
DISTRIBUTED HASH TABLES:
simplifying building robust
Internet-scale applications

M. Frans Kaashoek
kaashoek@lcs.mit.edu

PROJECT IRIS
http://www.project-iris.net

Supported by an NSF big ITR

What is a P2P system?

• A distributed system architecture:
• No centralized control
• Nodes are symmetric in function

• Larger number of unreliable nodes
• Enabled by technology improvements

Node

Node

Node Node

Node

Internet

P2P: an exciting social development

• Internet users cooperating to share, for
example, music files
• Napster, Gnutella, Morpheus, KaZaA, etc.

• Lots of attention from the popular press
“The ultimate form of democracy on the

Internet”
“The ultimate threat to copy-right protection

on the Internet”

How to build critical services?

• Many critical services use Internet
• Hospitals, government agencies, etc.

• These services need to be robust
• Node and communication failures
• Load fluctuations (e.g., flash crowds)
• Attacks (including DDoS)

Example: robust data archiver
• Idea: archive on other user’s machines
• Why?

• Many user machines are not backed up
• Archiving requires significant manual effort now
• Many machines have lots of spare disk space

• Requirements for cooperative backup:
• Don’t lose any data
• Make data highly available
• Validate integrity of data
• Store shared files once

• More challenging than sharing music!

The promise of P2P computing

• Reliability: no central point of failure
• Many replicas
• Geographic distribution

• High capacity through parallelism:
• Many disks
• Many network connections
• Many CPUs

• Automatic configuration
• Useful in public and proprietary settings

Distributed hash table (DHT)

Distributed hash table

Distributed application

get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

• DHT distributes data storage over perhaps millions of nodes

(Archiver)

(DHash)

(Chord)

DHT distributes blocks by hashing

InternetNode A
Node C

Node B

Node D

995:
key=901
key=732
Signature

Block
732

Block
901

247:
key=407
key=992
key=705
Signature

Block
992

Block
407

Block
705

• DHT replicates blocks for fault tolerance

• DHT balances load of storing and serving

A DHT has a good interface

• Put(key, value) and get(key) → value
• Simple interface!

• API supports a wide range of applications
• DHT imposes no structure/meaning on keys

• Key/value pairs are persistent and global
• Can store keys in other DHT values
• And thus build complex data structures

A DHT makes a good shared
infrastructure

• Many applications can share one DHT service
• Much as applications share the Internet

• Eases deployment of new applications
• Pools resources from many participants

• Efficient due to statistical multiplexing
• Fault-tolerant due to geographic distribution

Many applications for DHTs

• File sharing [CFS, OceanStore, PAST, Ivy, …]
• Web cache [Squirrel, ..]
• Archival/Backup store [HiveNet,Mojo,Pastiche]
• Censor-resistant stores [Eternity, FreeNet,..]
• DB query and indexing [PIER, …]
• Event notification [Scribe]
• Naming systems [ChordDNS, Twine, ..]
• Communication primitives [I3, …]

Common thread: data is location-independent

DHT implementation challenges

• Data integrity
• Scalable lookup
• Handling failures
• Network-awareness for performance
• Coping with systems in flux
• Balance load (flash crowds)
• Robustness with untrusted participants
• Heterogeneity
• Anonymity
• Indexing

Goal: simple, provably-good algorithms

this
talk

1. Data integrity:
self-authenticating data

• Key = SHA-1(content block)
• File and file systems form Merkle hash trees

995:
key=901
key=732
Signature

File System key=995

…
…

“a.txt” ID=144 key=431
key=795

…

…

(root block)

(directory blocks)

(i-node block)
(data)

901= SHA-1 144 = SHA-1
431=SHA-1

2. The lookup problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Put (Key=sha-1(data),
Value=data…) Client

Get(key=sha-1(data))

?

• Get() is a lookup followed by check

• Put() is a lookup followed by a store

Centralized lookup (Napster)

Publisher@

Client

Lookup(“title”)

N6

N9 N7

DB

N8

N3

N2N1SetLoc(“title”, N4)

Simple, but O(N) state and a single point of failure

Key=“title”
Value=file data…

N4

Flooded queries (Gnutella)

N4Publisher@
Client

N6

N9

N7
N8

N3

N2N1

Robust, but worst case O(N) messages per lookup

Key=“title”
Value=MP3 data…

Lookup(“title”)

Algorithms based on routing
• Map keys to nodes in a

load-balanced way
• Hash keys and nodes into

a string of digit
• Assign key to “closest”

node

Examples: CAN, Chord, Kademlia, Pastry, Tapestry,
Viceroy, Koorde, ..

K20
K5

K80

Circular
ID space N32

N90

N105

N60
• Forward a lookup for a key
to a closer node

• Join: insert node in ring

Chord’s routing table: fingers

N80

½¼

1/8

1/16
1/32
1/64
1/128

Lookups take O(log(N)) hops

N32

N10

N5

N20

N110

N99

N80

N60

Lookup(K19)

K19

• Lookup: route to closest predecessor

3. Handling failures: redundancy

N32

N10

N5

N20

N110

N99

N80

N60

• Each node knows IP addresses of next r nodes
• Each key is replicated at next r nodes

N40

K19

K19

K19

Lookups find replicas

N40

N10

N5

N20

N110

N99

N80

N60

N50

N68

1. 2.

3.

4.

Lookup(K19)

• Opportunity to serve data from nearby node

• Use erasure codes to reduce storage and comm overhead

K19

Robustness Against Failures
Fa

ile
d

Lo
ok

up
s

(F
ra

ct
io

n)

Failed Nodes (Fraction)

1000 DHT servers
Average of 5 runs
Run before stabilization
All failures due to replica
 failing

50% of nodes d isappear
 but only less than
 1.6% of lookups fai l

4. Exploiting proximity

• Nodes close on ring, but far away in Internet
• Goal: put nodes in routing table that result in few

hops and low latency
• Problem: how do you know a node is nearby?

How do you find nearby nodes?

CA-T1
C C I
Aros
Utah

CMU

To vu.nl
Lulea.se

MIT
MA-Cable
Cisco

Cornell

NYU

OR-DSL N20

N41N80
N40

Vivaldi: synthetic coordinates

• Model the network as network of springs
• Distributed machine learning algorithm
• Converges fast and is accurate ….

Vivaldi predicts latency well

• NYC (+)

• Australia (•)

• PlanetLab

• RON

Finding nearby nodes

• Swap neighbor sets with random
neighbors

• Combine with random probes to explore

• Provably-good algorithm to find
nearby neighbors based on sampling
[Karger and Ruhl 02]

Reducing latency

• Latency = lookup + download

DHT implementation summary

• Chord for looking up keys
• Replication at successors for fault

tolerance
• Vivaldi synthetic coordinate system for

• Proximity routing
• Server selection

Conclusions

• Once we have DHTs, building large-scale,
distributed applications is easy
• Single, shared infrastructure for many applications
• Robust in the face of failures and attacks
• Scalable to large number of servers
• Self configuring across administrative domains
• Easy to program

• Let’s build DHTs …. stay tuned ….

http://project-iris.net

