DISTRIBUTED HASH TABLES:
simplifying building robust
Internet-scale applications

M. Frans Kaashoek
kaashoek@lcs.mit.edu

PROJECT IRIS
http://www.project-iris.net

Supported by an NSF big ITR

What Is a P2P system?

[]
égTégNode]
[]
—= ——
Internet

[]]
N PN
Node Node

e A distributed system architecture:
e No centralized control

e Nodes are symmetric in function
e Larger number of unreliable nodes
e Enabled by technology improvements

P2P: an exciting social development

e |Internet users cooperating to share, for
example, music files

e Napster, Gnutella, Morpheus, KaZaA, etc.

e Lots of attention from the popular press

“The ultimate form of democracy on the
Internet”

“The ultimate threat to copy-right protection
on the Internet”

How to build critical services?

e Many critical services use Internet
e Hospitals, government agencies, etc.

e These services need to be robust
e Node and communication failures
e Load fluctuations (e.g., flash crowds)
e Attacks (including DDoS)

Example: robust data archiver

Idea: archive on other user’s machines
Why?
e Many user machines are not backed up

e Archiving requires significant manual effort now
e Many machines have lots of spare disk space

Requirements for cooperative backup:
e Don't lose any data
 Make data highly available

e Validate integrity of data
e Store shared files once

More challenging than sharing music!

The promise of P2P computing

Reliability: no central point of failure
e Many replicas

e Geographic distribution

High capacity through parallelism:

e Many disks

e Many network connections

e Many CPUs

Automatic configuration

Useful Iin public and proprietary settings

Distributed hash table (DHT)

e DHT distributes data storage over perhaps millions of nodes

DHT distributes blocks by hashing

_________________________________ 732 705
995: | ¢+ i Node B
key=901
key=732 | i 7N\ peemeeemeeemmeesseeeee
Signature | | 247-
. Node A i ey=407
| 4((),; | :Node C | key=992
T e L | § key=705
| Signature
NodeD
Block Block
901 992

e DHT replicates blocks for fault tolerance

e DHT balances load of storing and serving

A DHT has a good interface

e Put(key, value) and get(key) ® value
e Simple interface!

e API supports a wide range of applications
e DHT imposes no structure/meaning on keys

e Key/value pairs are persistent and global
e Can store keys in other DHT values
e And thus build complex data structures

A DHT makes a good shared
Infrastructure

e Many applications can share one DHT service
e Much as applications share the Internet

e Eases deployment of new applications

e Pools resources from many participants
e Efficient due to statistical multiplexing
e Fault-tolerant due to geographic distribution

Many applications for DHTs

File sharing [CFS, OceanStore, PAST, lvy, ...]
Web cache [Squirrel, ..]

Archival/Backup store [HiveNet,Mojo,Pastiche]
Censor-resistant stores [Eternity, FreeNet,..]
DB query and indexing [PIER, ...]

Event notification [Scribe]

Naming systems [ChordDNS, Twine, ..]
Communication primitives [I3, ...]

Common thread: data is location-independent

DHT implementation challenges

e Data Integrity O i
IS

e Scalable lookup - talk
e Handling failures
e Network-awareness for performance
e Coping with systems in flux
e Balance load (flash crowds)
e Robustness with untrusted participants
e Heterogeneity
e Anonymity
 Indexing

Goal: simple, provably-good algorithms

1. Data integrity:
self-authenticating data

File System key=995

901= SHA-1
995: “ v i~
key:901//T a.txt” ID=144
key=732_
Signature [

(root block)

431=SHA-1

key=431

—>

144 = SHA-1 |

key=795_

(i-node block)

(directory blocks)

e Key = SHA-1(content block)
e File and file systems form Merkle hash trees

o

(data)

2. The lookup problem

Put (Key=sha-1(data),
Value=data...)

publisher Client

Get(key=sha-1(data))
N6

e Get() is a lookup followed by check

e Put() Is a lookup followed by a store

Centralized lookup (Napster)

SetLoc(“title”, N4) Nl N2
N, _
/_\ Client
. <
Publlshgr@N4 DB Lookup(“title™)
Key="title”
Value=file data... N
N 8
9 N7
N6

Simple, but O(N) state and a single point of failure

Flooded gueries (Gnutella)

N, APARN Lookup(“title”)
,/ \——/Ng Client
Publisher@N,

Key="title”
Value=MP3 data...

Robust, but worst case O(N) messages per lookup

Algorithms based on routing

e Map keys to nodes in a

load-balanced way K5x
e Hash keys and nodes into N105 }
a string of digit Circular X
e Assign key to “closest”
nodg y ID space N3 2
N9O A f
e Forward a lookup for a key K80 [Yso
to a closer node

e Join: insert node In ring

Examples: CAN, Chord, Kademlia, Pastry, Tapestry,
Viceroy, Koorde, ..

Chord’s routing table: fingers

Ya Yo

1/8

1/16
1/32
1/64
1/128

N8O

Lookups take O(log(N)) hops

N5

N110

N99

N80

N10

N20

N60O

N32

K19

Lookup(K19)

e Lookup: route to closest predecessor

3. Handling failures: redundancy

NS

N10
N110

K19

N20

N99

K19

N32

N4o | K19

N80

N60

e Each node knows IP addresses of next r nodes
e Each key is replicated at next r nodes

Lookups find replicas

NS

N110

N99

N80

N68 | | N60
Lookup(K19)

- Opportunity to serve data from nearby node

e Use erasure codes to reduce storage and comm overhead

Robustness Against Failures

0.020
2= 0.015 -
o 1000 DHT servers
)
3 ¢ Average of 5 runs
L - Run before stabilization
a ' All failures due to replica
2 T failing
8
L
; 0.005 —) 50% of nodes disappear
Q 1 but only less than
Vi * B 1.6% of lookups fail
n.nnn IIII.IIII’IIII-IIII,IIIIIIIII,IIII IIII| IIIIIIIII |IIII
0.0 0.1 0.2 0.3 0.4 0.5

Failed Nodes (Fraction)

4. Exploiting proximity

- N20 K\
tqm Y

‘.‘\“ Comell

“ ""N41
' #‘*’i‘“

 Nodes close on ring, but far away in Internet

e Goal: put nodes in routing table that result in few
nops and low latency

e Problem: how do you know a node is nearby?
How do you find nearby nodes?

Vivaldi: synthetic coordinates

—~—

e Model the network as network of springs
e Distributed machine learning algorithm
e Converges fast and is accurate

Vivaldi predicts latency well

20

" £ PlanetLab
T - RON
E*‘““ 5 i
3 " .
o
S . NYC (+)
- w' « Australia (-)
-

] '] '
d LA 406 G
Predictsd Latency imillseconds i

Finding nearby nodes

e Swap neighbor sets with random
neighbors

e Combine with random probes to explore
e Provably-good algorithm to find

nearby neighbors based on sampling
[Karger and Ruhl 02]

Reducing latency

0

400

300

lhtency (i ms)

20

144

Mone= Frag 5el Avoid Pred Froncim Ay

Techniawes (cunmulativel

- Latency = lookup + download

DHT implementation summary

e Chord for looking up keys

e Replication at successors for fault
tolerance

 Vivaldi synthetic coordinate system for
e Proximity routing
e Server selection

Conclusions

e Once we have DHTs, building large-scale,
distributed applications Is easy
e Single, shared infrastructure for many applications
e Robust in the face of failures and attacks
e Scalable to large number of servers
e Self configuring across administrative domains
e Easy to program

e Let’s build DHTs stay tuned

http://project-iris.net

