
A Human-Machine Collaborative System for
Identifying Rumors on Twitter

Soroush Vosoughi
The Media Lab

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: soroush@mit.edu

Deb Roy
The Media Lab

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: dkroy@media.mit.edu

Abstract—The spread of rumors on social media, especially
in time-sensitive situations such as real-world emergencies, can
have harmful effects on individuals and society. In this work, we
developed a human-machine collaborative system on Twitter for
fast identification of rumors about real-world events. The system
reduces the amount of information that users have to sift through
in order to identify rumors about real-world events by several
orders of magnitude.

I. INTRODUCTION

Now more than ever, people turn to social media as
their source of news [1], [2], [3]; this is especially true for
breaking-news situations, where people crave rapid updates on
developing events in real-time. As Kwak et al. have shown,
over 85% of all trending topics1 on Twitter are news [3].
Ubiquity and accessibility are among the factors that make
social media a great resource for dissemination of breaking-
news. These same factors, combined with the relative lack of
oversight of such services, make social media fertile ground
for the creation and spread of unsubstantiated and unverified
information about events happening in the world. Users of
Twitter have the incredibly hard task of sifting through a large
number of posts, in order to separate substantiated and trust-
worthy posts from rumors and unjustified assumptions. A case
in point of this phenomenon is the social media’s response to
the Boston Marathon bombings. As much as social media was
a great resource for the people living in the greater Boston
area, enabling them to stay up-to-date on the situation as it
enfolded, it led to several unfortunate instances of false rumors
being spread, and innocent people being implicated in witch-
hunts [4], [5], [6].

In this paper, we present a preliminary overview of a novel
human-machine collaborative system for fast identification of
potential emerging rumors about real-world events. We define a
rumor to be an unverified assertion about an event. On Twitter,
that translates to a collection of tweets, all asserting the same
unverified statement spreading through Twitter. Our system can
be used by journalists, emergency services and consumers of
news to greatly reduce the amount of data they have to sift
through to separate unsubstantiated claims from facts. Note
that this system is designed for identification of rumors and
not verification. The output of our system, however, can be

1Trending topics are those topics being discussed more than others on
Twitter.

used as the input to verification systems, several of which have
been created for Twitter [7], [8], [9], [10].

II. SYSTEM OVERVIEW

An overview of the system can be seen in Figure 1. The
input to our system is a collection of tweets about an event,
specified by the user through a boolean query (e.g., Boston
AND Bombing in this illustration). Our system consists of two
major parts, an assertion detector and a hierarchical clustering
module. Raw tweets about an event feed directly into the
assertion detector, which automatically filters the tweets for
only those containing assertions. The output of the assertion
detector feeds directly into the hierarchical clustering module,
the output of which is a collection of clusters. These clusters
contain messages that have propagated through Twitter; these
are potential rumors about the event of interest. The user can
then sort through these clusters to sift interesting clusters from
the uninteresting and noisy ones. In the next sections, we will
explain the two modules in greater detail.

III. ASSERTION DETECTION

An assertion is an utterance that commits the speaker to the
truth of the expressed proposition. Figure 2 shows two tweets
about the Boston Marathon bombings. The tweet shown in
Figure 2a contains an assertion while the tweet shown in Figure
2b does not. More generally, assertions are a class of speech-
acts. Speech-acts have performative function in language and
communication. For instance, we perform speech acts when
we offer an apology, greeting, request, complaint, invitation,
compliment, or refusal (to name a few). We used a state-of-the-
art supervised Twitter speech-act classifier, which utilizes both
syntactic and semantic features of tweets for classification, to
detect assertions in tweets [9], [11]. This classifier can identify
several different speech-acts in tweets: assertions, expressions,
questions, recommendations and requests.

For the purposes of this work only we were only interested
in classifying assertions, thus we modified the speech-act
classifier into a binary assertion classifier. We trained the
classifier on 7, 000 manually labelled tweets about several
different real-world events, with 3290 (47%) of those tweets
containing assertions and the rest containing one of the other
speech-acts (i.e., expressions questions, etc).

We evaluated the classifier using 5-fold cross validation.
The F1 score, which is the harmonic mean of recall and

Twitter

e.g. Boston AND Bombing

Query

All the matching tweets

Filtered Tweets that contain assertions

Assertion Detection

Hierarchical Clustering

Best Partition

Rumors

Rumors 1

Rumors 2

Rumors 3

Time

Fig. 1: The pipeline of our system. The input to the system
is a collection of tweets about an event specified by the user
through a boolean query (e.g., Boston AND Bombing in this
illustration). The output is a collection of potential rumors.

(a) An assertion. (b) Not an assertion.

Fig. 2: Two example tweets. Tweet (a) contains an assertion,
while tweet (b) does not.

precision (see Equation (1)), for classifying assertions was .86.

F1 =
2 · precision · recall
precision + recall

(1)

In order to better understand the performance of the asser-
tion classifier, we look at the receiver operating characteristic
(ROC), or the ROC curve of the classifier. An ROC curve is
a plot that illustrates the performance of a binary classifier
system as its discrimination threshold is varied. The curve is
created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings. The
definitions for TPR and FPR are shown in Equation (2). In the
equation, TP stands for true positive, TN for true negative, FP
for false positive, and FN for false negative.

T PR =
T P

T P + FN
FPR =

FP
FP + T N

(2)

Using the TPR and FPR we can plot the ROC curve of the
assertion classifier, shown in Figure 3. According to the ROC
curve, at a false positive rate of .28, the true positive rate would
be 1.0. This means that in order to get all the tweets containing

assertions correctly classified, we would have to tolerate 28%
of non-assertion containing tweets mistakenly classified as
containing assertions. Depending on the application that the
system is being used for, one might be able to tolerate this level
of noise in order to capture all assertion containing tweets.
However, if the application requires much more precision,
then a different point on the operating curve can be picked.
For example, at only 15% false positive rate, the tool will
correctly identify 90% of all tweets containing assertions. This
parameter is under the control of the user who can tune it to
different values depending on the application.

Fig. 3: The receiver operating characteristic (ROC) curve of
the assertion classifier.

IV. CLUSTERING OF ASSERTIONS

The second part of the system, shown in Figure 1, is a
clustering module. Generally speaking, hierarchical clustering
is a method of cluster analysis which seeks to build a hierarchy
of clusters. This module takes as input the output of the as-
sertion detector, which is a set of tweets containing assertions.
The output of the clustering module is a collection of clusters,
each containing tweets with similar assertions. There are two
strategies for hierarchical clustering [12]:

• Agglomerative: This is a ”bottom up” approach; each
observation starts in its own cluster, and pairs of
clusters are merged as one moves up the hierarchy.

• Divisive: This is a ”top down” approach; all obser-
vations start in one cluster, and splits are performed
recursively as one moves down the hierarchy.

The complexity of agglomerative clustering is polynomial
at O(n3), while the complexity of divisive clustering is ex-
ponential at O(2n). Given the potentially large number tweets
about an event, we decided to use Hierarchical Agglomerative
Clustering (HAC), given its lower complexity.

A. Data Preparation

Before the tweets are passed to the clustering module, they
are cleaned up. All mentions of usernames (which are denoted
by the @ symbol) were removed. All retweet symbols (which

are denoted by the rt symbol), were also removed. Tweets
also contain very informal language and as such, characters
in words are often repeated for emphasis (e.g., the word good
is used with an arbitrary number of o’s in many tweets). Any
character that was repeated more than two times was removed
(e.g., goooood was replaced with good). Finally, all words in
the tweets were stemmed using Porter Stemming [13].

A large portion of tweets contain links to other websites,
though these links are mostly not meaningful semantically, we
did not remove them. This is because many rumors originate
on sites other than Twitter and in some cases these links are
useful in identifying rumors seeping into Twitter from other
sources.

B. Similarity Function

For agglomerative clustering, there needs to be a way to
decide which clusters should be combined. This is achieved
through the use of a metric that measures the distance between
pairs of observations, or tweets in our case. The similarity
function that we used for HAC of tweets is TF-IDF combined
with cosine similarity. TF-IDF, or Term FrequencyInverse
Document Frequency, is a method of converting text into
numbers so that it can be represented meaningfully by a vector
[14]. TF-IDF is the product of two statistics, TF or Term
Frequency and IDF or Inverse Document Frequency.

Term Frequency measures the number of times a term
(word) occurs in a document. Since each document will be
of different size, we need to normalize the document based on
its size. We do this by dividing the Term Frequency by the total
number of terms. TF considers all terms as equally important,
however, certain terms that occur too frequently should have
little effect (for example, the term ”the”). And conversely,
terms that occur less in a document can be more relevant.
Therefore, in order to weigh down the effects of the terms that
occur too frequently and weigh up the effects of less frequently
occurring terms, an Inverse Document Frequency factor is
incorporated which diminishes the weight of terms that occur
very frequently in the document set and increases the weight
of terms that occur rarely. Generally speaking, the Inverse
Document Frequency is a measure of how much information
a word provides, that is, whether the term is common or rare
across all documents.

The exact formula for calculating TF is shown in Equation
(3). Here, t is the term being processed, d is the document,
and the function f(t,d) measure the raw frequency of t in d.

T F(t, d) = 0.5 +
0.5 × f (t, d)

max{ f (w, d) : w ∈ d}
(3)

The formula for calculating IDF is shown in Equation (4).
Here, N is the total number of documents in the corpus, and
| {d ∈ D : t ∈ d} | is the number of documents where the term t
appears.

IDF(t,D) = log
N

1 + | {d ∈ D : t ∈ d} |
(4)

Using the definitions of TF and IDF, the TF-IDF is then
calculated as shown in Equation (5).

T FIDF(t, d,D) = T F(t, d) × IDF(t,D) (5)

Using TF-IDF, we derive a vector for each tweet. The set
of tweets in our collection is then viewed as a set of vectors in
a vector space with each term having its own axis. We measure
the similarity between two tweets using the formula shown in
Equation (6). Here, d1·d2 is the dot product of two documents,
and ||d1|| × ||d2|| is the product of the magnitude of the two
documents.

S imilarity(d1, d2) =
d1 · d2

||d1|| × ||d2||
(6)

C. Hierarchical Agglomerative Clustering

Using the similarity function that was described, we can
use hierarchical agglomerative clustering (HAC) to cluster
similar assertions together. The arrangement of the clusters
produced by HAC can be illustrated using a dendrogram.
Figure 4 shows a sample dendrogram depicting HAC.Hierarchical Clustering

Best Partition

Rumors

Rumors 1

Rumors 2

Rumors 3

Time

Fig. 4: A sample dendrogram depicting hierarchical agglom-
erative clustering.

As can be seen in the figure, at the very first level all tweets
belong to their own clusters, so there are as many clusters as
there are tweets. At the very root of the tree, is a single cluster,
containing all the tweets. It is up to the user to pick the level
at which the clusters are to be used (this is called the best
partition in Figure 4). These clusters are potential rumors. A
partition higher in the tree (further from the root) would yield
more rumor clusters, with each rumor containing fewer number
of tweets. Conversely, a partition closer to the root would yield
fewer clusters, with each containing greater number of tweets.
Depending on the application and the particular event that is
being looked at, different best partitions can be picked by the
user. For example, if the event in question is a very local event,
meaning that there are not many tweets about the event, then
perhaps a partition further from the root would be more useful
and vice-versa.

V. ANALYSIS AND EVALUATION

An insightful way of measuring the performance of our
system is to measure the bandwidth reduction of information
afforded by our system. Bandwidth reduction is an important
measurement because it can help demonstrate the usefulness
and utility of our system in real-world situations. For example,
a journalist trying to sort out false and true information from
millions of tweets about a real-world event (as was the case
with the Boston Marathon bombings), has a Sisyphean task.
However, our system can make the task much less daunting
and more manageable for our hypothetical journalist by greatly

reducing the amount of information he or she has to sort
through

We would like to estimate the bandwidth reduction afforded
by our system. Of course, the bandwidth reduction would
depend on the level of the partition used in HAC, but generally
speaking, the number of clusters or rumors is somewhere
between hundreds to thousands of rumors, depending on the
size of the event. For example, in the case of the Boston
Marathon bombings, there were about 20 million English-
language tweets about the event (as picked up by a simple user-
defined query). Through the assertion filter, our system reduced
this number by 50% to around 10 million tweets containing
assertions. Finally, using HAC, the system further reduced
the bandwidth by clustering these assertions into somewhere
between 100 and 1000 clusters (depending on the partition set
by the user). This is a reduction by four orders of magnitude,
making it much more manageable for the user to search for
potential rumors.

By utilizing word clouds (which are used to show the most
prominent words in documents), one can quickly and reliably
examine the salient content of each cluster to identify rumors.
Using this method, we manually examined the rumor clus-
ters generated from the Boston Marathon bombings dataset.
Though many of the clusters were junk, we were able to
identify many of the major rumors that propagated on Twitter
during the event 2. Figure 5 shows the word cloud for one
of the rumor clusters generated by our system. It is clear that
this cluster has captured the ”man on the roof” rumor about
the Boston Marathon bombings. This was the rumor that a
man was seen on the roof of a building just as the explosion
occurred on the street below [15].

Fig. 5: Word cloud of one of the rumor clusters, capturing the
”man on the roof” rumor from the Boston Marathon bombings
dataset.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a preliminary view of a human-
machine collaborative system for fast identification of rumors
on Twitter. The system drastically reduces the “bandwidth” of
the information that users have to look through in order to
identify rumors about real-world events.

2See http://www.snopes.com/politics/conspiracy/boston.asp for a list of ru-
mors.

As this work is in its early stages, there are several
directions that are open to exploration in the future. The most
immediate direction is the utilization of more sophisticated
hierarchical clustering methods. For example, ones that are
able to capture topic level similarity, such as the method
developed by Kuang, et al. [16]. Moreover, we would like
expand our evaluation from our current qualitative approach
to a more objective, quantitative one.

ACKNOWLEDGMENT

The authors would like to thank Mostafa “Neo” Mohsen-
vand and Helen Zhou for their help with the preparation of
this document.

REFERENCES

[1] S. Laird, “How social media is taking over the news indus-
try,” April 2012, http://mashable.com/2012/04/18/social-media-and-the-
news/[mashable.com; posted 18-April-2012].

[2] W. Stassen, “Your news in 140 characters: exploring the role of social
media in journalism,” Global Media Journal-African Edition, vol. 4,
no. 1, pp. 116–131, 2010.

[3] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 591–600.

[4] L. Kundani, “When the tail wags the dog: Dangers of crowdsourcing
justice,” July 2013, http://newamericamedia.org/2013/07/when-
the-tail-wags-the-dog-dangers-of-crowdsourcing-
justice.php/[newamericamedia.org; posted 27-July-2013].

[5] D. Lee, “Boston bombing: How internet detectives got it very wrong,”
April 2013, http://www.bbc.com/news/technology-22214511/[bbc.com;
posted 19-April-2013].

[6] M. Valdes, “Innocents accused in online manhunt,” April
2013, http://www.3news.co.nz/Innocents-accused-in-online-
manhunt/tabid/412/articleID/295143/Default.aspx/[3news.co.nz; posted
22-April-2013].

[7] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on
twitter,” in Proceedings of the 20th international conference on World
wide web. ACM, 2011, pp. 675–684.

[8] S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, “Prominent features
of rumor propagation in online social media,” in Data Mining (ICDM),
2013 IEEE 13th International Conference on. IEEE, 2013, pp. 1103–
1108.

[9] S. Vosoughi, “Automatic detection and verification of rumors on twit-
ter,” Ph.D. dissertation, Massachusetts Institute of Technology, 2015.

[10] S. Vosoughi and D. Roy, “Predicting the veracity of rumors on twitter,”
Submitted to The Transactions on Knowledge Discovery from Data,
2015.

[11] S. Vosoughi and D. Roy, “Tweet acts: A speech act classifier for twitter,”
Submitted to PLoS ONE, 2015.

[12] O. Maimon and L. Rokach, Data mining and knowledge discovery
handbook. Springer, 2005, vol. 2.

[13] M. F. Porter, “An algorithm for suffix stripping,” Program: electronic
library and information systems, vol. 14, no. 3, pp. 130–137, 1980.

[14] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cam-
bridge University Press, 2011.

[15] L. Effron, “Mystery ”man on the roof” sparks boston marathon chatter.”
2013.

[16] D. Kuang, J. Choo, and H. Park, “Nonnegative matrix factorization
for interactive topic modeling and document clustering,” in Partitional
Clustering Algorithms. Springer, 2015, pp. 215–243.

