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Abstract

We introduce an approach for physically-grounded natural  language interpretation by robots which reacts 
appropriately  to  unanticipated  physical  changes  in  the  environment  and  dynamically  assimilates  new 
information pertinent to ongoing tasks.  At the core of the approach is a model of object schemas that enables 
a robot to encode beliefs about physical objects in its environment using collections of coupled processes 
responsible for sensorimotor interaction.  These  interaction processes run concurrently in order to ensure 
responsiveness  to  the  environment,  while  coordinating  sensorimotor  expectations,  action  planning,  and 
language use.  The model has been implemented on a robot that manipulates objects on a tabletop in response 
to verbal input.  The implementation responds to verbal requests such as “Group the green block and the red 
apple,” while adapting in real-time to unexpected physical collisions and taking opportunistic advantage of 
any new information it may receive through perceptual and linguistic channels.
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Object-centred, behaviour-based language grounding

Natural language is an efficient means by which humans convey beliefs and desires to other people. 
Analogously, a robot system that uses natural language could communicate more efficiently with humans. 
The conceptual structures required for language use could also help the robot interact with an environment 
generally designed by humans for human use.

For a robot with a physical body to make sense of language, the robot's internal representations need to 
be grounded in the real world, meaning that the robot must have processes that relate its words and concepts 
to its perceptions and actions in systematic ways.  For instance, a language-using robot must identify the 
perceptual referents of nouns, and it must translate verbs into appropriate motor behaviour.  A physical robot, 
however, also needs to stay responsive to changes in its environment.  This is the premise of behaviour-based 
robot design, as argued by Brooks [8] and numerous others.  In this paper we present a model for language 
grounding that addresses the need for responsiveness without sacrificing the ability to form structured internal 
representations of a kind necessary to support symbolic communication.

At the core of the model are object schemas, in which running processes are organized according to 
the physical object towards which they are directed, and by which they are causally affected.  The object 
schema processes run concurrently to ensure responsiveness of the robot to its environment.  The object 
schemas built from the processes provide object representations for planning and language use.  The model 
builds upon an underlying theoretical object schema framework developed in [32, 33].

To demonstrate the efficacy of these constructs, we have implemented a robotic system in which the 
object schemas assist the coordination of vision, touch, motor action, planning, and language use, in a tabletop 
domain.  Figure 1 shows the robot, Trisk, performing a behaviour sequence enabled by the model.

In this paper we first situate our approach with respect to related work in the field.  Then, we explain 
the model and describe selected aspects of the implementation in greater detail.

Background

Our model brings together behaviour-based design and language grounding, combined through a 
sensorimotor schema representation of objects.  In this section we review some related work and highlight 
some benefits of our model.

SMPA and non­linguistic behaviour­based robots

From the days of Shakey (the first language-using robot [28]) the “traditional” approach for robot 
planning and control was what Brooks eventually called the “sense-model-plan-act” approach (SMPA).  The 
idea behind SMPA is that sensory input is interpreted as a model of the external world, the model is used for 
planning purposes, and then the plans are used to guide action.  The SMPA model naturally supports language 
use.  For example, verbal commands can be translated into plans that are inserted into the plan layer of an 
SMPA system.  Likewise, verbal descriptions of world state can be translated into elements of the model 
layer.

As an alternative to the SMPA approach, Brooks [7, 8] developed the subsumption architecture, an 
early example of behaviour-based robot control.  Behaviour-based approaches focus first and foremost on the 
responsiveness of the robot to unexpected (and thus unmodelled) changes in the environment.  The 
subsumption architecture maintains responsiveness by decomposing a task into separate behaviours and 
having a dedicated process handle all aspects of each specific behaviour, from sensory input to motor output. 



Behaviour processes interact through layered control interrupts.  Brooks identified the use of internal models 
of the environment as the primary culprit for impeding responsiveness to change, and as a result, argued 
against explicit internal models altogether.  This prohibition, however, leaves no clear path for language 
processing, which is fundamentally a “representation-hungry” task [14].

Later work on behaviour-based robots have introduced some degree of representation and planning by 
layering these elements on top of reactive processes.  For instance, some of the three-layer systems developed 
to date [10, 11, 19, 20] allow reactive behaviours (such as collision-avoidance) to compete with more complex 
planned behaviours (such as mapping and path planning) as part of an action selection process. 
Representations in such systems focus primarily on behaviours and task decomposition.

Object representation

Behaviour-based robots have been successfully deployed in a number of real world systems, 
demonstrating how much can be accomplished with a minimum of representation.  However, the raw 
sensorimotor processing of the subsumption architecture and the action representations of the later systems 
have limitations with respect to human communication and acting in human-centric environments.  Adding 
representations of physical objects is important for several reasons:

Communicating about objects Human language use is full of statements about objects, suggesting that 
explicitly representing objects will enable the robot to efficiently handle such language.

Planning actions Representing objects would allow a robot to plan coherent sequences of actions towards 
goals expressed in terms of objects and their states.

Coordinating expectations The conception of objects and object permanence may provide an efficient 
means for a robot to generate structured predictions of incoming sensory input, and to predict changes 
in the environment as a result of specific actions taken by the robot.

Because of the importance of objects in communication and planning, our object schema model 
organizes processes according to the object they target.  There are several other systems that explicitly 
represent physical objects.  Here we relate them to our approach:

Object persistence and tracking Several projects inspired by behaviour-based design, such as those 
led by Blumberg et al. [12, 24] and later Breazeal et al. [5, 6] remain reactive while updating object 
representations continuously.  However, in these models much of the object processing is decoupled from the 
object representations themselves, making it inconvenient to represent object-directed affordances (i.e., 
actions that can be taken and states that can be achieved by the agent, due to the object [21]) such as “liftable” 
and “graspable.”  Because the processes that target an object are contained within our object schemas, 
affordance information can be stored alongside the corresponding processes in our object representation.  This 
simplifies the grounding of affordance-related words.

Affordance learning Several systems do represent object affordances explicitly, for instance for 
learning affordances [17, 18, 27, 39].  Learning is a vital future direction for our work as well, but our current 
emphasis is on developing a richer affordance-centred representation of objects that can support language use 
and responsive behaviour.

 The model that is presented in this paper is influenced by the Piagetian idea of a sensorimotor schema 
[29].  Both Arbib [1] and Drescher [16] have developed computational interpretations of Piaget's concept of 



schemas.  Drescher's schema mechanism is an early attempt to fully implement schemas and test them in a 
simulated world.  Drescher strived for a learning system that minimized “innate” structures, preferring a 
highly data-driven learning system that constructed primitive object schemas out of very low level 
sensorimotor primitives.  In practice the implementations based on this approach failed to scale to 
environments beyond extremely simple grid-worlds.  In contrast, our approach provides fairly rich built-in 
structures in the form of robotic controllers and perceptual processing routines with the goal of implementing 
more capable systems that demonstrate robust real world object-directed behaviour.  Drescher's work suggests 
future directions for introducing structure learning capabilities into our approach by “deconstructing” our 
innate schema structures and enabling the system to reconstruct schemas based on experience.

Under the schema view, objects are a useful abstraction that brings structure to otherwise incoherent 
and overwhelming sensorimotor experience.  A system with no object representation would have to explicitly 
encode an enormous network of sensorimotor expectations just to gain basic abilities like object persistence, 
while a system with an object representation can expect that a green object will continue to appear green. 
Object schemas thus enable the system to organize perceptions and actions in ways that matter to the system's 
programmed goals.  Our model provides a computational/mechanistic interpretation of the schema concept 
with sufficient detail to implement on a physical robot.

Reactive grounded language robots

Several mobile robot systems include the ability to take verbal commands [3, 25, 26, 27].  Some of 
these robots can also run collision-avoidance behaviours in competition with verbally-commanded 
behaviours, using a mechanism like those in a subsumption-based system.  In essence, such systems use 
SMPA-based language grounding grafted atop a behaviour-based reactive robot, granting the benefits of both 
a full representation and behaviour-based responsiveness.  Figure 2 shows a depiction of this model.

However, our object schema approach is specifically not adding SMPA to a reactive robot.  Rather 
than temporally interspersing responsive behaviours with language use and planning, our approach constructs 
object representations for language use and planning using the responsive behaviours, so a sensorimotor event 
can rapidly alter linguistic and planning structures and processes.  A collision with an object not only causes 
our robot to pull back to avoid damage, but the process handling the collision also provides updated 
knowledge of the object's expected location, altering the target location for subsequent verbally-commanded 
grasping actions.  In contrast, the reactive SMPA approach would use separate processes for collision-
handling and for building a model from sensory input to locate objects for verbal command processing.  Our 
object schemas are thus more adept at leveraging information from the reactive level.  A high-level overview 
of our approach is depicted in Figure 3 to contrast with the preceding SMPA diagram.

Other grounded language systems

Numerous previous efforts have addressed language grounding either in physical or virtual worlds (see 
[31] for a survey of models of word grounding, and a collection of recent papers on the topic introduced in 
[35]).  Winograd's SHRDLU [41] carried out natural language commands in a symbolic “simulator” of a 
blocks-world manipulation robot.  While Winograd abstracted away many of the core issues we focus on here 
related to interacting with and representing real objects, SHRDLU's linguistic performance remains 
impressive to this day.

Many other language-grounding systems such as [2, 30, 36] connect aspects of language use or word 
meaning to perceptual features grounded in objects, but do not address the underlying problem of how a 
machine might conceive of objects in the first place.  Several other researchers pairing language and robotics 
[13, 38, 40] focus on evolving novel languages between agents or robots trying to communicate.  Our focus is 



on representations specifically appropriate to pre-existing human languages that can be used in human-robot 
interaction tasks.

In our previous work we developed a robot called Ripley that is able to respond to spoken commands 
such as “Hand me the blue one on your left” [23, 34].  Ripley was not, however, responsive to changes or 
corrections, and action failures had no impact on decision-making beyond a simple retry mechanism.  In 
contrast, our new approach uses a planning mechanism to make decisions, respond to sudden changes, and 
replan dynamically.

Interaction processes and the object schema model

As described in the “Reactive grounded language robots” section above, an SMPA model built on top 
of a reactive robot system could carry out verbal tasks, but its reactive processes would function 
independently of the verbal processing.  In contrast, our object schema model coordinates language use, 
planning, and sensorimotor expectations by using object representations built out of the reactive processes. 
We call these processes interaction processes (in this context we sometimes just call them “processes” for 
brevity), and they form the basic building block of the model.  The interaction processes are simultaneously 
organized into object schemas, which represent objects, and plan hierarchies, which coordinate action 
planning.  For language purposes, the object schemas and plan hierarchies both serve as representations that 
language can be grounded to.  For example, noun phrases can connect to the object schemas, and verb phrases 
in commands can connect to the plan hierarchies.  In this section we describe the model in greater detail.

Interaction processes and histories

The fundamental building block of the model is the interaction process.  Interaction processes perform 
tasks such as taking sensory input, producing motor output, and manipulating internal records.  The 
interaction processes run concurrently and continuously, thus ensuring responsiveness.  Each interaction 
process provides information to other processes by writing data to shared memory.  By building object 
schemas and plan hierarchies out of interaction processes, information in the shared memory is coordinated 
between the sensorimotor modalities, planning, and language use.

Interaction processes have a main loop that can be started and stopped, and some processes exit when 
their main loops complete their programmed tasks.  These tasks could include finding interesting visual 
regions or reaching the robot arm towards an object.  Figure 4 shows a visual notation for four interaction 
processes with various run states (represented by the left-side semicircle) and various finish states 
(represented by the right-side semicircle).

Interaction histories The data that each interaction process writes to shared memory is called its 
interaction history.  The interaction histories allow processes to provide information to each other.  This use 
of shared memory somewhat resembles a traditional blackboard model, except that each process can only 
write to its dedicated space.  There are two primary types of history data: attribute data, which is returned 
while a process is running, and completion data, which is returned when a process' loop is completed (e.g., 
finishing an attempt to touch an object).

Attribute data contains information to be incorporated into knowledge of the attributes of an object 
(such as colour, shape, and location).  The attributes of an object can be continuous (e.g., colour and weight as 
measured from sensory input) or discrete (e.g., a labelled category for colour or weight).  Completion data 
contains information about whether a process completed successfully or not, as well as timing information 
about the process' execution.  Completion data, as compiled over time, is incorporated into knowledge of the 
affordances of an object (such as liftability or graspability).  Figure 5 shows the two types of history data 
deriving from interaction processes.



Process classes Each interaction process in the system is an instance of a process class.  Each process 
class defines the execution loop that its instances run.  The execution loops for some of these classes exit at a 
defined point (e.g., finishing a grasping action) and the process reports completion data to its history.  Other 
execution loops cycle forever, causing the process to write attribute data to its history until it is destroyed 
(e.g., its object schema is deleted).  The following are the major types of process classes:

Sensory processes are interaction processes that monitor incoming sensory data and write relevant data to 
their interaction histories.  Subtypes in our implementation include collision detectors, visual trackers, 
and touch trackers.  The visual trackers watch visual input and provide continuously updated visual 
information about an object.  The touch trackers watch touch sensor input to determine if an object is 
being grasped.  If the object is grasped, the touch trackers output the weight of the object and the 
location of the object based on the hand's location.  Each sensory process is intended to loop forever.

Action processes are interaction processes that, when activated by the planning system, send motor 
commands to the robot.  Examples include a process to move the robot arm away from a collision, or 
to grasp the fingers around an object.  An action process reports successful or failed completion when 
its attempt to perform its programmed actions is done.

Plan fragment processes operate in the planning system to coordinate actions and preconditions.  For 
instance, the plan fragment for grasping an object could require the precondition that the hand be open 
and positioned at the object's location.  Then, it would trigger the action for closing the fingers.  Plan 
fragment processes declare themselves complete when their attempt to perform their programmed 
sequence is done.  These processes are often created in response to verbal commands.

Condition processes continuously assess whether a specified condition is true or not, and when not true 
they trigger the planning system to search for plan fragment and action processes that can render them 
true.  Condition processes loop endlessly until removed from their plan hierarchy, although for 
planning purposes they add a piece of completion data to their histories when their conditions are true.

Translation processes convert interaction history data from other processes to a new form, such as a 
transformation from visual 2-D data to 3-D coordinates for targeting the arm, or a categorization from 
continuous colour data to a discrete colour category.  These processes loop forever, and the results of 
their translations are written to their own interaction histories.  The discrete categories (such as colour 
or shape labels) are used for connecting noun phrases to object schemas.

Coordination processes maintain the integrity of object schemas by manipulating other interaction 
processes.  Each object schema has a coordination process which monitors interactions between 
processes within that object schema.  For instance, if visual and touch tracking disagree about an 
object's location, the coordination process can detach one of the processes from the object schema to 
resolve the conflict.  These processes also loop forever, until destroyed along with their object 
schemas.



Reference processes receive noun phrases from speech input and attempt to connect the noun phrases to 
object schemas with matching attributes.  For instance, “the green block” leads to a reference process 
that reads interaction histories of each active object schema to find one that best fits “green” and 
“block.”  These processes exit and report completion when a matching object schema is identified.

Object schemas and the belief context

Interaction processes can be incorporated into (bound to) structures called object schemas.  Each 
object schema represents one physical object in the system's environment, and consists of a container that 
holds interaction processes that are considered to be “about” the represented object.  Object schemas are 
stored in the belief context, which is a structure that stores object schemas along with accumulated affordance 
information.  The belief context constitutes the set of beliefs that the system currently holds about its 
environment and its affordances.

When an interaction process is bound to an object schema, history data for that process becomes 
associated with the object schema as well, and is treated as attribute or affordance information for the 
represented object.  The object schemas act as discrete entities for planning and language use.  Figure 6 
depicts an object schema that consists of several interaction processes and, by association, their histories.

Not all interaction processes are bound to object schemas.  Processes that provide incoming sensory 
input (such as collision detection and visual segmentation) typically remain unbound.

Object expectations When an interaction process is part of an object schema, its interaction history 
can be used to generate expectations of future history data.  Expectation data is stored with the interaction 
process, alongside the history data that is being predicted.  There are two types of expectation data: expected  
attributes, which predict attribute data, and expected affordances, which predict completion data. 
Expectations are used by the planning system to select a course of action.  These expectations of future 
interactions would not be as straightforward to compute without the use of an object-centred framework, as 
mentioned in “Object representation,” above.  The visual notation for expectations is given in Figure 7.

Completion statistics In addition to object schemas, the belief context also stores statistics on 
completed action and plan fragment processes.  These statistics are indexed by the attribute data of the object 
schema that the processes were bound to.  As an example, if a lift action towards a heavy red apple failed, 
then the belief context would note the failure of lifting with respect to the attributes for “heavy,” “red,” and 
“apple.”  Over time, trends emerge in these statistics; the “heavy” attribute might be a good predictor of 
difficulty lifting an object.  These statistics are used to compute expected affordances, which in turn are used 
by the planning system to make decisions based on success likelihood.  This learning of affordances for 
objects and attributes is the main type of learning present in our current system, although perceptual 
categories such as shapes and colours are also learned in a supervised manner in the current system.

The association of success statistics with discrete object attributes such as “heavy” has an interesting 
ramification.  At first glance, discrete attributes such as colour and weight labels (“red” or “heavy”) seem 
relevant to language use but have no efficacy in the robot's planning and actions.  Linking attributes to success 
statistics allows the attributes to predict affordances, thus linking the attributes to the physical capabilities of 
the robot.  Discrete object attributes then mean something in terms of the embodiment of the system, rather 
than only as a means of jointly referencing objects.  This relates to the reason an embodied agent would 
represent discrete attributes in the first place -- awareness of discrete categories such as “heavy” helps to 
categorize objects based on their physical affordances.



Plan hierarchies and the planning system

The planning system stores and manipulates plan hierarchies.  Like object schemas, plan hierarchies 
are structures composed of interaction processes.  Each hierarchy is a tree structure that organizes action, 
condition, and plan fragment processes into a coherent sequence to address a primary motivation at the root of 
the tree.

The root of each plan hierarchy is a primary motivation, which represents a basic “need” that the 
system attempts to satisfy by attaching appropriate interaction processes to the hierarchy.  The primary 
motivations have priority scores that vary over time, reflecting the changing priority for each basic need.  The 
priority scores are passed along the hierarchy from parents to children.

The non-root nodes are interaction processes that the planning system attempts to run to completion. 
For each node X, X's children are the interaction processes which must complete before X can.  For instance, a 
node responsible for closing the hand around an object will have a child node that ensures that the robot's 
hand is at the object's position before attempting to perform the grasp.  A part of such a hierarchy is shown in 
Figure 8.

Plan hierarchies are built such that their leaf nodes form a sequence of action processes that will serve 
the primary motivation.  Across all the plan hierarchies, only the action process with the highest priority score 
is permitted to run at a given time.  Thus, the primary motivations compete according to their current priority 
score to build hierarchies and have the robot take actions in their service.

The construction of a plan hierarchy proceeds as follows:

1. For the primary motivation with the highest priority score, the planning system examines a list of action 
and plan fragment processes that are known to satisfy the primary motivation.  When multiple processes 
are available, the expectations computed in the belief context are consulted to determine which is most 
likely to succeed.  The best action or plan fragment process is then attached as a child node, and the 
priority score is propagated to it.

2. When a plan fragment process is the highest priority leaf node, the first element in its sequence (either an 
action or a condition process) is created and attached as a child.  The priority score is passed to the child, 
which eventually leads to the satisfaction of preconditions and the execution of actions.  When a child 
completes, it is detached by the planning system and the next element in the plan fragment's sequence is 
created and processed.

3. When a condition process is the highest-priority leaf node, the planning system conducts a search and 
attaches a child in the same way as for a primary motivation.

4. Action processes are always leaf nodes.  Action processes compete to execute based on the priority scores 
propagated from the primary motivations.  When an executing action process is complete it is detached 
from its parent so the hierarchy's sequence can continue.

By choosing appropriate plan fragments to coordinate actions and conditions, the planning system 
executes a coherent sequence of actions that satisfies the strongest current motivation of the system.  The 
planning system interacts with the belief context by using object schemas as targets for action and also as 
sources of likelihood data to decide between possible actions.  Because each process in a plan hierarchy is 



also part of an object schema, changes recorded in interaction histories can rapidly affect likelihood data and 
cause revision of the plan hierarchy.

Language interaction

Incoming speech is provided to the model in the form of a parse tree.  The tokens in the parse tree can 
then be connected to representations in the model.  This primarily involves adding structures to the planning 
system in response to verb phrases, and connecting a noun phrase to an object schema that it refers to.

When a verb phrase is received (in a command, for instance), it is assigned an appropriate structure in 
the planning system, such as a condition process that reports satisfaction when the command is executed.  By 
attaching the structure to a primary motivation and setting the priority score, the planning system then takes 
responsibility for carrying out the relevant actions.

Object-directed interaction processes are typically part of the object schema of their targeted object. 
However, an object-directed process based on speech input has no initial target, because speech input can only 
provide a noun phrase that describes the target object; it cannot identify a specific object schema without 
further processing.  Because the object-directed processes cannot join an object schema until the system 
identifies the appropriate object schema, they are connected to a reference process until the correct object 
schema is found.

Reference processes are the interaction processes responsible for connecting object schemas to noun 
phrases.  They search the object schemas in the current belief context for one with discrete attributes (which 
are automatically produced by translation processes) that correspond to the tokens in the noun phrase.  For 
each noun phrase, a reference process is created and provided with the tokens from the phrase.  The process 
then searches the current object schemas for one with the appropriate discrete attributes.  When a match is 
found, all object-directed interaction processes that are connected to the reference process are added to the 
matching object schema.  Speech-driven action and plan fragment processes in plan hierarchies cannot be 
activated until their reference processes are resolved and they have been added to object schemas.

Summary

In the model, interaction processes handle sensory input, motor output, and internal recordkeeping. 
These interaction processes are organized into object schemas, each representing one physical object, and plan 
hierarchies, each representing one coherent sequence of actions.  Language is processed by connecting noun 
phrases to object schemas and verb phrases to structures in the plan hierarchies.

This approach presents several benefits relative to the other approaches mentioned in the Background 
section.  Our model extends behaviour-based systems by explicitly representing objects, and it extends 
language-grounding systems by maintaining responsiveness to the environment.  Furthermore, by building 
object schemas from reactive processes, our model gains several features over an SMPA language system 
added to a reactive robot:

Computational scalability Instead of performing a full round of processing on current sensory inputs, 
our object schema model permits each bit of sensory input to affect only specific aspects of planning and 
language use.  For example, a collision with an object can trigger a cascade of processing that directly 
changes the target position for subsequent grasping actions, while an SMPA approach would wait for the next 
modelling cycle to process all sensory input.  By decoupling the processing of sensory inputs from each other, 
our approach decreases the latency time from sensory input to motor action, and renders our approach more 
amenable to parallelization across multiple processors or computers.  Decisions can be made and altered in 
our model based on the interaction of a small subset of processes, rather than waiting for a complete model to 



be generated from new sensory input.  As grounded language systems increase in complexity from the current 
set of relatively limited domains, our approach offers a path for scalability.

Common currency Our model, by collecting all processes directed towards an object into the object 
schema, provides a convenient means of interaction between language, planning, and sensory processes.  For 
example, hearing “the apple is heavy” enables our system to alter its plans based on this information.  The 
system would also have arrived at the same decision if it had prior physical experience with the apple, or with 
objects with visual similarity to the apple.  Likewise, if it has to lift the apple anyway, it can decide for itself 
how heavy the apple is, regardless of what it had been told.  This convergence of multiple modalities, 
including language, would be more complicated to implement in an SMPA model.

Multimodal affordances Finally, our object schemas provide a convenient way to represent 
affordances, such as liftability and graspability, for grounding affordance-related words.  This coordination of 
information from multiple sources in an object-centric fashion would also be difficult in a model where 
planning and action are represented separately from the objects themselves.

Implementation walkthrough

The model has been implemented on a robot platform, named Trisk.  In this section we describe the 
physical and sensorimotor systems of the robot, and then we discuss key aspects of the implemented model as 
it produces a sequence of behaviours.

The robot and the sensorimotor systems

Our robot platform, named Trisk (Figure 1 shows the robot in action), is a six degree of freedom 
(DOF) robotic arm with a four-DOF Barrett Hand as its end effector, situated in front of a table on which 
manipulable objects are placed.  Six-axis force-torque sensors on each of the three fingers of the hand enable 
sensing of forces and collisions, including awareness of successful grasps.  The downwards force of an object 
on the finger sensors provide the weight of the object.  Two cameras (only one is currently active for 
simplicity) sit in a head mounted on a four-DOF neck, which allows the system to adjust its view of the 
environment and look up at the human for interactivity purposes.

Visual input from the active camera is sent through a colour-based segmentation algorithm (based on 
CMVision [9]) that groups contiguous regions by colour.  The current set of objects used for robot 
interactions consists of simple objects of uniform colour, so colour segmentation suffices for our purposes. 
Visual input is also processed on demand by a mean-shift tracker [15] based on edge and colour profile, and a 
2-D shape recognition algorithm based on shape contexts [4] when requested by vision-related interaction 
processes.  Visual information thus derived includes the size, shape, colour, and location of each object, and is 
discretized by translation processes for matching with incoming description words (such as “red” and “ball”). 
Visual locations are transformed into arm-space coordinates for grasping by assuming that objects are on the 
plane of the table and performing the appropriate vector math.

The motor control modules for the robot's arm and hand compute forward and inverse kinematics, so 
the hand can be brought via a smooth trajectory towards reachable 3-D coordinates.  The fingers can be spread 
to enable grasping, or moved together to tap an object.  Touch input from the fingers is used along with arm 
kinematic information to provide the location, direction, and magnitude of contact forces between the fingers 
and physical objects.  Collisions are detected by monitoring forces on the fingertip sensors, torques on the arm 
motors, and computing positions relative to hard-coded nearby surfaces.

It should be noted that the robot's hand and arm significantly occludes the camera view of the 
workspace.  The kinematics of the arm and hand are used to create what we call an “occlusion zone” in the 



visual input.  In this area of visual input, apparent visual objects are considered untrustworthy and thus not 
instantiated by the model.

Speech input is collected by a microphone headset worn by the human, and passed through the Sphinx 
4 free speech recognizer and a probabilistic Earley parser (from [22]).  The resulting parse trees provide 
structured tokens to be connected to object schemas and plan hierarchies.

An example behaviour sequence

In this section we narrate a sequence of behaviours (most of which is pictured in Figure 1) and discuss 
how the implementation produces this sequence.  The sequence consists of the following behaviours:

1. The robot is looking at a table with a blue cup and a yellow ball on it.  A green block and a red apple are 
then placed on the table.  The system tracks the objects visually, maintaining the object representations 
throughout new visual frames.

2. The human says “Group the green block and the red apple.”  The robot reaches towards the red apple in 
order to move it towards the green block.

3. The human interrupts the robot's action, saying “The red apple is heavy.”  The robot reaches for the green 
block instead.

4. The robot misses the green block, and its wrist collides with the block.  The robot immediately pulls away 
from the block, avoiding damage.  Assuming it collided with the block, the system revises its location 
estimate for the block.

5. The robot adjusts its targeting, lifts the block, and moves it next to the red apple.

Behaviour 1
The scenario begins with the robot's head facing the table with the blue cup and yellow ball.  At this 

point, two object schemas already exist within the system, one representing the cup and the other representing 
the ball.  Both of these object schemas have been created in response to the visual input.

Visual tracking The green block is then placed on the table.  Figure 9 depicts the processing of the 
subsequent frame of visual input.  This processing requires extracting information about both previously-
known objects, as well as starting to represent and track the green block.

The three visual regions are detected by the unbound sensory process that handles visual segmentation, 
and written to its interaction history.  Each of the pre-existing object schemas includes a visual tracking 
process for identifying regions in new visual frames that correspond to their objects.  Past history data for 
each object schema leads to visual expectations for the object's current appearance.  These expectations are 
compared to the regions in the new frame.  The closest match for each object schema is found according to a 
distance metric and then “claimed” by the schema's visual tracker.

New schema creation The third region written by the segmenter process goes unclaimed.  As depicted 
in Figure 10, the unclaimed region triggers the creation of a new object schema.  New object schemas start out 



with a coordination process, which is responsible for subsequently creating the other processes that will 
maintain the object schema's data and expectations.

At the outset, a typical object schema consists of:

• The coordination process that bootstraps the other necessary processes and removes processes when 
inconsistent data is detected.

• Visual and touch tracking processes to assimilate incoming sensory data.

• Translation processes to convert continuous sensory data (such as weight and colour) into discrete 
attribute categories (corresponding to word labels), and to convert between visual and touch coordinate 
systems.

The visual tracker for each object provides information derived directly from the visual input frame, 
such as average colour, centroid location, and occupied pixel list.  The translation processes then convert these 
into other attributes, such as colour category, shape, and location in physical space.  The expected location in 
physical space is used for subsequent reaching and grasping actions.

Action, condition, and plan fragment processes are later added to some object schemas due to planning 
and language activity.  An action process will be bound to an object schema if the action is targeted towards 
the corresponding object (such as moving towards or lifting the object).  A condition process will be bound to 
an object schema if the condition being tested involves an attribute of the object schema (such as the object 
being at a specific location).  Likewise, a plan fragment process is bound to an object schema if actions and 
conditions within the plan fragment are targeted towards the object.

In subsequent frames, the green block is tracked by its new object schema.  The red apple is then 
handled similarly.

Behaviour 2
The human says “Group the green block and the red apple.”  Speech recognition and the language 

parser convert this verbal input into a parse tree.  The parse tree triggers the creation of a plan hierarchy to 
coordinate the requested actions.  The noun phrases in the parse tree must be connected to object schemas.  In 
order to narrate these mechanisms, we frame the discussion by first describing the full range of verbal inputs 
and motivations of our implementation.

Types of speech input We divide our speech inputs into four types:

Queries Requests for information that require a verbal response, such as “Is the green block near the red 
apple?” and “Describe the block.”

Directives Requests for the robot to perform motor action, such as “Touch the red apple” and “Move the 
block to the right.”

Assertives Statements about the state of an object, such as “The red apple is heavy.”



Correctives Partial directives which cause replacement in the immediately preceding full directive, such 
as “Pick up the red ball... no, the green ball.”  Correctives are handled in a preprocessing step, by 
making the substitution into the preceding directive.

In this example, the speech input is a directive, and leads to a plan hierarchy that attempts to execute a 
sequence of actions.

Primary motivations The implementation makes use of three primary motivations:

Safety The system makes plans to avoid taking damage.  In the current implementation this entails 
avoiding and moving away from physical collisions.

Social The system attempts to interact with the human partner by answering queries and carrying out 
requested actions.

Curiosity The system explores objects by attempting to grasp and lift them.  In doing so, the system 
learns about object affordances by automatically compiling statistics about completed action 
processes.

Speech inputs that request action are processed by attaching a plan fragment process to the social 
motivation.  For a directive, the verb is used to determine the sequence of actions that constitutes the plan 
fragment.  The social motivation is then given a sufficient priority score to cause the planning system to carry 
out the given task.

Reference processes Once the plan fragment process inherits the priority score, the planning system 
will attempt to expand its plan hierarchy.  However, processes in a plan hierarchy cannot be handled by the 
planning system until it is clear which object schemas they are directed towards.

The parse tree for the directive contains two noun phrases, “the green block” and “the red apple.”  A 
reference process is generated for each noun phrase and assigned to an expression based on the parse tree.  As 
an example, the reference process for “the red apple” is assigned the following expression:

(refexpr (= function 
            (lambda (x) (p_and
                         (red x) (apple x))))
         (= definite "definite")
         (= cardinality "1")))) 

The reference process runs a search function that matches object schemas based on category attributes 
provided by translation processes that were trained in a supervised fashion.  When an object schema with 
matching attributes is identified, the processes connected to the reference process (in this case, the plan 
fragment process for “group”) are then bound to the object schema so planning can continue.

Plan hierarchy construction Once an object schema is found for each of the two noun phrases, the 
planning system can continue by expanding the first sequence element of the “group” plan fragment.  The 
sequence consists of a single condition, which tests whether the locations associated with the two schemas are 



near each other.  This “grouped” condition process is created and attached as the child of the plan fragment.  It 
then inherits the priority, and the planning system attempts to satisfy this condition.

The expected results of each plan fragment is programmed with the plan fragment, so the planning 
system can search the list of expected results to find suitable plan fragments.  The planning system can select 
one of two “move object” plan fragments, one that moves one object and one that moves the other.

Expected affordances In order to select between two possible plan fragment processes, the planning 
system creates both within their respective object schemas.  Once this is done, the belief context automatically 
assesses the expected affordances.  This involves examining the history data of the object (i.e., how many 
times the object itself has been successfully moved) and the attribute-linked completion statistics (i.e., for the 
red apple, how often red objects are moved successfully, and how often apples are moved successfully).

Based on these statistics, a success likelihood is generated for each of the prospective plan fragment 
processes.  The planning system will read these likelihoods and then select the plan fragment with the best 
chance of success.  Figure 11 depicts the plan hierarchy as it considers the choice.  Figure 12 shows the 
structure of this hypothetical hierarchy after it has been fully built and executed.

Behaviour 3
The robot has moved its open hand towards the apple in order to move it.  At this point, the human 

says “The red apple is heavy.”  The robot changes its mind and reaches for the green block instead.  This 
behaviour is accomplished by processing the assertive input, updating expected affordances, and revising the 
plan.

Assertive input and expected attributes “The red apple is heavy” is a speech input that asserts a 
belief about an object.  First, a reference process identifies the red apple's object schema. Then, the label 
“heavy” is written as an expected attribute for the history data of the weight-categorizing translation process.

Affordance monitoring and plan revisions As soon as the expectation of “heavy” is added to the 
apple's object schema, the belief context re-evaluates the expected affordance of whether the apple can be 
moved by the robot.  Objects with the “heavy” attribute often cause lifting and moving processes to fail, and 
so the belief context records that any plan fragment processes attempting to lift and move the apple are likely 
to fail.

This in turn causes the active “move object” plan fragment to expect failure, leading to a revision of 
the plan hierarchy.  The system opts to move the block instead, and the robot proceeds to do so.

Behaviour 4
As the robot hand approaches the block, its wrist collides with the block rather than encircling the 

block with the fingers.  It immediately pulls away from the block
Collision handling and claiming unbound data Upon detecting the collision, the collision detection 

process writes information about the collision to its history.  This is noticed by the primary motivation for 
safety, which immediately increases its priority score to the maximum possible.  The action process for 
moving away from a collision runs immediately, and pulls the arm away.  The safety motivation's priority 
score then drops back to zero.

The collision location provided by the collision detection process is also monitored by the touch 
trackers of all object schemas.  Based on distance from an object's location estimate, each touch tracker can 
claim the new collision location as information about its object, writing the collision location to its interaction 
history.  This is analogous to the claiming and writing of visual segment data by the visual trackers.

In this example, the collision location is close to the block's expected location, and so the block's touch 
tracker revises its location estimate in physical space based on the collision.



Behaviour 5
After the interruption by the safety motivation, the social motivation resumes control.  The “move 

hand” action process was deactivated before it completed, and so the plan hierarchy restarts the action 
process, which makes use of the new location estimate provided by the green block's touch tracker.  The hand 
arrives at the green block, closes around it, moves it next to the apple, and releases it.

Multimodal tracking As the hand closes around the green block and begins to lift it, the touch tracker 
for the green block begins writing weight and location information to its interaction history.  The touch 
tracker's location estimate is based on the location from the forward-kinematics for the hand.

However, the visual tracker is continuing to provide visual locations based on the visual region 
associated with the block.  Supposing that the visual tracker and touch tracker were to provide location 
estimates with substantial discrepancy, the coordination process for the object schema then has to step in and 
reconcile the information. It does this by removing the touch tracker from the object schema. The newly-
unbound touch tracker will be used as the basis for a new object schema, just as unclaimed visual regions lead 
to new object schemas.

By concurrently tracking objects in multiple modalities, the model potentially provides a foundation 
for coordinating expectations between modalities in greater detail.  For example, physically rotating an object 
may alter its perceived visual shape.  This is left for future work.  The model could also benefit from the 
ability to merge and split object schemas, to handle cases where multimodal tracking discovers an error such 
as one perceived object turning out to be two, or vice-versa.

Discussion

The value of our model lies in its ability to retain a responsive coupling between its language use, 
planning, and sensorimotor modalities.  Here, we review some of the behaviours that underlie this ability:

1. If the robot is reaching for an object and it misses slightly, colliding its wrist with the object, it will 
respond to the collision by moving away from the point of contact.  The point of contact will immediately 
be claimed by the object schema of the targeted object, which revises its expected physical location, which 
causes the robot to adjust its grasping target accordingly.

2. If the robot is reaching to move a red ball, and it accidentally lifts a nearby green block instead, the visual 
trackers will observe that the red ball is not moving, and will put down the green block and retry the grasp. 
This is the result of a discrepancy at the object schema level between the grasp trackers and the visual 
trackers, which is resolved by the coordination process.

3. When the human says “Group the red apple and the green block...  The red apple is heavy,” the new verbal 
information about the apple's weight is represented as an expectation in the same way as the equivalent 
physical interaction.  This leads to a change in the expected affordances in the object schema, which leads 
to a re-evaluation of the planning system's hierarchy.  The robot will reach for the green block instead.

4. Suppose the human says “Group the red apple and the green block,” without specifying any additional 
object information.  If the robot then attempts to lift the red apple and repeatedly fails, this affects the 
expected affordances in the object schema in the same way, leading to the same re-evaluation.



The data-sharing in our model that enables these sorts of responsive behaviours is made possible by 
the presence of interaction processes in both the object representations and the plan representations.  In 
Example 1, the touch tracker notices the touch contact near the expected location of its object schema, and 
claims the point of contact as another piece of expectation information.  In Example 2, the two trackers and 
the coordination process form a short information path between the touch and vision modalities, enabling a 
local correction.  In Example 3, new verbal information adjusts an expected affordance, so the belief context 
alters the success likelihood for the “move object” plan fragment.  This plan fragment process is also present 
in the plan hierarchy, enabling immediate re-evaluation by the planning system.  Example 4 shows the same 
mechanism with direct physical interaction.

Conclusion

We have developed and implemented a model of object schemas that brings together responsive 
interactive robotics with natural language understanding.  By building object schemas and plan hierarchies 
from the processes that govern responsive interaction, planning and language use are capable of leveraging 
information from the reactive processes directly and immediately.  This stands in contrast to previous hybrid 
approaches that graft behaviour-based reactive control layers to SMPA-based architectures.

Although there are many limitations to the model, the most critical one in our view is that currently all 
schema structures are manually constructed by human designers. As a result, we have had to take great care in 
creating physical environments that are consistent with the hand-coded structures of our robot. In the future 
we plan to turn this situation around by enabling robots to construct object schemas -- and higher order 
relational schemas as well -- that are consistent with whatever environment they find themselves in.
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Figure 1.  The robot, Trisk, is facing a scene that includes a red apple and a green block.  a) Trisk is told, “Group the green block 
and the red apple.”  This request could be satisfied by moving the block towards the apple, or vice versa.  The robot decides to move 
the apple.  b) While the robot reaches for the apple, the human adds, “The red apple is heavy.”  Knowing that heavy objects are 
more difficult to lift, the robot changes its plan and c) moves the green block d) towards the apple instead.  This example 
demonstrates the responsiveness of the system to new information.



Figure 2.  An SMPA hybrid model connects language use to a model of the physical world.  Responsive behaviours can be run at a 
higher priority independently of the SMPA modules, enabling responsiveness but remaining separate from the main system.



Figure 3.  In our model, responsive processes (small ellipses, with small arrows depicting information passed in and out) are 
organized into object schemas (large boxes).  The processes handle the various functions needed to maintain the object schema and 
connect to language.



Figure 4.  Visual notation for four example interaction processes with various run states and finish states.



Figure 5.  Visual notation for interaction history data generated by interaction processes.  For simplicity, not all history data will be 
shown for processes depicted in such diagrams.



Figure 6.  An object schema, containing three interaction processes relevant to its represented object.  The reference process is 
depicted on the edge of the object schema to denote that it controls the object schema by including or removing other processes 
from the schema.  For simplicity, not all processes in an object schema will be shown in these diagrams.



Figure 7.  Top: The visual location associated with this example object schema leads to (denoted by the small arrow) an expectation 
that the corresponding grasp action will complete successfully.  Bottom: The grasp action is completed and reports a failure.



Figure 8.  An example plan hierarchy, showing the primary “social” motivation connected to a tree of interaction processes.  The 
arrows denote a parent-child relation, and indicate that the parent cannot be completed until the child completes.  The tree consists 
of action processes, condition processes, and plan fragment processes.



Figure 9.  Top: The visual segmenter produces a list of coloured regions from a frame of visual input.  Middle: Based on their 
histories, the visual trackers of two object schemas have expected attributes for how their visual regions will appear in the new 
frame.  Bottom: The visual trackers have claimed the regions from the visual segmenter's interaction history, and copied the new 
visual data to their own histories.



Figure 10.  Top: The unclaimed visual segment from Figure 9 triggers the creation of a new object schema in the belief context. 
Bottom: The new schema's coordination process immediately creates trackers and translators which populate the history data for the 
object schema.



Figure 11.  The planning system must choose between two plan fragments, both of which might satisfy the “grouped” condition 
process.



Figure 12.  A completed plan hierarchy for grouping the green block (object 9) and the red apple (object 10).  Action processes are 
typically deleted when they complete, but they are depicted here to show the entire structure.  Temporal sequences for children of 
plan fragments are shown left-to-right.
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