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Motivation and Inspirations

You are (probably) here because you have all experienced:

bad reception...

battery problems...

no connectivity during large gatherings (4th of July problem!)...

Could we fix all the above problems?

Inspirations:

Gupta and Kumar IT 2000 result: local communication helps...

Multiple Antennas at each radio help...

Could we merge the two above? More users ?= better wireless communication?
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Additional Problem Constraint: Low Complexity and Implementation

Source
Relay

Relay

Destination

In general, multi-antenna systems increase:

reliability (diversity gain).

spectral efficiency bps/Hz (multiplexing gain)

Explore multiple antennas in the Relay channel, via cooperative relays.

IMPLEMENTATION TODAY, with existing RF-front ends.
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Main Difficulties

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2

Information is not a priori known at the relays.

Number of participating antennas is unknown.

Number of useful participating antennas is unknown.

Coordination and Group formation ought to be distributed, not "genie-aided".

MIMO ST-coding 6= coding for the Relay channel.

Radio transceiver complexity.
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Outline

Assumptions and Background

Approach

Performance

Implementation Example

Relevant Technologies

Conclusion

Acknowledgements
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Assumptions and System Model

Inline with prior art in the field:

Half-duplex radios.

Simple RF-front ends:

Half-duplex radios.

No rate adaptation (no CSI at the source).

No phased arrays (No beamforming).

yd = asd xs + nd.

Neighboring interfering streams: noise.

(Mostly) Rayleigh fading. E[|asd|2] = 1/dv

Slow Fading (most difficult communication problem).
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Approaches

Non-cooperative communication.

Cooperative Repetition.

Simultaneous transmissions
(Space-Time Coding).

Our Approach.

Proactive single relay selection.

Instantaneous channel conditions
(instead of average).
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Wireless Channel Observations

v = 3.98

Distance d

Receiver cares about signal strength (not distance).

Selection based on distance or average SNR... is suboptimal.

Instantaneous channel conditions matter!
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Our Approach: Opportunistic Relaying

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2

tL tHtC

Tb ds

dur

tb

tj

|nb-nj|

r r ds+2nb

CTS

CTS

CTS

flag packet

Policy I : hi = min{|asi|
2, |aid|

2} Policy II : hi =
2

1
|asi|2

+ 1
|aid|

2

=
2 |asi|

2 |aid|
2

|asi|2 + |aid|2

Ti =
λ

hi
(1)

Here λ has the units of time. For the discussion in this work, λ has simply values of µsecs.

hb = max{hi}, ⇐⇒ (2)

Tb = min{Ti}, i ∈ [1..M ]. (3)
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Discussion: a note on CSI and time synchronization

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2

RTS/CTS exchange is only needed at the relays to estimate uplink/downlink channel.

CTS reception is not exploited at the source.

No beamforming or rate adaptation at the relays.

No need for an explicit time sync protocol.

It is a multi-hop scheme.

We do know that the term "Opportunistic" has been used before...
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Outage Performance (1)
best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2

Outage event between source s and destination d:

log(1 + |asd|
2 SNR) ≤ ρ⇔ |asd|

2 ≤ (2ρ − 1)/SNR⇔ γsd ≤ Θ

"Best" opportunistic relay is chosen, according to instantaneous, end-to-end channel
conditions:

b = arg︸︷︷︸
i

max{min{γsi, γid}}, i ∈ [1..M ] (13)

Probability of outage via "best" relay:

Pr(γsb < Θ2
⋃

γbd < Θ2), Θ2 = 2 (2
2ρ − 1)/SNR (14)
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Outage Performance (2)

The above outage probability of opportunistic relaying is calculated for the case of
Rayleigh Fading:

Pr(γsb < Θ2
⋃

γbd < Θ2) =

M∏

i=1

(1− exp(−Θ2 (
1

γsi
+

1

γid
))) (15)

Taking into account the direct path between source and destination, the overall outage
probability becomes:

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2
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M∏

i=1

(1− exp(−Θ2 (
1

γsi
+

1

γid
))) (16)

Taking into account the direct path between source and destination, the overall outage
probability becomes:

P out
r = (1− exp(−Θ2/γsd))︸ ︷︷ ︸

direct

M∏

i=1

(1− exp(−Θ2 (
1

γsi
+

1

γid
)))

︸ ︷︷ ︸
relaying

(17)

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2
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Outage Performance (3)

1 2 3 4 5 6 7 8
10-2

10-1

100

101

Number of relays

bp
s/

H
z

Capacity for outage prob.=0.01 and FIXED total transmission
power (SNR=10)

cooperative with d
sd

=d
sr

 + d
rd

 (d
sr

=d
rd

 )
cooperative with d

sd
=d

sr
=d

rd
Non-cooperative, direct



A single relay doesn’t help... [has been shown before...]

Opportunistic relays do help, even under a total tx power constraint!
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Outage Performance (4)
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7

8

SNR [dB]

bp
s/

H
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Direct communication
1 relay
2 Opportunistic Relays
4 Opportunistic Relays
6 Opportunistic Relays
8 Opportunistic Relays

v = 4 

Capacity for outage probability=0.01,  dsd= dsr + drd

Prout = δ.

ρopport =
1

2
log2(1− ln(1− δ1/M )

SNR

2
γsid) (18)

ρdirect = log2(1− ln(1− δ) SNR γsid) (19)
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Diversity-Multiplexing Tradeoff (1)

d
∆
= − lim

SNR→∞

logPe(ρ)

logSNR
r
∆
= lim

SNR→∞

ρ(SNR)

logSNR

Diversity-Multiplexing Gain tradeoff tool averages out geometry.

cooperative diversity 6= multihop communication. This tool can reveal associated
gains/losses.

Theorem 0: The achievable diversity multiplexing tradeoff for the decode and forward
strategy with M intermediate relay nodes is given by d(r) = (M + 1)(1− 2r) for
r ∈ (0, 0.5).

Theorem 1∗: Under opportunistic relaying, the decode and forward protocol with M
intermediate relays achieves the same diversity multiplexing tradeoff, as in Theorem 0.

Theorem 2∗: Opportunistic amplify and forward achieves the same diversity multiplexing
tradeoff stated in Theorem 0.

*: In cooperation with Ashish Khisti.
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Diversity-Multiplexing Tradeoff (2)

d(r)

r10.51/(M+1)

1

M+1
Ideal

Space Time Coding

Opportunistic
Relaying

  Direct

Repetition

Opportunistic, single relay selection is as good as space-time coding simultaneous
transmissions!

This result holds for decode/forward as well as amplify/forward!
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Results: Transmission Energy Gains

0 5 10 15 20 25 30 35 40
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E = E1 + E2

Symbol Error Probability for 8-PSK

noncooperative
cooperative digital

v = 2 

v = 3 

v = 4 

v = 5 

Energy Gains

0 1 2 3 4 5 6 7

5

10

15

20

25

30

35

40

v

Ratio of Energy without cooperation vs (Total energy with cooperation)

Energy gains counterbalance the decrease of rate by a factor of 2.

For the example above, 50% throughput increase is possible
(8-PSK uncoded cooperative vs 2-PSK uncoded direct).
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Results: Reception Energy Gains

Cooperative reception of M relays ⇒
reception energy cost increases by a factor of M .

Rx energy is comparable to Tx energy in modern radios [R. Min 2003].

Proactive nature of Opportunistic Relaying, reception energy cost is fixed.

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2
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Results: Power Allocation Optimality (1)

What if TOTAL power allocated to the relays was fixed?

For amplify and forward networks, the equivalent system equation can be shown to be:

It can be shown that opportunistic relaying is superior to other approaches in the field.

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2
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Results: Power Allocation Optimality (1)

What if TOTAL power allocated to the relays was fixed?

For amplify and forward networks, the equivalent system equation can be shown to be:



yD,1

yD,2
ω


 =




√
PSD aSD 0

1
ω

∑M
i=1

√
PSRi

√
PRiD√

PSRi+N0
aSRi aRiD

1
ω

√
PSD aSD




[
x1

x2

]
+




nD,1

ñD,2
ω




E[ñD,2 ñ
∗
D,2 |HR→D ] = N0 (1 +

M∑

i=1

PRiD |aRid|
2

PSRi + N0

)

︸ ︷︷ ︸
ω2

= ω
2

N0 (20)

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2
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Results: Power Allocation Optimality (1)

What if TOTAL power allocated to the relays was fixed?

For amplify and forward networks, the equivalent system equation can be shown to be:

y =

[ √
PSD hSD 0

H21
1
ω

√
PSD hSD

]
x + n (21)

y = H x + n (22)

IAF =
1

2
log2(1 +

PSD

N0

|hSD|2 +
|H21|2

N0

) (23)
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Results: Power Allocation Optimality (2)

Three cases considered, with all relays equivalent (same AVERAGE received SNR) :

Power to one relay (selection based on Average SNR).

Power distributed to all relays (space-time coding).

Power to opportunistic relay (Our Approach).
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Results: Power Allocation Optimality (3)

1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5
Average spectral efficiency

bp
s/

H
z

Number of Relays

Selection one random relay
Selecting all relays
Opportunistic Relaying

Under a sum power constraint (and no beamforming capabilities) using all relays is
suboptimal compared to opportunistic relaying.

Similar results for decode and forward.
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Overhead: Collision Probability (1)

best path @ kT

best path @ (k+1)T

Direct  Relayed

|as,i|2 |ai,d|2

Source Destination

|as,j|2 |aj,d|2

tL tHtC

Tb ds

dur

tb

tj

|nb-nj|

r r ds+2nb

CTS

CTS

CTS

flag packet

Policy I : hi = min{|asi|
2, |aid|

2} Policy II : hi =
2

1
|asi|2

+ 1
|aid|

2

=
2 |asi|

2 |aid|
2

|asi|2 + |aid|2

Ti =
λ

hi
(24)

Here λ has the units of time. For the discussion in this work, λ has simply values of µsecs.

hb = max{hi}, ⇐⇒ (25)

Tb = min{Ti}, i ∈ [1..M ]. (26)
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Overhead: Collision Probability (2)

tL tHtC

Tb ds

dur

tb

tj

|nb-nj|

r r ds+2nb

CTS

CTS

CTS

flag packet

Worst case scenario:

Pr(Collision) ≤ Pr(any Tj < Tb + c | j 6= b)

where Tb = min{Tj}, j ∈ [1,M ] and c > 0.

(a) No Hidden Relays : c = rmax + |nb − nj |max + ds

(b) Hidden Relays : c = rmax + |nb − nj |max + 2ds + dur + 2nmax

nj : propagation delay between relay j and destination. nmax is the maximum.

r: propagation delay between two relays. rmax is the maximum.

ds: receive-to-transmit switch time of each radio.

dur: duration of flag packet, transmitted by the "best" relay.
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Overhead: Collision Probability (3)

tL tHtC

Tb ds

dur

tb

tj

|nb-nj|

r r ds+2nb

CTS

CTS

CTS

flag packet

If Tb = min{Tj}, j ∈ [1,M ] and Y1 < Y2 < . . . < YM
the ordered random variables {Tj} with Tb ≡ Y1, and Y2 the
second minimum timer, then:

Pr(any Tj < Tb + c | j 6= b) ≡ Pr(Y2 < Y1 + c) (27)

Given that Yj = λ/h(j), Y1 < Y2 < . . . < YM is equivalent to
1/h(1) < 1/h(2) < . . . < 1/h(M)

Pr(Y2 < Y1 + c) = Pr(
1

h(2)
<

1

h(1)
+

c

λ
) (28)

Ratio λ
c

needs to be as high as possible. λ and c are user controlled.

However λ needs to be kept small:

E[Tj ] = E[λ/hj ] ≥ λ/E[hj ] (29)
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Overhead: Collision Probability (4)

Lemma: Given M ≥ 2 i.i.d. positive random variables T1, T2, . . . , TM , each with
probability density function f(x) and cumulative distribution function F (x), and
Y1 < Y2 < Y3 . . . < YM are the M ordered random variables T1, T2, . . . , TM , then
Pr(Y2 < Y1 + c), where c > 0, is given by the following equations:

Pr(Y2 < Y1 + c) = 1− Ic (39)

Ic =M (M − 1)

∫ +∞

c
f(y) [1− F (y)]M−2 F (y − c) dy (40)

Wireless channel statistics of h⇒ pdf f and cdf F of T = λ/h⇒ Pr(collision).

Example: for a mobility of 0− 3 km/h ⇒ maximum Doppler shift is fm = 2.5 Hz ⇒

minimum coherence time on the order of Tc ' 200 milliseconds.

For c/λ ≈ 1/200⇒ Pr(Collision) ≤ 0.6% for policy I.

For c ≈ 5µs⇒ λ ≈ 1ms ' 1
100

Tc.

For c ≈ 1µs⇒ λ ≈ 200µs ' 1
1000

Tc.
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Rigorous analysis earns you trips around the world...
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Overhead: Collision Probability (5)
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Overhead: Collision Probability (6)
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4 different topologies for M=6

Assymetry and collision probability

v=3,Policy II (harmonic)
v=4,Policy II (harmonic)
v=3,Policy I (min)
v=4,Policy I (min)
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...and a Remark...

Stream I Stream II

Relay i

b = arg︸︷︷︸
i

max{min{SNRsi, SNRid}} = max{SNRsid}, i ∈ [1..M ] (43)

b = arg︸︷︷︸
i

max{min{SINRsi, SINRid}} = max{SINRsid}, i ∈ [1..M ] (44)
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Implementation: Hardware

Rethinking wireless:
approach needs access to physical (layer 1), link (layer 2), routing (layer 3).

COTS radios usually give limited access to all layers ⇒

We built our own low cost embedded Software Defined Radios (SDRs).

We built a room size cooperative diversity demo.
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Implementation: Demo Setup

left view

right view
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Implementation: Signal Structure

Direct transmission of 16 frames

Signal structure of each frame

Preamble 32 bits (on-off keying)

CTS
 Flag �
packet 16/32 data frames 

Direct and best relay transmission�
         (16 + 16 = 32 frames)
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Coordination, Cooperation and Time Keeping

Relays (or receiver) might be busy or in sleep mode!

Time keeping could simplify required scheduling.

Time keeping as the basis of scalable communication.

Extensive work on Network Time Keeping:

centralized

decentralized
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Centralized Time Keeping

... ... ... ...

... ... ... ...

CLIENT SERVER

No control over the network: noisy
environment.

No control over the time server: would
like to use existing infrastructure.

Three End-to-End algorithms were
compared:

Averaging (NIST).

Linear Programming (proposed
before).

Kalman Filtering (our proposal).

Estimation of φ and θ, with minimum communication BW and computation requirements.
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Centralized Time Keeping Results
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Linear Programming
Averaged Time Differences
"Naive" Estimator

Improving accuracy (error) and precision (variance of error), compared to existing
approaches.

Computation efficient (since it is recursive) -

Implemented and tested using existed NTP infrastructure.
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Decentralized Time Keeping

Network The network is the time server.

Only local communication.

Exchange timestamps and keep the highest
(Lamport’s idea).

Redefine time as a periodic function!

The network re-calibrates periodically and au-
tonomously.
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Decentralized Time Keeping Results
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Error could decrease with increasing
Network diameter!

ε(tc) = Ci(tc)− Cj(tc) =

= ε(t0 + x) + (φi − φj) ∆t

∆t = tc − (t0 + x)

Error depends on communication BW.
x =

propagationdelay+ transmissiondelay+

+ operating system delay.
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Decentralized Time Keeping Demo

Objective: play music in synchrony, display heartbeat at the edges...
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Decentralized Time Keeping Demo (2)

This algorithm is based on oscillator’s coupling (no averaging).

Coupling among terminals with semi-periodic signal ≡ Entrainment.

It is relevant to natural phenomena of synchronization (fireflies, cardiac neurons etc.)
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Conclusions
Bigger Picture:

No more bad reception...

Improved battery duration...

Improved spectral efficiency (bps/Hz).

Tx/Rx energy savings.

Towards more scalable wireless networks...
Additionally:

No performance loss compared to simultaneous transmissions and space-time
coding.

Cross-layer research is needed.

Centralized/decentralized network time-keeping contributions.

Method was implemented in low-cost hardware.

Applications: WiFi, Zigbee, Tetra...
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