MIT Media Lab’s Concept Car: with GM and Frank O. Gehry

Smart Cities Group

Professor William J. Mitchell
Head, Media Arts and Sciences Program

Graduate Students:
Ryan Chin, PhD Candidate
Will Lark, MS Candidate
Phil Liang, MS Candidate
Patrik Künzler, Safdie Fellow
Raul David “Retro” Poblano, UROP
Peter Schmitt, Visiting Researcher

Collaborators:
Federico Casalegno, Visiting Scientist
David Gerber, Safdie Fellow
Mitchell Joachim, PhD Candidate
Axel Kilian, PhD Candidate
Franco Vairani, Research Scientist

Susanne Seitinger, MS Candidate
MIT Media Lab
Oct 22, 2004
1. Motor-Wheel

Electrically powered, independently controllable **wheels** with motor, suspension, brakes, and steering contained within each wheel assembly. Placing the suspension within the wheel itself is a significant innovation, and promises some important advantages. Each wheel has only two inputs: electrical power and digital data.

Goal: Create self-contained mobile units
2. Exoskeleton

An **exoskeleton** that connects the wheels and supports the passenger cabin, storage units, and power source. This element can be optimized for structural efficiency, and (like the frame of a sophisticated bicycle) can become a major design feature.

Goal: High level of customization
3. Drive-by-Wire

In place of traditional steering column and dashboard arrangements. This allows radical reconfiguration of the cockpit, treatment of the passenger compartment as a module that can readily be separated from the rest of the car, and creation of a multimedia driving experience that intelligently integrates data streams from a wide variety of sources and presents them to the driver and passengers in a customized, context-sensitive way.

Goal: Interior Design Freedom
4. No Crumple

A lightweight, technologically advanced passenger compartment suspended safely within the exoskeleton, like an egg protected within an egg carton. This compartment need not be fabricated from sheetmetal and glass. It can exploit the possibilities of advanced materials and embedded electronics to provide high levels of visibility, safety, climate control, lighting, sensing capability, and interior displays. And it provides an opportunity to break away from the familiar automobile aesthetic of painted sheetmetal.
5. Hold Safely

Go beyond seatbelts and airbags. Think of the passenger seat, from the beginning, as a gentle robot that knows how to hold you safely and comfortably under any conditions that may be encountered.

Goal: zero passenger deaths.
quick review in-wheel suspension
quick review in-wheel suspension
running prototype #1 - a summer’s work
Material Spring
Side Ingress/Egress
Front arms – Dynamic Cabin
The Basket case / Will Lark

Dampening material placed between frame
Side & front Ingress/Egress
Twisting & Rocking frame – Dynamic Cabin
The Basket case / Will Lark
Instructors
William J. Mitchell
James Glymph
Frank O. Gehry

Studio Coordinator
Ryan Chin

Course Administrator
Betty Lou McClanahan

Course Collaborators
James Gips
Axel Kilian
Franco Vairani
Steven Smith

Collaborative Research
Federico Casalegno
Han Hoang
Nikki Pfarr

Credits
Team Members
Mitchell Joachim
Sotirios Kotsopoulos
Christianna Raber
Andres Sevtsuk
Peter Schmitt
David Spectre
Maya Turre
Conor Walsh
Tiffany Yang
Giampaolo Zen

Students
Robyn Allen
Louis Basel
Marcel Botha
Luis Berrios-Negron
Darren Chang
Brian Chan
Chad Dyner
Victor Gane
David Gerber
Jonathan Gips
Joshua Goldwitz
Ziga Ivanic

MIT Media Lab: Concept Car with and Frank O. Gehry