
MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Using Plan Recognition

in Human-Computer Collaboration

Neal Lesh Charles Rich Candace L. Sidner∗

TR-98-23 December 1998

Abstract

Human-computer collaboration provides a practical and useful application for
plan recognition techniques. We describe a plan recognition algorithm which is
tractable by virtue of exploiting properties of the collaborative setting, namely:
the focus of attention, the use of partially elaborated hierarchical plans, and the
possibility of asking for clarification. We demonstrate how the addition of our
plan recognition algorithm to an implemented collaborative system reduces the
amount of communication required from the user.

Submitted to Seventh Int. Conf. on User Modeling,
Banff, Canada, June 1999.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors
and individual contributions to the work; and all applicable portions of the copyright notice. Copying,
reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi
Electric Information Technology Center America. All rights reserved.

Copyright c© Mitsubishi Electric Information Technology Center America, 1998
201 Broadway, Cambridge, Massachusetts 02139

∗Lotus Development Corporation

Publication History:–

1. First printing, TR-98-23, December 1998

1

Using Plan Recognition
in Human-Computer Collaboration

Neal Lesh,∗ Charles Rich,∗ Candace L. Sidner†

* MERL–A Mitsubishi Electric Research Laboratory (lesh@merl.com)
† Lotus Development Corporation

Abstract

Human-computer collaboration provides a practical and useful application for plan recognition
techniques. We describe a plan recognition algorithm which is tractable by virtue of exploiting
properties of the collaborative setting, namely: the focus of attention, the use of partially elabo-
rated hierarchical plans, and the possibility of asking for clarification. We demonstrate how the
addition of our plan recognition algorithm to an implemented collaborative system reduces the
amount of communication required from the user.

1 Introduction

An important trend in recent work on human-computer interaction and user modeling has
been to view human-computer interaction as a kind of collaboration (e.g, [5, 10, 19, 20]). In
this approach, the human user and the computer (often personified as an “agent”) coordinate
their actions toward achieving shared goals. A common setting for collaboration, illustrated
in Figure 1(a), and which is the focus of this paper, is when two participants can both
communicate with each other and observe each other’s actions on some shared artifact.

Successful collaboration requires the participants to have substantial mutual understand-
ing of their shared goals and the actions intended to achieve them (these are part of what
Grosz and Sidner [9] call the SharedPlan). One way to maintain this mutual understanding
is through verbal communication—the participants can explicitly discuss each goal and the
method they propose to achieve it. However, it is often more efficient and natural to convey
intentions by performing actions. For example, if two people are attempting to get into their
locked car and one picks up a brick, the other can infer that the proposed plan is for the first
person to smash a window, reach in, and unlock the door. Plan recognition (e.g., [3, 11]) is
the term generally given to the process of inferring intentions from actions.

Although plan recognition is a well-known feature of human collaboration, it has proven
difficult to incorporate into practical human-computer collaboration systems due to its in-
herent intractability in the general case (see Section 2.1). In this work, we describe how
to exploit properties of the collaborative setting in order to make plan recognition practi-
cal. Specifically, the properties we exploit are: the focus of attention, the use of partially
elaborated hierarchical plans, and the possibility of asking for clarification.

We demonstrate our approach in the context of an implemented collaborative system for
email. Section 1.1 below presents two example sessions with this system, which illustrate
both the general idea of human-computer collaboration and how plan recognition reduces
the user’s communication burden. Section 2 describes the underlying plan recognition and
discourse interpretation algorithms in detail. Section 3 presents results from preliminary
experiments in the email domain. We then discuss related work and conclude.

MERL-TR-98-23 December 1998

2

primitive
actions

observe

Shared
Artifact

actions

observe

communication

User Agent

primitive

(a) A setting for human-computer collaboration. (b) Graphical interface for Collagen email collaboration.

without plan recognition with plan recognition

1 USER: "Let’s work on email." USER: "Let’s work on email."
2 AGENT: "You have 5 unread messages." AGENT: "You have 5 unread messages."
3 USER: "Let’s read a message."
4 USER: <Select message from Chuck> USER: <Select message from Chuck>
5 USER: "Let’s read message in its own window."
6 USER: <Open message> USER: <Open message>
7 USER: "Let’s do something using message."
8 USER: <Visit http://foo.bar.com> USER: <Visit http://foo.bar.com>
9 ...long lunch... ...long lunch...
10 USER: "What was I doing?" USER: "What was I doing?"
11 AGENT: "Working on email. AGENT: "Working on email.
12 Reading message from Chuck. Reading message from Chuck.
13 Reading message in its own window. Reading message in its own window.
14 Done something using message. Done something using message.
15 <Visit http://foo.bar.com> <Visit http://foo.bar.com>
16 Expecting to react to message (opt)." Expecting to react to message (opt)."
17 USER: "Let’s react to message."
18 USER: "Let’s send email."
19 USER: <Start new message> USER: <Start new message>
20 USER: "Let’s fill in message."
21 USER: <Address message to Dan> USER: <Address message to Dan>
22 AGENT: "Why are you sending email to Dan?
23 (a) reacting to message from Chuck
24 (b) as a new goal "
25 USER: "I am reacting to message from Chuck."
26 ...additional editing actions... ...additional editing actions...
27 USER: "Done filling in message." USER: "Done filling in message."
28 AGENT: "Let’s send, cancel or save message." AGENT: "Let’s send, cancel or save message."
29 USER: "Please save message." USER: "Please save message."
30 AGENT: <Save message> AGENT: <Save message>

Key: "utterance" <primitive action>

(c) Collagen email session with and without plan recognition.

Figure 1.

MERL-TR-98-23 December 1998

3

1.1 Collagen Email Example

Collagen [19] is an application-independent collaboration manager based on the SharedPlan
theory of task-oriented collaborative discourse [16, 17]. We are currently experimenting with
Collagen in several different application areas, including air travel (see [8, 19]) and email.

Figure 1(b) shows how the abstract setting for human-computer collaboration in Fig-
ure 1(a) is instantiated using Collagen in the email domain. The large window in Figure 1(b)
is the graphical interface to the email part of Lotus eSuitetm; this is the “shared artifact” of
the collaboration. The two smaller, overlapping windows in the corners of Figure 1(b) are
the agent’s and user’s home windows, through which they communicate with each other.

For an application-independent tool like Collagen, a key step in building a collaborative
agent is to develop a detailed task model for the domain. Based on empirical study of people
working on email, Sidner and colleagues have formalized the task structure of this domain
in terms of high-level goals, such as “working on email”, lower-level goals, such as “filling in
a message,” and primitive actions corresponding to individual clicks on the eSuite interface.

Without Plan Recognition. Let us look first at the left column of Figure 1(c), which shows
how Collagen functions without plan recognition. In the first part of this session (lines 1–8)
the user has the initiative. Notice how the user laboriously announces each goal before per-
forming a primitive action which contributes to achieving it. Without plan recognition, this
is the only way to maintain the mutual understanding necessary for successful collaboration.

A simple example of collaboration occurs after the user returns from a long lunch (line 9).
At this point, the user’s earlier intentional state is not immediately evident from the state
of the graphical interface, which would show only a browser window (resulting from clicking
on a URL in the message being read) with the email window behind or below it. Based on
the user’s earlier announcement of goals, however, the agent has constructed a SharedPlan,
which it can communicate back to the user (lines 11–16) to help him reorient to what he
was doing and what is expected next.1

The user now continues as before, announcing his subgoals as he goes, until line 27, when
he declares that he is done with the goal of filling in the new message started in line 19. The
agent uses this as an opportunity to suggest some expected actions (line 28), one of which
the user requests the agent to perform (lines 29–30).

With Plan Recognition. The right column of Figure 1(c) shows the same task as the left
column, but with our plan recognition algorithm incorporated into Collagen. Notice that,
unlike the previous example, the user in this session is not required to announce each goal
and subgoal before performing a primitive act (i.e., lines 3, 5, 7, 17, 18, and 20 are missing).
Nevertheless, as we see in lines 11–16, the agent constructs the same SharedPlan as before.

Plan recognition does not, however, totally eliminate the need for communication about
intentions. In particular, collaborators must ask for clarification when there is ambiguity
regarding how to interpret some given actions. For example, the user’s actions in lines 19
and 21 are consistent with two possible intentions: by sending a message to Dan, the user
may either be reacting to the message from Chuck (for example, if Chuck suggested sending
email to Dan) or be starting a new, unrelated email goal. The agent interrupts the user at

1The agent’s communication in lines 11–16 derives from a more general capability in Collagen for main-
taining what is called a segmented interaction history—see [19].

MERL-TR-98-23 December 1998

4

line 22 to resolve this ambiguity.2 Section 2.2 discusses strategies for composing clarification
questions.

1.2 The Role of Plan Recognition in Collaboration

This section previews the main points presented in the remainder of the paper, abstracted
away from the details of the example above.

According to SharedPlan theory, a key component of the mental state of each participant
in a collaboration is a set of beliefs about the mutually believed goals and actions to be
performed, and about the mutually believed capabilities, intentions, and commitments of
each participant. Each participant updates this set of beliefs, called the SharedPlan, based
in part on communication with and observation of the other participants. Each participant
also knows a set of methods, called recipes, for decomposing goals into subgoals.

Generally speaking, the role of plan recognition in this framework is as follows: Suppose
one participant, e.g., the software agent, observes another participant, e.g., the user, perform
an action A. The agent invokes plan recognition to determine the set of possible extensions
to its current SharedPlan which are consistent with its recipe knowledge and include the
user performing A. If there is exactly one possible such extension, the agent adopts this
extension as its new SharedPlan; otherwise, it may ask a clarification question. A similar
story can be told if the user does not actually perform A, but only proposes doing A (as in,
“Let’s do A”).

We exploit three properties of the collaborative setting to make this use of plan recognition
tractable. The first property is the focus of attention. When the user says, “Let’s work on
email,” he is not only proposing a certain action be performed, he is also establishing a
new context which restricts the interpretation of future utterances and actions. The full
implications of focus of attention are beyond the scope of this paper (see [9]); in this work
we use the weaker notion of the “focus act3” to limit the search required for plan recognition.

A second property of collaboration we exploit is that the processes of developing, com-
municating about, and executing plans are interleaved. Consequently, both the input and
output of the plan recognizer are partially elaborated hierarchical plans. Unlike the “clas-
sical” definition of plan recognition (e.g., [11]), which requires reasoning over complete and
correct plans, our recognizer is only required to incrementally extend a given plan.

Third, it is quite natural during collaboration to ask for clarification, either because of
inherent ambiguity, or simply because the computation required to understand an observed
or mentioned action is beyond a participant’s abilities. We use clarification to ensure that
the number of actions the plan recognizer must interpret will always be small.

2 Algorithms

This section presents our plan recognizer and describes how it is used in discourse interpre-
tation. We begin by adopting a straightforward formalization of actions, plans, and recipes.

Let ACT be a set of actions which includes primitive actions, PRIM ⊆ ACT , and
“top level” actions, T OP ⊆ ACT , which might be done for no other purpose than them-

2If the agent knows that the message to Dan is in reaction to the message from Chuck, it can, for example,
be more helpful a week later when the user asks, “Did I ever react to the message from Chuck?”

3The focus act is what is called the “discourse segment purpose” in SharedPlan theory (see [16, 17]). The
theory also specifies the rules by which discourse segments (contexts) are pushed and popped.

MERL-TR-98-23 December 1998

5

Actions [K,L] -

Plan
A
Qs�+

B C
-

Focus B -

-
8

Recipes

A → B, C; A → D, E, F ;
B → G, H; B → K,J ;
C → K, D; D → L, O;
G → K, L; J → L, M

Plan

Recognizer

-The two plans which “minimally explain”
the actions K and L, dervied by applying
recipes to the input plan below the focus B.

A
Qs�+

B C
Qs�+

G H
Qs�+

K L

A
Qs�+

B C
Qs�+

K J
Qs�+

L M

Figure 2. Simple example of inputs and outputs of plan recognition for collaboration

selves. Primitive actions can be executed directly, while non-primitive (abstract) actions
are achieved indirectly by achieving other actions. We assume a predicate Done?(A) which
returns true if A has been achieved or executed. In our implementation, each action also has
an associated type, parameters, timestamp, and so on; but will not need to explicitly refer
to these here.

Beliefs concerning hierarchical goal decomposition (such as found in a SharedPlan) are
formalized as a tuple 〈A, E , C〉, which we will simply call a “plan,” where A is a set of
actions, E is a set of directed acyclic edges on A, where the edge Ai → Aj means that Aj is
a step in achieving Ai, and where C is a set of constraints. C may include temporal ordering
between actions in A, as well as other logical relations among their parameters.4 As shown
in Figure 2, plans can be viewed as trees (with an associated set of constraints, not shown
in diagrams).

For plan P = 〈A, E , C〉, we define Ai ∈ P to mean Ai ∈ A; we assume a predi-
cate Consistent?(P) which determines whether C is satisfiable; and we define a function
Replace(P, A1, A2) which returns the (possibly inconsistent) plan resulting from replacing
action A1 with action A2 in A, E , and C.

Recipes are methods for decomposing non-primitive actions into subgoals. We represent
recipes as functions that map an action to a plan that achieves the action. Let RECIPE be
a set of recipes, where each recipe Rk is a function from a non-primitive action Ai to a plan
〈A′, E ′, C′〉, where Ai is in A′ and for every Aj 6= Ai in A′ there is an edge Ai → Aj in E ′ i.e.,
the Aj are the steps in recipe Rk for achieving Ai.

5 For convenience, we define a function
Extend(P , Rk, Ai), which returns the plan 〈A ∪ A′, E ∪ E ′, C ∪ C′〉.

2.1 Plan Recognition

As shown in Figure 2, the inputs to our plan recognizer are a sequence of actions [A1, ..., An],
a plan P = 〈A, E , C〉, a focus action f ∈ P , and a recipe library R ⊆ RECIPE . The output
of the recognizer is a (possibly empty) set of extensions of P which “minimally explain”
the input actions by applying recipes “below” the focus. More formally, each output plan,
P ′ = 〈A′, E ′, C′〉, has the following properties:

4As shown in line 16 of Figure 1(c), our implementation allows recipes with optional steps, but for
simplicity we do not include this feature in our formulation here.

5Rk may return the plan 〈{Ai}, ∅, ∅〉 if it is not applicable to Ai.

MERL-TR-98-23 December 1998

6

(a) Plan recognition.

RECOGNIZE([A1, .., An],P ,f ,R) ≡
EXPL ← ∅,Q← ∅
if P = 〈∅, ∅, ∅〉

foreach Ti ∈ T OP
add 〈[A1, .., An], 〈{Ti}, ∅, ∅〉, Ti〉 to Q

else foreach gi ∈ FRINGE(P, f)
add 〈[A1, .., An], P, gi〉 to Q

until Q = ∅
remove 〈[A′

1, .., A
′
n′], P ′, act〉 from Q

P ′′ ← REPLACE(P ′, act, A′
1)

if CONSISTENT?(P ′′)
if n′ = 1 add P ′′ to EXPL
else foreach gi ∈ FRINGE(P ′′, f)

add 〈[A′
2, .., A

′
n′], P ′′, gi〉 to Q

if act 6∈ PRIM
foreach recipe Rk ∈ R

P ′′′ ← EXTEND(P ′, Rk, act)
foreach sj , where act→ sj ∈ P ′′′

add 〈[A′
1, .., A

′
n′], P ′′′, sj〉 to Q

return EXPL

(b) Focus, ambiguity and clarification.

plan← 〈∅, ∅, ∅〉, focus← null, acts← []
repeat

wait for next input action Ai,
if DONE?(root of plan)

plan← 〈∅, ∅, ∅〉, focus← null
add Ai to acts
pick ← null
EXPL ← RECOGNIZE(acts, plan, focus,R)
if EXPL = ∅

set focus to root of plan
EXPL ← RECOGNIZE(acts, plan, focus,R)

if |EXPL| = 1
remove pick from EXPL

else if EXPL = ∅ or |acts| > MaxWait
pick← CLARIFY(EXPL)

if pick 6= null
plan← pick
focus← UDATEFOCUS(plan, Ai)
acts← []

Figure 3. Pseudo-code for algorithms.

1. {A1, ..., An} ⊆ A′,
2. every action in (A′ −A) is reachable in E ′ from f ,
3. P ′ can be derived from P by a composition of calls to Extend(..., Rk, ...), where

Rk ∈ R, and Replace(..., ..., Ak), where Ak ∈ {A1, ..., An}, and
4. no smaller plan 〈A′′, E ′′, C′′〉, and A′′ ⊆ A′, E ′′ ⊆ E ′, C ′′ ⊆ C ′, satisfies these properties.

Figure 3(a) shows pseudo-code for a simple plan recognizer that performs an exhaustive
search of all possible ways of extending the input plan to explain the input actions. To
understand the search space, consider how the input plan might be extended to include the
first input action A1. To explain A1, the recognizer must apply some sequence of recipes
R1, ..., Rk to the input plan P and then replace an action in the resulting plan with A1.

6

The first recipe R1 must be applied to a non-primitive action go in plan P that has not yet
been expanded. Additionally, go must be beneath the focus act f in the subgoal structure
of P . The function Fringe(P, f) returns the set of actions in P reachable from f which are
leaves of the plan tree and are not Done?.

After applying recipe R1 to an action go on the fringe of P , the recognizer only considers
applying a second recipe, R2, to go’s subgoals, i.e., the steps added by R1. This is justified
because a plan can never be minimally extended to explain one action by applying recipes to
multiple actions in the original plan. Similarly, the recognizer need only consider applying
recipe R3 to steps added by R2 and, generally, only considers applying Ri to the steps added
by Ri−1. It follows that the size of the search space to explain one action is bounded by
F (R×S)L, where S is the maximum number of steps in a recipe, R is the maximum number
of recipes applicable to an action, F is the number of actions on the fringe of P , and L is

6The recipe sequence can have length zero, i.e., we replace an action already in the plan with A1.

MERL-TR-98-23 December 1998

7

the length of the longest sequence of recipes R1, ..., RL the algorithm must consider.7

When the recognizer finds a plan P ′ which explains A1 but there are more input actions
to explain, it repeats the entire process to find all ways of extending P ′ to also explain action
A2, and so on until it has found all plans that minimally explain every input action. Since
the algorithm recurses for each input action, its worst-case complexity is O((F ′(R×S)L)N),
where F ′ is the maximum fringe size at any point and N is the number of input actions.

How does this compare to the general case? In the general case, the recognizer needs to
search the entire plan space, because its output plans must contain no non-primitive steps
that have not been decomposed. Let d be the depth of the deepest possible plan. Note that
d ≥ L, because if L recipes can be applied to explain a single action, then there must be a plan
of at least depth L. The total number of plans that have to be searched is then O((RS)d).
Thus if the number of input actions is small, the collaborative plan recognition problem is
significantly more tractable than the general plan recognition problem. We guarantee that
the number of input actions will be small with a policy that asks for clarification whenever
the number of unexplained actions a threshold (described in next section).

2.2 Focus, Ambiguity and Clarification

We now discuss how to incorporate plan recognition into a collaborative agent (summarized
in Figure 3(b)). It is beyond the scope of this paper to present the full SharedPlan discourse
interpretation algorithm [18] used in Collagen. Instead, we concentrate on the role of the
focus of attention and what to do when the recognizer returns multiple explanations.8

First, consider the focus of attention. In natural dialogue, people use context to help
understand otherwise ambiguous statements. People do not typically even think about all
possible interpretations of a potentially ambiguous phrase, such as “Let’s save it”, if there
is an obvious interpretation that makes sense given what was just said. Analogously, we
use the focus act to restrict the search space of our plan recognizer. Only if the recognizer
fails to find any explanations using the current focus do we expand the context; we do so
by setting the focus to the root of the current plan and calling the recognizer again. The
function UpdateFocus(plan, act) in Figure 3(b) returns act if act is not Done?; otherwise
act’s nearest ancestor in the plan that is not Done?. Thus, the focus is in general set at the
lowest-level goal which is not yet achieved, but includes the last observed or mentioned act.

Of course, the focus of attention does not guarantee a unique explanation. When ambi-
guity arises, we choose between two options: either wait or ask for clarification. A reason to
wait is that future actions might resolve the ambiguity. A reason to ask now is that a collab-
orative system can be much more helpful when it knows what the user is doing. We believe
it will be very difficult, in general, to compute the precise utility of asking for clarification.
Instead, we use a simple heuristic: we ask for clarification as soon as there are MaxWait or
more unexplained actions, where MaxWait is a small integer, currently set to 2.

We now briefly discuss how to manage a clarification sub-dialogue. Our collaborative
agent first asks the user about the purpose of his most recent action, such as in lines 22–24

7In general, there might not be a bound on L due to cycles in the recipe set. In practice, we halt search
whenever a cycle is encountered. For simplicity, here we assume that the recipe library is acyclic (as in [11]).

8There are also strategies in Collagen, not described here, for when the recognizer returns no explanations
as well as methods for clarification of ambiguity between starting a new top level goal vs. working on optional
steps of the current recipe.

MERL-TR-98-23 December 1998

8

(a) With and without plan recognition

commun- executed clarification
ications actions questions

with rec. 0 5.2 1.2
w/o rec. 4.4 5.2 0

(b) Various tolerances for ambiguity

actions questions steps per CPU secs
before asked per plan with used by
clarify plan ambiguity recognizer
1 2.6 0 .68
2 1.2 1.4 .94
3 .83 2.14 1.32

Figure 4. Experimental results averaged over 100 randomized trials in the email domain.

in Figure 1(c). If ambiguity remains, the agent then asks about the purpose of other actions
in the user’s plan which would disambiguate intermediate recipes. In general the agent can
pursue a variety of clarification strategies, including potentially lengthy dialogues in which
the agent asks the user many simple questions, brief dialogues which require the user to
choose a possible explanation from the agent’s current hypotheses, and a mixture of the two.
At present, our agent engages in the potentially lengthy dialogues, but we intend to expand
its repertoire to include other strategies.

3 Evaluation

We have incorporated plan recognition into Collagen. We now present results from prelimi-
nary, randomized experiments in the Lotus eSuitetm email domain, with the disclaimer that
the performance of plan recognition is quite sensitive to the domain and the structure of
the recipe library. As mentioned in Section 1.1, the recipe library was developed based on
informal observation of real users. It currently contains 31 recipes, 32 primitive actions, and
19 non-primitive actions. These experiments are a first step in demonstrating and measuring
the value of plan recognition in human-computer collaboration.

In each trial, we randomly instantiated a plan and simulated a user executing it. Without
recognition, the user must communicate about every non-primitive action in the plan. With
recognition, we chose to simulate an extreme case in which the user never volunteers infor-
mation but instead executes the primitive actions and answers clarification questions from
the agent. As shown in Figure 4(a), without recognition, the user has to communicate, on
average, about 4.4 goals per plan. With recognition, the user only has to answer, on average,
about 1.2 clarification questions per plan.

Recall that our algorithm has a parameter, MaxWait, which determines when it will ask
for clarification. In the above experiments, MaxWait was set to 2. Figure 4(b) shows results
from experiments with different settings of MaxWait. Note that as MaxWait increases,
the number of clarifications decreases, but the recognizer knows what the user is doing less
often and plan recognition requires more CPU time.

4 Related Work

The main difference between our work and previous work is the setting for plan recognition.
Our work shows how to leverage properties of the collaborative setting to make plan recog-
nition more tractable. We also demonstrate the value and practicality of plan recognition

MERL-TR-98-23 December 1998

9

in an implemented collaborative system. Indeed, Collagen is now one a the few substantial
systems with a plan recognizer that reasons over plans and goals.

The dominant framework for plan recognition research has been “keyhole” recognition,
in which the observed actor is unaware of or indifferent to the observer (e.g.,[11]). Our
recognizer takes two inputs that a keyhole recognizer does not: a partially elaborated plan
and a focus act. These additional inputs simplify the plan recognition task because the
recognizer must only extend the input plan, by applying recipes below the focus, just enough
to explain the input actions. In the collaborative setting, the role of plan recognition is not
to cleverly deduce an actor’s plan, but rather to allow collaborators to communicate more
naturally and efficiently.

In the proliferation of recent work on plan recognition, researchers have addressed various
limitations of the keyhole framework. We now discuss a variety of these approaches and
illustrate how their settings and resulting techniques differ from our own.

Vilain [23] presented a plan recognizer that runs in polynomial time. However, his algo-
rithm only recognizes top level goals which is not sufficient for our purposes, and can only
achieve polynomial time if the steps in the recipes are totally ordered, which is too restric-
tive for our domains. In general, however, we believe Vilain’s or other’s fast recognition
algorithms (e.g., [13, 14]) could be adapted to our formulation.

Lochbaum [15] presented a plan recognition algorithm based on the SharedPlan model
of collaboration. Her plan recognizer does not chain recipes together, as our does, and thus
performs only “one level deep” recognition. It does, however, make use of a wider range of
relations by which actions contribute to goals than we do.

Plan recognition has also been studied within a collaborative setting in which each par-
ticipant works on their own plan but pools information and coordinates actions with others
[10, 21]. In particular, this work explores the opportunity for plan recognition when a par-
ticipant announces that one of their goals has failed.

Our work is close in spirit to research on plan recognition for cooperative dialogues.
Our use of context to narrow the scope of plan recognition resembles Carberry’s focusing
heuristics [3]. Much work on cooperative response generation addresses the listener’s need to
know only enough of the speaker’s plan to answer her questions adequately (e.g., [1, 4]). In
contrast, we concentrate on a collaborative setting in which a joint plan is maintained by all
collaborators and there is a shared artifact that all participants can interact with. A related
distinction concerns ambiguity. The primary source of ambiguity in the cooperative response
generation work resides in determining the user’s top level goal (e.g., does the student want
to take the course for credit or as an audit— see [12]). In our work, ambiguity arises because
there are multiple ways of connecting actions to known higher level goals.

A variety of strategies for reducing ambiguity have been proposed. These include adopting
the worst possible explanation for the observer in adversarial settings [22], and assuming the
observed person is doing what a expert system would suggest in a medical assistance domain
[6]. In our collaborative setting, we use the focus of attention to reduce ambiguity, but failing
this, we believe it often best just to ask the person what they are doing.

Applying probabilistic approaches to recognition (e.g., [2]) in collaboration would likely
be beneficial. However, we do not believe this will eliminate ambiguity or the need for
clarification in human-computer collaboration because both seem fundamental to human-
human collaboration.

Plan recognition has often been proposed to facilitate intelligent user help (e.g., [7, 13]).

MERL-TR-98-23 December 1998

10

Typically, the computer watches the user “over the shoulder” and jumps in with advice or
assistance when the recognizer deduces the user’s goals (e.g., [24]). This approach does not
view human-computer interaction as collaboration, in which all participants are committed
to maintaining mutual understanding of the common goals. Instead, it makes the the (to us)
implausible assumption that it is possible to infer the user’s goals and plans by observing
only primitive interface actions and to choose appropriate assistance without any mutual
understanding.

5 Conclusion

Human-computer collaboration is a fruitful application for plan recognition because all par-
ticipants are committed to maintaining a mutual understanding of the goals and actions to
be performed. The question isn’t whether the software agent will know the user’s plan, but
how the agent and the user can best communicate their intentions to each other. We have
shown that plan recognition can allow more efficient and natural communication between
collaborators, and can do so with relatively modest computation effort.

References

[1] L. Ardissono and D. Sestero. Using dynamic user models in the recognition of the plans of the user. In
User Modeling and User Adapted Interaction, volume 2, pages 157–190, 1996.

[2] M. Bauer, S. Biundo, D. Dengler, J. Kohler, and Paul G. PHI–a logic-based tool for intelligent help
systems. In Proc. 13th Int. Joint Conf. AI. 1993.

[3] S. Carberry. Incorporating default inferences into plan recognition. In Proc. 8th Nat. Conf. AI, volume 1,
pages 471–8, july 1990.

[4] R. Cohen, K. Schmidt, and P van Beek. A framework for soliciting clarification from users during plan
recognition. In Proceedings of the Fourth Int. Conference on User Modeling, pages 11–17, 1994.

[5] G. Ferguson and J. Allen. Trips: An integrated intelligent problem-solving assistant. In Proc. 15th Nat.
Conf. AI, pages 567–572, 1998.

[6] A. Gertner and B. Webber. A bias towards relevance: Recognizing plans where goal minimization fails.
In Proc. 13th Nat. Conf. AI, pages 1133–1138, 1996.

[7] B. Goodman and D. Litman. Plan recognition for intelligent interfaces. In Proc. 6th IEEE Conf. AI
Applications, 1990.

[8] B. J. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial Intelligence,
86(2):269–357, October 1996.

[9] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. R. Cohen, J. L. Morgan, and M. E. Pollack,
editors, Intentions and Communication, pages 417–444. MIT Press, Cambridge, MA, 1990.

[10] Curry I. Guinn. Mechanisms for dynamically changing initiative in human-computer collaborative
discourse. In Human Interaction with Complex Systems Symposium, 1996.

[11] H.A. Kautz and J.F. Allen. Generalized plan recognition. In Proc. 5th Nat. Conf. AI, pages 32–37,
1986.

[12] L. Lambert and S. Carberry. A tripartite plan-based model of dialogue. In Proc. 29th Annual Meeting
of the ACL, pages 47–54, Berkeley, CA, 1991.

[13] N. Lesh and O. Etzioni. A sound and fast goal recognizer. In Proc. 14th Int. Joint Conf. AI, pages
1704–1710, 1995.

[14] D. Lin and R. Goebel. A message passing algorithm for plan recognition. In Proc. 12th Int. Joint Conf.
AI, volume 1, pages 280–5, July 1990.

MERL-TR-98-23 December 1998

11

[15] K. E. Lochbaum. An algorithm for plan recognition in collaborative discourse. In Proc. 29th Annual
Meeting of the ACL, Berkeley, CA, 1991.

[16] K. E. Lochbaum. Using collaborative plans to model the intentional structure of discourse. Technical
Report TR-25-94, Harvard Univ., Ctr. for Res. in Computing Tech., 1994. PhD thesis.

[17] K. E. Lochbaum. A collaborative planning model of intentional structure. Computational Linguistics,
1998. Forthcoming.

[18] K. E. Lochbaum, B. J. Grosz, and C. L. Sidner. Models of plans to support communication: An initial
report. In Proc. 8th National Conf. on Artificial Intelligence, pages 485–490, Boston, MA, July 1990.

[19] C. Rich and C. Sidner. COLLAGEN: A collaboration manager for software interface agents. User Mod-
eling and User-Adapted Interaction, 1998. Special issue on Computational Models of Mixed-Initiative
Interaction. Forthcoming. Also published as MERL Technical Report 97-21a.

[20] J. Rickel and W. L. Johnson. Animated agents for procedural training in virtual reality: Perception,
cognition, and motor control. to appear in Applied Artificial Intelligence, 1998.

[21] Ronnie W. Smith, D. Richard Hipp, and Alan W. Biermann. A dialog control algorithm and its
performance. In Third Conference on Applied Natural Language Processing, April 1992.

[22] Milind Tambe and Paul Rosenbloom. RESC: An approach for real-time, dynamic agent-tracking. In
Proc. 14th Int. Joint Conf. AI, pages 103–110, 1995.

[23] M. Vilain. Getting serious about parsing plans: A grammatical analysis of plan recognition. In Proc.
8th Nat. Conf. AI, pages 190–197, 1990.

[24] Robert Wilensky, David Chin, Marc Luria, James Martin, James Mayfield, and Dekai Wu. The Berkeley
UNIX Consultant project. Computational Linguistics, 14(4):35–84, 1988.

MERL-TR-98-23 December 1998

