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 We create new
responsive spaces that create new forms of

* Our work is highlighted in diverse application areas, which range
from interactive music systems and wearable computers to smart
highways and medical instrumentation.




Intelligence at the Extremeties

Decision/Action logic

I Base Station

Data Fusion, Detection, Classification and
Mapping or Descriptive Algorithms

|

Decision/Action logic

Node-node communication, local
feature extraction - sensate media
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Local low-level
feature extraction

Sar Topology

e Local processor detects,
processes or compresses
local features

* High data rates possible
with limited node densities

Wearable, medical applications

Peer-Peer
» Feature extraction via local
communication

* Results routed out node-
node

*Potentially scalable to very
high density

Electronic skins, sensate media



Expressive Footwear

o 2-axistilt sensor
o 3-axis compass
. o 1-axisrate gyro

P (R e 3-axis shock sensor
e Height sensor (EFS)
e SOnar recelver
e 1 PVDF strip (sole)
e 3 FSR pressure tabs (sole)
* Bend sensor (sole)
« 3Volt Battery Reference
* Battery low detect

o 20 kb/sec wireless

* 413 & 433 MHZ

e PIC 16C711

* 50 Hz updates from each foot.

e ~ 50 mA draw
- HAlf day or more of life
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Compact MultiSensor Wireless Stack

JAP

o Stack of ultracompact, low power circuit
boards

» [|nertial, tactile, location/displacement
board layers

* Wireless RF layer — many nodes
networked to base station

» Basisof configurable wearable system for
interactive dance, medical monitoring

3-layer wearable board stack

Tactile (bend, pressure) sensor
interface circuitry
Interboard
Inertial measurement Connectors
Processor + ADC:

+ RF Transceiver

\ Ari Benbasat

Inertial Board — 6 axisIMU




Connecting to the Body

e Collaboration with Mass. General
Hospital Biomotion Unit

* Will be used for diagnosis, treatment
of gait-related disorders, Parkinson’s
patients, interactive therapy, etc.

» Circa 20 sensors per foot
* Chosen with gait specialists
* Rich gait description
e Inertial, proximity, and tactile sensor
array, wireless from each foot

Stacy Morris

Sample Data During Walking Gait Axes for Gyroscopes and Accelerometer:

Latest configurable
wireless stacking e e B
multisensor array
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Signals for different walks

JAP
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Scaling to several dancers...

JAP
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o Current Expressive Footwear system measures 16
parameters at each foot

 Scaling to upper/lower body of small (e.g., 5-person)
ensemble produces 320 parameters

e |Impossible to map content at sensor level!
* New techniques needed
e Low Power RF system with more bandwidth

\— 1 Mbit/second //
9




Microcontroller

Data Compression

Processed
Data




Functional Integration for Embedded Intelligence - MIT Media Lab, MLE, NMRC

High Density Interconnect Technology | mplementation
- Purpose-built Solutions for Embedding into Artefacts.

Multichip Modules(MCM)
- Flip-Chip

Thin Slicon ICs

3-D Multichip Modules
- Sacked ICs
- Thin Slicon ICs

60Mm Mechanical SamplelC.

Flexible M odules Assembly with Five
- Multilayer Flex Stacked ICs.
- Thin Slicon ICs

QMR

M olded | nter connect
- Metal on Plastics

Flex COB Assembly Assembly on Flex

MCM —Dbarediebond @ NMRC, Cork



The Disposable Wireless Sensors

* Very simple motion sensor
— Cantilevered PVDF piezo strip with proof mass
— Activates CMOS dual monostable when jerked
— Sends brief (50 ng) pulse of 300 MHz RF
— 100 ms dead timer prevents multipulsing
— Can zone to within ~10 meters via amplitude
— Ultralow power — battery lasts up to shelf life
— Extremey cheap — e.g., under $1.00 in large quantity




Interactive Raves at MIT

JAP

Talbot3: 10s Integration
T

900
800
700+
600
Z
a 3
Z500f
111 11 7 | 50 sERRR HeRple D
TRTTE gnenl SEE B upcnE@RnvEcln 2 400l
B8 s@e cn@ BEA EREE EE @R il 5
BE [ | N1 @ Bagegen AR ifonnil 2wm
] | B BEe0B:0 v EE0E 0 seliel
[ 1] sal seBenl: B BEn B BE 0
Beanil B: e sf) s Beloell cNBRRE 200F
111 LI ] | (1] eff wsafim  cE@EER
dance while holding sensors ) oo
that conlral the music
| PR Ry " 2 el e e 1 1 1 L L
oW !|Lh you oance % 10 20 30 40 50 60

the Media  Lab's newest tay




Power Harvesting Shoes
PVDF Stave  Walking Powers Electronics

i [ . High-tech shoes harvesting old-fashioned foot power
LA LL ) 3
oo i B Molded into sole could someday generate enough elsctricity for portable
' phones and computers,

Energy from bend MIT scientists led by Joseph Paradiso, technical
director of The Media Laboratory’s Things That Work

Ppeak @10 mW Consortium, have powered simple electronic identifica-

tion tags with two different devices that resemble
<P> @1 mwW cushioned shoe inserts.

Both use the piezoelectric principle by which a physi-
cal distortion to a substance produces an elactrical
potential between its surfaces. One device harvests
heel strikes' energy with a stiff plezoceramic material.
The other device tums the flex in a sneaker's
insole into electric power via a multilayered

Flex PZT Unimorph laminate of piezoelectric foil.

Fower is measured in milliwatts,

Under insole With a potential yield of 67 watts,

researchers have room for

Pressed by heel improvement.

Ppeak @O mwW
<P> @10 mW
Pressure at the
Hheel and ben
Raw Power y;sgmm
circa 1% efficient peihurnlits
. ankig 1D
unnoticable tag.

Responsive Environments Group
MIT Media Lab
1998 |EEE Wearable Computing Conference
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Self-powered buttons

JAP
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3 Volt Regulator Output  * !
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N
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—

Time (msec)

e ~0.5 mJat 3 Volts per push
« Sends 12-bit RFID 12 x throughout floor (50 ft.)

\ * No need for battery, wire... Mark Feldmeier /
15
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Cleaner Prototype (ML sponsor)

JAP




B Local Processor Sen S ate M ed | a

@ Sensors

e Push the frontier of Ultradense, multimodal
sensor/processor networks
— Things That Think on asurface

— Enables things to immersively sense as we do
» Revolutionary apps in robotics, tel epresence, medicine

— Interesting challenges in decentralized processing and
estimation, fabrication



Approximate Biology Comparison

JAP
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» Biological analog
— Distributed processing mixed with sensors

.




11/02

Completely Configurable Topology

JAP

o

» Place nodes wherever one wants

-

— Dynamic density
— Easily block or shield parts of network
— Easy to access each node directly




Pushpins — October 02

* Over 100 constructed (Currently IR communication)

— Capacitive (low-power RF) layer coming — more isotrophic
» Sensor layer (photo sensor with LED outputs)
 Toolkit—all over ML, MIT

Qew pushpin design with much more powerful NP under des gy
20




Distributed Pattern Recogniton

JAP

Light sensor & LED top layer

e Developing rules for distributed (viral) pattern recognition
— Project simple object (circle, square, triangle)
— Discriminate via accumulated perimeter, area, etc.

e Tangible interface for group dynamics (Steelcase)

21




Z-Tiles (collaboration with U. Limerick, MLE)

Demo at 1CCl

Bruce Richardson, Krispin Leydon,
Enrique Franco
CEEre @B,
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The “Trible”

Tactile Reactive Interface Based on Linked Elements

e First step at a multimodal
electronic skin
32 networked elements

— Each measuring up to 12 channels
of fur, distributed pressure,
temperature, sound

— Each with local speaker, pager
motor, RGB LED

* Elementstalk to neighbors
— No central processor
— Decentralized algorithms

» Research platform for distributed

Josh Lifton,

Mike Broxton t'
Demo in 1CC computing

e Purrs...



