple equally long pathways, it chooses
the one nearest its current trajectory.

At the lowest level, the robot’s movements are controlled
using the Vector Field Histogram [16] position driver from
Player. Each control algorithm sets the position of the robot
in the global coordinate system and then the driver attempts
to move the robot to that position, avoiding obstacles as nec-
essary. There is no attempt to correct odometry error. The
controller works fairly well because none of the algorithms
rely on the long term accuracy of robot’s global position.

4. INITIAL RESULTS
To evaluate the system we created a maze (shown in fig-

ures 4-7), and tested the robot’s ability to interpret ver-
bal commands in various locations. For each command
we picked twenty locations from a uniform distribution in-
side the maze, excluding those with walls within approxi-
mately two of the simulated robot’s radii. The robot’s ori-
entation was picked from a uniform distribution. At each
location, the command was issued textually, and subjects
judged whether the goal point chosen was correct, incor-
rect, or whether the command was not appropriate for the
situation. For each location, the planned path produced by
the routine processor and the actual path taken by the robot
were judged. The actual path was produced by tracing the

Figure 4: The robot’s behavior when told “Go left.”
near a “T” intersection.

Figure 5: The robot’s behavior when told “Go
right.” in a room near a doorway.

robot’s position for 20 seconds after the command was is-
sued. (The robot should stop when it reaches a goal point,
but does not always reach the goal point quickly, especially
when the control system fails.) Five subjects completed the
evaluation, and each subject evaluated 20 samples of the
planned path and 20 samples of the actual path for each of
the three commands.

We report the percentage of cases that at least one subject
marked correct, as well as the percentage of cases where a
majority (three or more) of subjects marked it correct. We
also report Light’s Kappa statistic as a measure of interan-
notator agreement. Light’s Kappa is computed by averaging
the pair-wise kappa between each rater, and it represents the
proportion of agreements after chance has been excluded.

The purpose of this evaluation is to show that it is possible
to use these routines to build a system that is functional
rather than to show that we have identified the best possible
algorithms, or to characterize a human’s understanding of
these commands. We also present several images showing
the robot’s behavior when given a command at particular
locations. The robot is drawn in its starting orientation, and
the line shows the path that it actually took after receiving
the command.

Results are shown in Table 3. The commands “go left”
and “go right” worked fairly well. This performance level is



Figure 2: The robot’s camera when receiving the command “Go across the room.”

Figure 3: The occupancy grid and planned path for the command “Go across the room.”

Figure 6: The robot’s behavior when told “Go
across the room.” at a particular location.

encouraging since these two are likely to be among the most
frequently used commands. The system tends to fail in one
of two ways. First, if the robot faces a “T” intersection
at an angle, as shown in figure 7, and is told to turn away
from the intersection, sometimes it selects a goal point going
down the corridor away from the intersection. This situation
is somewhat ambiguous, but we think it is more intuitive if
the robot follows the corridor and moves forward. Second,
the camera in the simulator can see farther than the LIDAR
range. As a result, sometimes when a human sees a doorway
and says “go left,” the robot cannot sense the door that the
human is referring to, and picks an inferior goal point.

Figure 7: The robot’s behavior when told “Go
right.” Here the side sensors see down the corri-
dor so it turns to the right rather than going to the
intersection and turning right.

The command “go across the room” worked less well. Fail-
ures are mainly due to trials where the sensors detected a
corridor leading off from the room, which skewed the convex
hull computation, and in cases where the walls of the room
are not visible to the robot’s range sensors. In these cases
the far walls were excluded from the convex hull computa-
tion.

The kappa statistic for this task was low in almost all the
cases. Low interannoter agreement implies that the task
was ill defined. Subjects made judgements using a top-down



Planned Path Actual Path
Command % Correct Light’s Kappa % Correct Light’s Kappa

Generous Stingy Generous Stingy
Go left 90% 80% 0.12 90% 50% 0.15
Go right 95% 70% 0.12 90% 50% 0.11
Go across 50% 35% 0.53 45% 0% 0.09
the room

Table 3: Results from the user evaluation. Percentage correct is the number of “correct” paths according
to two metrics. The “Generous” column counts a path as correct if at least one subject reported it correct.
The “Stingy” column counts a path correct only if a plurality of subjects reported it correct. Agreement is
the interannotater agreement.

floorplan view which was not rotated to the robot’s orienta-
tion. Better agreement might be had by rotating the images
so they correspond with the robot’s starting orientation. It
also might help if subjects watched a movie of the robot
moving, providing a first person view of the robot’s behav-
ior.

We only evaluate three commands here although our sys-
tem understands several others. First, we excluded com-
mands that were not context dependent such as “stop” or
“turn around.” Second, we excluded commands involving
“object” because the system does not reliably identify the
object being referred to using only range sensor data. In
situations where the object is unambiguous, it reliably picks
appropriate goal points for commands like “Go to the ob-
ject” and “Go to the right of the object.” Skubic et al [14]
describe several solutions to this problem: they filter and
blur the range sensor data. In addition, their robot can ver-
bally report the objects it sees and accept labels for them.
An ability like this combined with geometric object selection
(such as “the object on the right”) would improve perfor-
mance dramatically.

When used in text mode, the most common failures of
the system stem from its inability to detect situations where
commands do not make sense. Ideally in this case the system
should indicate its confusion. When used in speech recogni-
tion mode, the most common errors stem from speech recog-
nition failures. The robot’s control systems also occasionally
fail, especially when the goal chosen is behind the robot, or
when it is close to a wall.

5. CONTRIBUTIONS
We have identified a set of routines that can be used to

define words for an implementation of a speech controlled
vehicle. This architecture could be applicable to a range of
applications in human-robot interaction, such as controlling
a robotic vacuum cleaner, in which context-dependent inter-
pretation of spatial language is needed. Moreover it might
be possible to use the routines to identify types of move-
ment, yielding a system that could describe its own actions,
and even watch a camera and describe the spatial content
and trajectories of objects. Such functionality could be used
for video retrieval via natural language.

The system in its current state is a proof of concept for an
initial set of spatial routines, and there are many possible
extensions and improvements. Most pressingly, the current
implementation can only act based on the current snapshot
of sensor readings. This stateless design leads to errors in be-
havior. Second, it should handle uncertainty better. When
given a command that does not make sense, the system cur-

rently takes its best guess. Instead, when there is no good
goal point, it should signal failure to the user. Finally, the
simulator makes many things easy. Implementing the sys-
tem on a robotic wheelchair or another mobile robot will of
course expose additional problems that we may have over-
looked. Looking farther into the future, implementing some
form of attentional biases and learning algorithms might en-
able the system to discover routines and spatial relations on
its own.

6. ACKNOWLEDGMENTS
We would like to thank Piotr Mitros, Gregory Marton,

and Lin Wu at MIT for their comments on previous drafts
of this paper. The images showing the robot’s trajectory
were formatted by Piotr Mitros.

7. REFERENCES
[1] http://playerstage.sourceforge.net/.

[2] http://www.speech.cs.cmu.edu/sphinx/sphinx.html.

[3] L. Boroditsky. Metaphoric structuring: Understanding
time through spatial metaphors. Cognition, 75:1–28,
2000.

[4] P. Gorniak and D. Roy. Speaking with your sidekick:
Understanding situated speech in computer role
playing games. In Proceedings of Artificial Intelligence
and Digital Entertainment, 2005.

[5] W. S. Gribble, R. L. Browning, M. Hewett,
E. Remolina, and B. J. Kuipers. Integrating Vision
and Spatial Reasoning for Assistive Navigation,
volume 1458, page 179. 1998.

[6] K. Konolige. A gradient method for realtime robot
control. In Proceedings of the 2000 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 2000.

[7] B. Kuipers. The spatial semantic hierarchy. 119, 2000.

[8] B. Landau and R. Jackendoff. “What” and “where” in
spatial language and spatial cognition. Behavioral and
Brain Sciences, 16:217–265.

[9] S. Levine, D. Bell, L. Jaros, R. Simpson, and
K. Koren. The NavChair assistive wheelchair
navigation system. IEEE Transactions on
Rehabilitation Engineering, 7(4), 1999.

[10] G. Pires and U. Nunes. A wheelchair steered through
voice commands and assisted by a reactive fuzzy-logic
controller. Journal of Intelligent and Robotic Systems,
34(3):301–314, July 2002.

[11] S. Rao. Visual Routines and Attention. PhD thesis,
Massachusetts Institute of Technology, February 1998.



[12] T. Regier and L. Carlson. Grounding spatial language
in perception: An empirical and computational
investigation. Journal of Experimental Psychology:
General, 130(2):273–279, 2001.

[13] R. Simpson and S. Levine. Adaptive shared control of
a smart wheelchair operated by voice control. In
Proceedings of the 1997 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1997,
1997.

[14] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz,
W. Adams, M. Bugajska, and D. Brock. Spatial
language for human-robot dialogs. IEEE Transactions
on Systems, Man, and Cybernetics - Part C:
Applications and Reviews, 34(2), May 2004.

[15] S. Ullman. Visual routines. Technical Report
AIM-723, Massachusetts Institute of Technology, 1983.

[16] I. Ulrich and J. Borenstein. VFH+: Reliable obstacle
avoidance for fast mobile robots. In Proceedings of the
1998 IEEE International Conference on Robotics and
Automation, 1998.

[17] H. A. Yanco. Wheelesley: A robotic wheelchair
system: Indoor navigation and user interface.
Assistive Technology and AI, pages 256–268, 1998.

[18] J. S. Zelek. Human-robot interaction with a minimal
spanning natural language template for autonomous
and tele-operated control. In International Conference
on Intelligent Robots and Systems (IROS ’97), 1997.


