Value Chain Roadmapping for Communications and Media

Professor Charles Fine Massachusetts Institute of Technology Sloan School of Management Cambridge, Massachusetts 02142

April 2003

charley@mit.edu http://web.mit.edu/ctpid/www/people/Fine.html Tel: 1-617-253-3632, Fax: 1-617-253-6720

Excerpts from CLOCK Winning Industry Control in the Age of Temporary Advantage SPDERD Charles H. Fine

1

Prof C. Fine ©MIT 2003

One View (the consumer's) of the Communications Value Chain

Form (Size, Weight, Ergonomics) **O/S** (Windows, Linux, Palm) Appliance HW system (OEM, ODM, CEM) C (Phone, Camera, **Bundled Apps** (phone, MP3, IM, etc.) Laptop, PDA, TV, 0 Missile, MP3 Player) Ν Network (CDMA, WiFi, Sonet, IP, Cable)-Access S (Wireless, POTS, **Equipment** (Lucent, Ericcson, Cisco)⁺ U **ISP**, Satellite, Μ Cable, HotSpot) E Channel (KaZaA, AOL/TW, MTV) R **Content & Applications** Artist (Madonna, NBA, Spielberg, SAP, Self) (Music, Movies, Email, VoIP, Shopping, ERP, SCM, CRM, Banking, IM, **Openness (EFF, RIAA/DMCA, TCPA)** Surveillance, Photos, Games)

Prof C. Fine ©MIT 2003

Another View of the Communications Value Chain

Prof C. Fine ©MIT 2003

3

			-	-			
•Silicon •Gaas •InP •Polymers •Steppers •Etchers •MEMS •Insertion •Etc	•Lasers •Amplifiers •Transceiver •Filters •Processors •Memories •Fiber •ASICS •MEMS •DSP's •Etc	•Routers •Switches •Hubs •Base Stations •Satellites •Servers •Software •O/S •Etc	•Wireless •Backbone •Metro •Access •Substations •Satellites •Broadcast Spectrum •Communic Spectrum •Etc	 Long dist. Local Cellular ISP Broadcast Hot Spots Cable TV Satellite TV VPN's MVNO's Etc 	•Music •Movies •Email •VoIP •POTS •Shopping •ERP •SCM, CRM •Surveillance •eBusiness •Etc	•Computers •Phones •Media Players • Cameras •PDA's •Weapons •Etc	•Business •Consume •Gov't •Military •Education •Medical •Etc

Roadmapping Communications: What are the Premises?

Prof C. Fine <u>©MI</u>T 2003

HOW TO ACHIEVE COORDINATION IN THE ABSENCE OF VERTICAL INTEGRATION?

Roadmapping Communications: What are the Premises?

Prof C. Fine —©MIT 2003

Technology dynamics, Industry dynamics, and Regulatory dynamics are interdependent.

Technology and industry roadmapping are typically done by different people SIA roadmaps provided productive coordination in semiconductors, but focused only on technology & a narrow slice of the value chain. Industry growth was assumed. --> Not a good model for Communications.

Productive roadmapping must encompass multiple links of the value chain, a multidisciplinary team, and the coevolution of technology, industry, and regulatory policy.

"If you come to a fork in the Road[map], Take it." --Yogi Berra

©MIT 2003

INFORMATION WANTS TO BE SHARED

==> Difficult content business models

Internet explosion Wireless Explosion Connectivity Explosion File Sharing Explosion

> INFORMATION SHARERS GO TO JAIL ==> Poverty of The Commons

"If you come to a fork in the Road[map], Take it." --Yogi Berra

7

Is there a

third way?

(Quantum

Roadmap)

Internet explosion Wireless Explosion Connectivity Explosion File Sharing Explosion

> INFORMATION SHARERS GO TO JAIL ==> Poverty of The Commons

Proposed MIT Communications Roadmap Consortium ⁸

Dynamic Analysis to Support Industry & Technology Roadmapping

Roadmap Components: Dynamic Analyses

Prof C. Fine ©MIT 2003

- Business cycle dynamics (e.g., the bullwhip effect)
- Industry structure dynamics (e.g., double helix in *Clockspeed*)
- 3. Corporate strategy dynamics (e.g., dynamic matching of customer needs with corporate opportunities)
- 4. Customer Preference Dynamics
- 5. Technology dynamics (e.g., the Semiconductor

Industry Assoc. roadmap built around Moore's law)

6. Regulatory Policy Dynamics

(Cross-National, Cross Sector)

7. Capital Markets Dynamics

10

Cisco's End-to-End Integration for its Fulfillment Supply Chain

Basic Design Principle: Arm's length Relationship with Fulfillment Chain Partners

Prof C. Fine ©MIT 2003 Cisco's Strategy for Technology Supply Chain Design

- Prof C. Fine ©MIT 2003
- Integrate technology around the router to be a communications network provider.
- 2. Leverage acquired technology with
 - sales muscle and reach
 - end-to-end IT
 - outsourced manufacturing
 - market growth
- 3. Leverage venture capital to supply R&D

Basic Design Principle: Acquisition Relationship with Technology Chain Partners

Volatility Amplification in the Supply Chain: "The Bullwhip Effect"

13

Supply Chain Volatility Amplification:

Machine Tools at the tip of the Bullwhip

% Chg. GDP — % Chg. Vehicle Production Index •

% Chg. Net New Orders Machine Tool Industry

"We are experiencing a 100-year flood." J. Chambers, 4/16/01

Prof C. Fine

Volatility in the Electronics & Semiconductors Supply Chain

LESSONS FROM A FRUIT FLY: CISCO SYSTEMS

Prof C. Fine ©MIT 2003

- KNOW YOUR LOCATION IN THE VALUE CHAIN
- 2. UNDERSTAND THE DYNAMICS OF VALUE CHAIN FLUCTUATIONS
- 3. THINK CAREFULLY ABOUT THE ROLE OF VERTICAL COLLABORATIVE RELATIONSHIPS
- 4. INFORMATION AND LOGISTICS SPEED DO NOT REPEAL BUSINESS CYCLES OR THE BULLWHIP.

Bonus Question: How does clockspeed impact volatility?

Roadmap Components: Dynamic Analyses

Prof C. Fine ©MIT 2003

- Business cycle dynamics (e.g., systems dynamics-like models of the bullwhip effect)
- Industry structure dynamics

(e.g., double helix in *Clockspeed*)

- 3. Corporate strategy dynamics (e.g., dynamic matching of customer needs with corporate opportunities)
- 4. Customer Preference Dynamics
- **5. Technology dynamics (e.g., the Semiconductor**

Industry Assoc. roadmap built around Moore's law)

6. Regulatory Policy Dynamics

(Cross-National, Cross Sector)

The Strategic Leverage of Value Chain Design: Who let Intel Inside? Prof C. Fine ©MIT 2003

1980: IBM designs a product, a process, & a value chain

The Outcome:

- A phenomenonally successful product design
- A disastrous value chain design (for IBM)

LESSONS FROM A FRUIT FLY: THE PERSONAL COMPUTER

Prof C. Fine <u>©MIT 2003</u>

- 1. BEWARE OF *INTEL INSIDE* (Regardless of your industry)
- 2. MAKE/BUY IS **NOT** ABOUT WHETHER IT IS *TWO CENTS CHEAPER* OR *TWO DAYS FASTER* TO OUTSOURCE VERSUS INSOURCE.
- DEVELOPMENT PARTNERSHIP DESIGN CAN DETERMINE THE FATE OF COMPANIES AND INDUSTRIES, AND OF PROFIT AND POWER
- 4. THE LOCUS OF VALUE CHAIN CONTROL CAN SHIFT IN UNPREDICTABLE WAYS

Vertical Industry Structure with Integral Product Architecture

Computer Industry Structure, 1975-85

(A. Grove, Intel; and Farrell, Hunter & Saloner, Stanford)

Prof C. Fine ©MIT 2003

Horizontal Industry Structure with *Modular* Product Architecture

Computer Industry Structure, 1985-95

Microprocessors	Intel	Moto AMD etc	
Operating Systems	Microsoft	Mac Unix	
Peripherals	HP Epson Seag	gate etc etc	
Applications Software	Microsoft Lotus N	ovell etc	
Network Services	AOL/Netscape Microsoft	EDS etc	
Assembled Hardware	HP Compaq IBM De	ell etc	

(A. Grove, Intel; and Farrell, Hunter & Saloner, Stanford)

THE DYNAMICS OF PRODUCT ARCHITECTURE STANDARDS, AND VALUE CHAIN STRUCTURE: THE DOUBLE HELIX

Fine & Whitney, "Is the Make/Buy Decision Process a Core Competence?"

Prof C. Fine

Roadmap Components: Dynamic Analyses

Prof C. Fine ©MIT 2003

- Business cycle dynamics

 (e.g., systems dynamics-like models
 of the bullwhip effect)
- Industry structure dynamics (e.g., double helix in *Clockspeed*)
- 3. Corporate strategy dynamics (e.g., dynamic matching of customer needs w/corp. opport)
- 4. Customer Preference Dynamics
- 5. Technology dynamics (e.g., the Semiconductor Industry Assoc. roadmap built around Moore's law)
- **6. Regulatory Policy Dynamics**

(Cross-National, Cross Sector)

ALL COMPETITIVE ADVANTAGE IS TEMPORARY

Prof C. Fine ©MIT 2003

Autos:

Ford in 1920, *GM* in 1955, *Toyota* in 1990

Computing: IBM in 1970, *DEC* in 1980, *Wintel* in 1990

World Dominion:

Greece in 500 BC, Rome in 100AD, G.B. in 1800

Sports:

Bruins in 1971, Celtics in 1986, Yankees no end

The faster the clockspeed, the shorter the reign

VALUE CHAIN DESIGN: Three Components

Prof C. Fine ©MIT 2003

1. Insourcing/OutSourcing

(The Make/Buy or Vertical Integration Decision)

2. Partner Selection (Choice of suppliers and partners for the chain)

3. The Contractual Relationship (Arm's length, joint venture, long-term contract, strategic alliance, equity participation, etc.)

Clockspeed drives Business Strategy Cadence

Prof C. Fine <u>©MI</u>T 2003

Dynamics between New Projects and Core Capability Development: PROJECTS MUST MAKE MONEY AND BUILD CAPABILITIES

Leonard-Barton, Wellsprings of Knowledge

Projects Serve Three Masters: Capabilities, Customers, & Corporate Profit

IMPLEMENTATION OF **PROJECT DESIGN**: FRAME IT AS 3-D CONCURRENT ENGINEERING

Prof C. Fine

ARCHITECTURES IN 3-D INTEGRALITY VS. MODULARITY

Prof C. Fine ©MIT 2003

Integral product architectures feature close coupling among the elements

- Elements perform many functions
- Elements are in close spacial proximity
- Elements are tightly synchronized
- Ex: jet engine, airplane wing, microprocessor

Modular product architectures feature

separation among the elements

- Elements are interchangeable
- Elements are individually upgradeable
- Element interfaces are standardized
- System failures can be localized

Ex: stereo system, desktop PC, bicycle

VALUE CHAIN ARCHITECTURE

Prof C. Fine <u>©MIT 2003</u>

Integral value-chain architecture

features close proximity among its elements

- Proximity metrics: Geographic, Organizational Cultural, Electronic
 - Example: Toyota city
 - Example: Ma Bell (AT&T in New Jersey)
 - Example: IBM mainframes & Hudson River Valley

Modular value-chain architecture features multiple,

interchangeable supplier and standard interfaces

- Example: Garment industry
- Example: PC industry
- Example: General Motors' global sourcing
- Example: Telephones and telephone service

ALIGNING ARCHITECTURES: BUSINESS SYSTEMS & TECHNOLOGICAL SYSTEMS

Prof C. Fine

	BUSINESS SYSTEM/SUP (Geog., Organ., Cultural, Ele INTEGRAL	c.)	
INTEGRAL	Microprocessors Mercedes & BMW vehicles	Lucent Nortel	Polaroid
	MSFT Windows	Chrysler vehicles	Cisco
MODULAR	Digital Rights/ Music Distribution		Dell PC'S Bicycles

TECHNOLOGY/PRODUCT ARCHITECTURE

 In/Outsourcing: Sowing the Seeds
 32

 of Competence Development to develop

 dependence for knowledge or dependence for capacity

 Prof C. Fine

 ©MIT 2003

Technology Dynamics in the Aircraft Industry: **LEARNING FROM THE DINOSAURS**

33

SOURCEABLE ELEMENTS

Prof C. Fine ©MIT 2003

34

Strategic Make/Buy Decisions: Assess Critical Knowledge & Product Architecture Prof C. Fine

			© M	IIT 2003
ITEM IS INTEGRAL ITEM IS MODULAR	DEPENDENT FOR KNOWLEDGE & CAPACITY	INDEPENDENT FOR KNOWLEDGE & DEPENDENT FOR CAPACITY	INDEPENDENT FOR KNOWLEDGE & CAPACITY	
	A POTENTIAL OUTSOURCING TRAP	BEST OUTSOURCING OPPORTUNITY	OVERKILL IN VERTICAL INTEGRATION	
	WORST OUTSOURCING SITUATION	CAN LIVE WITH OUTSOURCING	BEST INSOURCING SITUATION	

Adapted from Fine & Whitney, "Is the Make/Buy Decision Process a Core Competence?"

Strategic Make/Buy Decisions: Also consider Clockspeed & Supply Base Capability

Adapted from C. Fine, Clockspeed, Chap. 9

36
Qualitative analysis of strategic importance uses five key criteria

Every decision requires qualitative and quantitative analysis to reach a conclusion

©MIT 2003 **Knowledge** Supply High Improve Invest & Qualitative Value **Economics** Build Strategic Qualitative Model Importance Divest/ Harvest Outsource Investment L0 ≷ High Low Quantitative Value **EVA** NOPAT BIC GMPT EVA Quantitative Model (Financial) EVA Fixed

Model developed by GM Powertrain, PRTM, & Clockspeed, Inc.

38

Prof C. Fine

VALUE CHAIN DESIGN IS <u>THE ULTIMATE</u> CORE COMPETENCY

Prof C. Fine <u>©MIT 2003</u>

Since all advantages are temporary, the only lasting competency is to continuously build and assemble capabilities chains.

KEY SUB-COMPETENCIES:

- 1. Forecasting the dynamic evolution of market power and market opportunities
- 2. Anticipating Windows of Opportunity
- 3. 3-D Concurrent Engineering: Product, Process, Value Chain

Fortune Favors the Prepared Firm

PROCESS FOR VALUE CHAIN DESIGN

Prof C. Fine ©MIT 2003

OPTICAL TELECOM VALUE CHAIN: MINI CASE EXAMPLE

Prof C. Fine <u>©MIT 2003</u>

NORTEL NETWORKS plays at at least three levels of the Optical Network Telecom value chain:

- Network design & installation
- Modules (OC-192 network elements)
- Components (lasers, amplifiers)

QUIZ: Should Nortel sell their components business?

Hint: How likely are the scenarios of:

- An Intel Inside effect in components?
- Networks become sufficiently modular as to be assembled by the customer?

WIRELESS VALUE CHAIN:MINI CASE EXAMPLE

Wireless Base Stations (WSB'S) comprise 4 key subsystems:

WSB architectures are -integral & proprietary Suppliers include: Nortel, Moto, Ericsson, Siemens, Nokia Disruptive Modem advances (e.g., MUD) can double Base Station Capacity

Modular WSB's might

- (1) Stimulate new WSB entrants (ala Dell)
- (2) Stimulate standard subsystem suppliers
- (3) lower prices to the network operators
- (4) Speed base station performance imp.
- (5) Increase demand for basestations due to improved price-performance ratios.

Roadmap Components: Dynamic Analyses

Prof C. Fine ©MIT 2003

- Business cycle dynamics

 (e.g., systems dynamics-like models
 of the bullwhip effect)
- Industry structure dynamics

(e.g., double helix in *Clockspeed*)

- 3. Corporate strategy dynamics (e.g., dynamic matching of customer needs with corporate opportunities)
- 4. Customer Preference Dynamics
- 5. Technology dynamics (e.g., Semiconductor Industry Assoc. roadmap & Moore's law)
- 6. Regulatory Policy Dynamics

(Cross-National, Cross Sector)

Customer Preference Drivers

(adapted from Sadek Esener, UCSD and Tom O'Brien, Dupont "Macro-Trends" process)

Prof C. Fine -©MIT 2003

- Population
 - Aging, Growth
- Awareness
 - of Environment/Energy costs, Personal Health
 - of consumption possibilities & disparities
- 3. Globalization
 - of commerce, culture, knowledge, disease, terrorism
- 4. Clusters
 - urbanization
 - wealth
 - affinity/ethnic groups
- 5. Technology
 - cheap computation, pervasive connectivity
 - technology at the molecular (nano) level (life sciences, electronics, polymers)

Roadmap Components: Dynamic Analyses

Prof C. Fine ©MIT 2003

- Business cycle dynamics (e.g., systems dynamics-like models of the bullwhip effect)
- Industry structure dynamics

(e.g., double helix in *Clockspeed*)

- 3. Corporate strategy dynamics (e.g., dynamic matching of customer needs with corporate opportunities)
- **4. Customer Preference Dynamics**
- 5. Technology dynamics (e.g., Semiconductor Industry Assoc. roadmap & Moore's law)
- **6. Regulatory Policy Dynamics**

(Cross-National, Cross Sector)

Roadmap for Electronic Devices

Number of chip components

International Technology Roadmap for Semiconductors '99

©MIT 2003

Year	2005	2008	2011	2014	
Technology (nm)	100	70	50	35	_
DRAM chip area (mm ²)	526	603	691	792	
DRAM capacity (Gb)	8		64		
MPU chip area (mm ²)	622	713	817	937	
MPU transistors (x10 ⁹)	0.9	2.5	7.0	20.0	
MPU Clock Rate (GHz)	3.5	6.0	10.0	13.5	

Disk Drive Development 1978-1991

Prof C. Fine ©MIT 2003

Disk Drive Generation			Approx cost per Megabyte	
14"	IBM	mainframe	\$750	
8 "	Quantum	Mini-computer	\$100	
5.25"	Seagate	Desktop PC	\$30	
3.5"	Conner	Portable PC	\$7	
2.5"	Conner	Notebook PC	\$2	

From 1991-98, Disk Drive storage density increased by 60%/year while semiconductor density grew ~50%/year. Disk Drive cost per megabyte in 1997 was ~ \$.10

Optical Networking is Keeping Up!

Prof C. Fine ©MIT 2003

49

"Killer Technologies" of the Information Age: Semiconductors, Magnetic Memory, Optoelectronics

Prof C. Fine <u>©MIT 2003</u>

"We define a <u>'killer technology'</u> as one that delivers enhanced systems performance of a factor of at least a hundred-fold per decade."

C.H.Fine & L.K. Kimerling, "Biography of a Killer Technology: Optoelectronics Drives Industrial Growth with the Speed of Light," published in 1997 by the Optoelectronics Industry Develoment Association, 2010 Mass Ave, NW, Suite 200, Wash. DC 20036-1023.

Killer Question:

Will <u>Integrated Optics</u> evolve linearly like Semiconductors with Moore's Law or like Disk Drives with repeated industry disruptions?

Optical Technology Evolution: Navigating the Generations with an Immature Technology

Prof C. Fine ©MIT 2003

	1	2	3	4	5
Timeline	Now	Starting	Starting	3-5 years	5-15 years
Stage	Discrete Components	Hybrid Integration	Low-level monolithic integration	Medium Monolithic integration	High-level monolithic integration
Examples	MUX/ DEMUX	TX/RX module OADM	TX/RX module OADM	OADM, Transponder Switch Matrix	Transponder
Core Techno- logies	FBGs, Thin- film, fused fiber, mirrors	Silicon Bench, Ceramic substrates	Silica Silicon I nP	InP, ??	InP, ??
How many Functions?	1	2-5	2-5	5-10	10-XXX
Industry Structure	Integrated	Integrated/ Horizontal	Integrated /Horizontal	DOUBLE HELIX	DOUBLE HELIX

Dr. Yanming Liu, MIT & Corning

Roadmap Components: Dynamic Analyses

Prof C. Fine ©MIT 2003

- Business cycle dynamics

 (e.g., systems dynamics-like models
 of the bullwhip effect)
- Industry structure dynamics

(e.g., double helix in *Clockspeed*)

- 3. Corporate strategy dynamics (e.g., dynamic matching of customer needs with corporate opportunities)
- 4. Customer Preference Dynamics
- 5. Technology dynamics (e.g., the Semiconductor Industry Assoc. roadmap built around Moore's law)
- 6. Regulatory Policy Dynamics

(Cross-National, Cross Sector)

All Conclusions are *Temporary*

Prof C. Fine ©MIT 2003

54

Clockspeeds are increasing almost everywhere Value Chains are changing rapidly

Assessment of value chain dynamics

Roadmap Construction

