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Abstract In contrast, agents using different dialogue strategies

can be compared with measures such as inappropri-

This paper presents PARADISE (PARAdigm ate utterance ratio, turn correction ratio, concept accu-
for Dlalogue System Evaluation), a general racy, implicit recovery and transaction success (Danieli
framework  for evaluating spoken dialogue  and Gerbino, 1995 Hirschman and Pao, 1993; Po-
agents. The framework decouples taskrequire- |jifroni et al., 19927 Simpson and Fraser, 1993; Shriberg,

ments from an agent’s dialogue behaviors, sup-  wade, and Price, 1992). Consider a comparison of two
ports comparisons among dialogue strategies,  train timetable information agents (Danieli and Gerbino,
enables the calculation of performance over  1995), where Agent A in Dialogue 1 uses an explicit con-
subdialogues and whole dialogues, specifies  firmation strategy, while Agent B in Dialogue 2 uses an

the relative contribution of various factors to implicit confirmation strategy:

performance, and makes it possible to compare

agents performing different tasks by normaliz- (1) User: | want to go from Torino to Milano.

ing for task complexity. Agent A: Do you want to go from Trento to Milano?

Yes or No?

1 Introduction User: No.
Recent advances in dague modeling, spech reogni- 2y yser: | want to travel from Torino to Milano.
tion, and natural language processing have made it pos- Agent B: At which time do you want to leave from
sible to build spoken dialogue agents for a wide vari- Merano to Milano?
ety of applicationifl Potential benefits of such agents User: No. | want to leave from Torino in the
include remote or hands-freecess, ease of use, natu- evening. '

ralness, and greater efficiency of interaction. However,

a critical obstacle to progress in this area is the lack oDanieli and Gerbino found that Agent A had a higher

a general framework for evaluating and comparing theransaction success rate andgwced less inappropriate

performance of different dialogue agents. and repair utterances than Agent B, and thus concluded
One widely used approach' to evaluation is based orthat Agent A was more robust than Agent B.

the notion of a reference answer (Hirschman et al.,11990). However, one limitation of both this approach and the
An agent’s responses to a query are compared with aeference answer approach is the inability to generalize

may be many potential dialogue strategies for carryingogues that were approximately twice as long as Agent
out a task, the key is tied to one particular dialogue stratB’s, they had no way of determining whether Agent A's
egy. higher transaction success or Agent B’s efficiency was

 lWe use the - more critical to performance. In addition to agent factors
'We use the term agent to emphasize the fact that we are ore critical to p g

evaluating a speaking entity that may have a personality. Reads-_UCh as d'a'99“e strategy, task factors such as databgse
ers who wish to may substitute the word “system” whereverSize and environmental factors such as background noise

“agent” is used. may also be relevant predictors of performance.



These approaches are also limited in that they cursuccess, and dialogue cost, all of which have been pre-
rently do not calculate performance over subdialogues agiously noted in the literature) into a single performance
well as whole dialogues, correlate performance with arevaluation function. The use of decision theory requires
external validation criterion, or normalize performancea specification of both the objectives of the decision
for task complexity. problem and a set of measures (known as attributes in
decision theory) for operationalizing the objectives. The
PARADISE model is based on the structure of objectives
(rectangles) shown in Figui_é 1. The PARADISE model
posits that performance can be correlated with a mean-
ingful external criterion such as usability, and thus that
the overall goal of a spoken dialogue agent is to maxi-
MAXIMIZE TASK mize an objective related to usability. User satisfaction

SUCCESS MINIMIZE COSTS ratings (Kamm, 1995; Shriberg, Wade, and Price, 1992;

MAXIMIZE USER SATISFACTION

alogue agent. The model further posits that two types

EFFICIENCY QUALITATIVE i i .
VEALURES MEAURES of factors are potential relevant contributors to user sat

Polifroni_et al., 1992) have been frequently used in the
literature as an external indicator of the usability of a di-
KAPPA

isfaction (namely task success and dgale costs), and
that two types of factors are potential relevant contribu-

In addition to the use of decision theory to create this
objective structure, other novel aspects of PARADISE

AGENT RESPONSE DELAY
INAPPROPRIATE UTTERANCE RATIO
REPAIRRATIO
ETC.

NUMBER UTTERANCE
DIALOGUE TIME
ETC

cess, and the use of linear regression to quantify the rel-
Figure 1: PARADISE's structure of objectives for spo- ative contribution of the success and cost factors to user
ken dialogue performance satisfaction.

The remainder of this section explains the measures
This paper describes PARADISE, a general frame'(ovalsin Figure 1) used to operationalize the set of objec-
work for evaluating spoken dialogue agents that ad+jyes, and the methodology for estimating a quantitative
dresses these limitations. PARADISE supports comparperformance function that reflects the objective structure.
isons among dialogue strategies by providing a task repsection 271 describes PARADISE's task representation,
resentation that decouplefiatan agent needs to achieve \yhich is needed to calculate the task-based success mea-
in terms of the task requirements fromow the agent  gyre described in Sectian 2.2. Sectjor| 2.3 describes the
carries out the task via dialogue. PARADISE uses &gst measures considered in PARADISE, which reflect
decision-theoretic framework to specify the relative con-poth the efficiency and the naturalness of an agent's dia-
tribution of various factors to an agent's overpérfor-  |ogye behaviors. Sectign 2.4 describes the use of linear
mance Performance is modeled as a weighted functioryegression and user satisfaction to estimate the relative
of a task-based success measure andgiia-based cost  contripution of the success and cost measures in a sin-
measures, where weights are computed by correlating|e performance function. Finally, Sectibn'2.5 explains
user satisfaction with performance. Also, performancenow performance can be calculated for subdialogues as

can be calculated for subdialogues as well as whole digg|| as whole dialogues, while Sectign'2.6 summarizes
alogues. Since the goal of this paper is to explain andhe method. )

illustrate the application of the PARADISE framework,

for expository purposes, the paper uses simplified do-

mains with hypothetical data throughout. Section 2 de-2.1 Tasks as Attribute Value Matrices

scribes PARADISE'’s performance model, and Section 3

discusses its generality, before concluding in Section 4. A general evaluation framework requires a task represen-
tation that decoupleshatan agent and user accomplish

2 A Performance Model for Dialogue from howthe task is accomplished using diglie strate-
gies. We propose that attribute value matrix (AVM)

PARADISE uses methods from decision theory (Keeneycan represent many dialogue tasks. This consists of the

set of performance measures (i.e., user satisfaction, tasind the user during the dialogue, represented as a set of



ordered pairs of attributes and their possible vakies. Bl:  Hello, Thisis Train Enquiry Service. ~ DC,AC,DR,DT

: P ; H H H P Please speak after the tone. DC,AC,DR,DT
. As a first |Illj|str'at|ve example, .con3|d.er a simplifica Which information do you need? DCACDRDT
tion of the train timetable domain of Dialogues 1 and Ul:  Iwantto travel from Torinoto Milano.  DC,AC

2, where the timetable only contains information about ~ B2  Atwhichtime doyouwanttoleave

i . . from Merano to Milano? DC,AC,DR
rush-hour trains between four cities, as shownin Table 1. u2:  No, I wantto leave from Torino
This AVM consists of four attributes (abbreviations for _ inthe evening. . DC, DR
. B3: Do you wantto leave from Torino
each attribute name are also shov'j}ri)] Table 1, these between 6 and 11 p.m? DC, DR
attribute-value pairs are annotated with the direction of =~ Dleaseanswer¥esorho. et
information flow to represent who acquires the informa- B4:  Atrainleavesat8 p.m. DT

tion, although this information is not used for evaluation.

During the dialogue the agent must acquire from the use,’:igure 3. Agent B dialogue interaction (Danieli and
the values of DC, AC, and DR, while the user must ac-Garbino 1995)

quire DT.
attribute possible values information flow attribute actual value
depart-city (DC) Milano, Roma, Torino, Trento| to agent depart-city Torino
arrival-city (AC) Milano, Roma, Torino, Trento to agent arrival-city Milano
depart-range (DR)| morning,evening to agent depart-rgnge evening
depart-time (DT) | 6am,8am,6pm,8pm to user depart-time | 8pm

Table 1: Attribute value matrix, simplified train timetable Table 2: Attribute value matrix instantiation, scenario

domain key for Dialogues 1 and 2
Al: Hello, This is Train Enquiry Service. DC,AC,DR,DT dlalogue.
Please speak after the tone. DC,AC,DR,DT For example, assume that a scenario requires the user
PRt cietiotveil boas PRPT to find a train from Torino to Milano that leaves in the
A2: Do youwantto go from Trentoto Milano? ~ DC,AC evening, as in the longer versions of Dialogues 1 and 2 in
Vo oriNe? DA Figures 2 and 3. Table 2 contains an AVM correspond-
A3: Do you wantto leave from Trento? DC ing to a “key” for this scenario. All dialogues resulting
Ua o orie? o from execution of this scenario in which the agent and
A4:  Where do you want to leave from? DC the user correctly convey all attribute values (as in Fig-
B Do vt o o rino? < ures 2 and 3) would have the same AVM as the scenario
Yes or No? DC key in Table 2. The AVMs of the remaining dialogues
Ao Do ouwantto go to Miiano? P would differ from the key by at least one value. Thus,
ue:  Yes. AC even though the dialogue strategies in Figures 2 and 3 are
By P e e o2V R radically different, the AVM task representation for these
A8:  Doyouwantto leave between6and9 p.m.? DR dialogues is identical and the performance of the system
e veorhe? o for the same task can thus be assessed on the basis of the
A9:  Thereis a train leaving at 8:00 p.m. DT AVM representation.

Figure 2: Agent A dialogue interaction (Danieli and 22 Measuring Task Success

Gerbino, 1995) Success at the task for a whole diglie (or subdi-
alogue) is measured by how well the agent and user
Performance evaluation for an agent requires a corpu%‘chieve the information requi'rements of the task. by the
end of the dialogue (or subdialogue). This section ex-

of dialogues between users and the agept, in Whlph user ains how PARADISE uses the Kappa coefficient (Car-
execute a set of scenarios. Each scenario execution ha T Sr Tl 0 ) .

. : L .~ letta, 1996, Siegel and Castellan, 1988) to operationalize
corresponding AVM instantiation indicating the task in- il =

: : ; the task-based success measure in Figure 1.
formation requirements for the scenario, where each at- The K Hici ; lculated from nf
tribute is paired with the attribute value obtained via the . € Rappa coe |C|en1z.¢, IS calculated from a coniu
sion matrix that summarizes how well an agent achieves

2For infinite sets of values, actual values found in the experthe information requirements of a particular task for a set
imental data constitute the required finite set. -
*The AVM serves as an evaluation mechanismonly. We are  *These dialoguges have been slightly modified from (Danieli

not claiming that AVMs determine an agent's behavior or serveand Gerbino, 1995).” The attribute names at the end of each
as an utterance’s semantic representation. utterance will be explained below.



KEY

DEPART-CITY ARRIVAL-CITY DEPART-RANGE DEPART-TIME
DATA | vl v2 v3 v4 | V5 v6 v7 v8 | V9 v1i0 | vi1l vi2 v13 vl14
vl | 22 1 3
v2 29
v3 4 16 4 1
v4 1 1 5 11 1
v5 3 20
v6 22
v7 2 1 1 20 5
v8 1 1 2 8 15
v9 45 10
v10 5 40
v1il 20 2
v12 1 19 2 4
v13 2 18
v14 2 6 3 21
sum [ 30 30 25 15[ 25 25 30 20| 50 50 25 25 25 25

Table 3: Confusion matrix, Agent A

KEY

DEPART-CITY ARRIVAL-CITY DEPART-RANGE DEPART-TIME
DATA | v1 v2 v3 v4 | V5 v6 v7 v8 | V9 v1i0 | vi11 vi2 vl13 vl14
vl | 16 1 4 3 2
v2 1 20 1 3
v3 5 1 9 4 2 4 2
v4 1 2 6 6 2 3
v5 4 15 2 3
v6 1 6 19
v7 5 2 1 1 15 4
v8 1 3 3 1 2 9 11
v9 2 2 39 10
v10 6 35
v1il 20 5 5 4
v12 10 5 5
v13 5 5 10 5
vl4 5 5 11
sum [ 30 30 25 15[ 25 25 30 20| 50 50 25 25 25 25

Table 4: Confusion matrix, Agent B

of dialogues instantiating a set of scenar{dSor exam-  ing the course of the dialogue are reflected in the costs
ple, Tables 3 and 4 show two hypothetical confusion ma-associated with the dialogue, as will be discussed below.
trices that could have been generated in an evaluation of

100 complete dialogues wittach of two train timetable The first matrix summarizes how the 100 AVMs rep-
agents A and B (perhaps using the confirmation strateresenting each diajjue with Agent A compare with
gies illustrated in Figures 2 and 3, respectiv@y)[he the AVMs representing the relevant scenario keys, while
values in the matrix cells are based on comparisons bethe second matrix summarizes the information exchange
tween the dialogue and scenario key AVMs. Whenevemith Agent B. Labels v1 to v4 in each matrix represent
an attribute value in a dialogue (i.e., data) Auvatches  the possible values of depart-city shown in Table 1; v5
the value in its scenario key, the number in the appro+to v8 are for arrival-city, etc. Columns represent the key,
priate diagonal cell of the matrix (boldface for clarity) specifying which information values the agent and user
is incremented by 1. The off diagonal cells representwere supposed to communicate to one another given a
misunderstandinghat are not corrected in the dialogue. particular scenario. (The equivalent column sums in both
Note that depending on the strategy that a spoken diaables reflects that users of both agents were assumed to
logue agent uses, confusions across attributes are possiave performed the same scenarios). Rows represent the
ble, e.g., “Milano " could be confused with “morning.” data collected from the dialogue corpus, reflecting what
The effect of misunderstandings treat corrected dur-  attribute values were actually communicated between the

T A . ) ] agent and the user.
5 Confusion matrices can be constructed to summarize the

result of dialogues for any subset of the scenarios, attributes, . . . -
g y Given a confusion matrix M, success at achieving the



_———

[an, 1988): dialogue behaviors that should be minimized. A wide
P(A) - P(E) range of cost measures have been used in previous work;
1—P(E) these include pure efficiency measures such as the num-

P(A) is the proportion of times that the AVMs for the ber of turns or elapsed time to complete the task (Abella,

actual set of dialogues agree with the AVMs for the sce-Brown, and Buntschuh, 1996; Hirschman ef al’, 1990;

nario keys, and P(E) is the proportion of times that theSmith and Gordon, 199¢; Walker, 1
AVMs for the dialogues and the keys are expected tg>U"€S O Ve phenomena such as _
agree by chanc@When there is no agreement other than"ePar utterances$ (Danieli and Gerbino, 1995; Hirschman

that which would be expected by chanee= 0. When ~ <8 Fab, 2999, 9Py Al lelth,
there is total agreement, = 1. x is superior to other PARADISE represents each cost measure as a func-
measures of success such as transaction success (Danfén c; that can be applied to any (sub)dialogue. First,
and Gerbino, 1995), concepiccuracy (Simpson and consider the simplest case of calculating efficiency mea-
Fraser, 1993), and percent agreement (Gale, Church, arsgires over a whole dialogue. For example clebe the
Yarowsky, 1992) bcauses takes into account the inher- total number of utterances. For the whole dialogue D1 in
ent complexity of the task by correcting for chance ex-Figure 2,¢;(D1) is 23 utterances. For the whole dialogue
pected agreement. Thusprovides a basis for compar- D2 in Figure 3,¢,(D2) is 10 utterances.
isons across agents that are perforndifterenttasks. To calculate costs over subdialogues and for some
When the prior distribution of the categories is un- of the qualitative measures, it iscessary to be able
known, P(E), the expected chance agreement between specify which information goals each utterance con-
the data and the key, can be estimated from the distritributes to. PARADISE uses its AVM representation to
bution of the values in the keys. This can be calculatedink the information goals of the task to any arbitrary
from confusion matrix M, since the columns representdialogue behavior, by tagging the dialogue with the at-

the values in the keys. In particular: tributes for the tas@. This makes it possible to evaluate
N any potential dialogue strategies for achieving the task,
P(E) = Z(ﬁ)z as well as to evaluate dialogue strategies that operate at
T the level of dialogue subtasks (subdialogues).

=1

wheret; is the sum of the frequencies in column i of M,

andT is the sum of the frequencies in My (+ ... +t,). FORT S

P(A), the actual agreement between the data and the GOALS D AC DROT
key, is always computed from the confusion matrix M: UTTERANéES:yAl.‘A9

P(A) — Zq:l M(Z) Z)
T

Given the confusion matrices in Tables 3 and 4, P(E) A 2 A
= 0.079 for both agent$. For Agent A, P(A) = 0.795 SEGHENT: SEGHENT: SEGHENT: S
andx = 0.777, while for Agent B, P(A) = 0.59 and = GOALS: DC,AC GOALS. DR GOALS. DT
0.555, suggesting that Agent A is morecsassful than UTTERANCES UL.UB | || UTTERANCES.AT..U8 UTTERANCES: A9

B in achieving the task goals.

2.3 Measuring Dialogue Costs

As shown in Figure:1, performance is also a function of a , ,
combination of cost measures. Intuitively, cost measures Sggy@;gg SEG%&E!TA?
should be calculated on the basis of any user or agen UTTERANCES‘ 13,5 UTTERANCES‘ 1.6

dorf, 1980;! Siegel and Castellan, 1688). Thus, the observegtigure 4: Task-defined discourse structure of Agent A
user/agent interactions are modeled as a coder, and the ideé‘alogue interaction
interactions as an expert coder.

8Using a single confusion matrix for all attributesasinTa-
bles 3 and 4 inflates when there are few cross-attribute confu-  °This tagging can be hand generated, or system generated
sions by making P(E) smaller. In some cases it might be desirand hand corrected. Preliminary studies indicate that reliability
able to calculate: first for identification of attributes and then for human tagging is higher for AVM attribute tagging than
for values within attributes, or to averagdor each attribute to  for other types of discourse_segment tagging (Passonneau and
produce an overalt for the task. Litman, 1997, Hirschberg and Nakatani, 1996).



Consider the longer versions of Dialogues 1 and 2 in
Figures 2 and 3. Each utterance in Figures 2 and 3 has n
been tagged using one or more of the attribute abbre-  Performance = (a * N'(k)) — qu * N(c;)
viations in Table 1, according to the subtask(s) the ut- i=1
terance contributes to. As a convention of this type ofHere a is a weight onx, the cost functions; are

tagging, utterances that contribute to the success of t eighted byw;, and\’ is a Z score normalization func-
whole dialogue, such as greetings, are tagged with all thﬁ G 1.

structure of the task (Carberry, 1989; Grosz and Sidner, 0 1, that the values of are not on the same scale as

= b e ! .
1986,._L_|t_m_a_n_a_1n_qAI_Iqu,_l_Q_QO), the tagging ofa d|alogueH, and that the cost measuresmay also be calculated

by the AVM attributes can be used to generate a hierar- ; ;
. . R ver widely varying scales (e.g. response delay could
chical discourse structure such as that shown in Flgure% y varying (e.g P y

for Dial 1 (Fi o) F | t (subdi e measured using seconds while, in the example, costs
or Dialogue 1 (Figure 2). For example, segment (su "Were calculated in terms of number of utterances). This

alogue) S2 in Figure 4 is about both depart-city (DC) and lemi iV sol lizi h
arrival-city (AC). It contains segments S3 and S4 within il?[gozb seggrlg easily solved by normalizing each faotde

it, and consists of utterances Ul U6. T—T
Tagging by AVM attributes is required to calculate O
costs over subdialogues, since for any subdialogue, tas\;ghere% is the standard deviation far
attributes define the subdialogue. For subdialogue S4 in
Figure 4, whichis about the attribute arrival-city and con-

user | agent| US| & cq (#utt) | co (#rep)

sists of utterances A6 and U&,(S4) is 2. 1 A T[1 76 30
Tagging by AVM attributes is also required to calcu- S A - o >
late the cost of some of the qualitative measures, such as 4 A 3|1 40 20
number of repair utterances. (Note that to calculate such S A B I 2 .
costs, each utterance in the corpus ofatiaies must also 7 A 1| 046 75 30
be tagged with respect to the qualitative phenomenon in S % 2
guestion, e.g. whether the utterance is a re'ﬂairFor 10 B 5|1 15 1
example, let; be the number of repair utterances. The ool g P 02
repair utterances in Figure 2 are A3 through U6, thus 13 B 1| 019 45 18
c2(D1) is 10 utterances ang(S4) is 2 utterances. The wloal 3lons 32 z
repair utterance in Figure 3 is U2, but note that according 16 B 2 | 046 40 18
to the AVM task tagging, U2 simultaneously addresses ',\\",;22((’3 NI IS N ol
the information goals for depart-range. In general, if an Mean | NA | 2.75| 075 38.6 185

utterance U contributes to the information goals of N dif- )
ferent attributes, each attribute acots for 1/N of any ~ 1able 5: Hypothetical performance data from users of
costs derivable from U. Thusy(D2) is .5. Agents A and B

Given a set of, it is necessary to combine the dif-
ferent cost measures in order to determine their relative To illustrate the method for estimating a performance
contribution to performance. The next section explainsfunction, we will use a subset of the data from Tables
how to combines with a set ofc; to yield an overall per- 3 and 4, shown in Table 5. Table 5 represents the re-
formance measure. sults from a hypothetical experiment in which eight users
were randomly assigned to communicate with Agent A
and eight users were randomly assigned to communicate
Given the definition of stcess and costs above and thewith Agent B. Table 5 shows user satisfaction (US) rat-
model in Figure 11, performance for any (sub)dialogue Dings (discussed below);, number of utterances (#utt)
is defined as followgﬁ and number of repair utterances (#rep) for each of these
oo users. Users 5 and 11 correspond to the dialogues in Fig-

2.4 Estimating a Performance Function

reliability (Hirschman and Pad993). ures 2 and 3 respectively. To normalizefor user 5, we
U\We assume an additive performance (utility) function be- determine thaty is 38.6 andv,, is 18.9. ThusN(c1) is
cause it appears thatand the various cost factoes are util- ~ -0.83. SimilarlyA/(¢;) for user 11 is -1.51.

ity independentand additive independent (Keeney and Raiffa, To estimate the performance function, the weights
1976). Itis possible however that user satisfaction data colyng,,, must be solved for. Recall that the claim implicit
lected in future experiments (or other data such asrwitiess  ____ ~ .

to pay or use) would indicate otherwise. If so, continuing use ofa reworking of the model shown in Fig_u_rlg 1, or the inclusion of

an additive function might require a transformation of the data,interaction terms in the model (Cohen, 1995).



in Figure:_i was that the relative contribution of task suc-case, & test shows that differences are only significant
cess and dialogue costs to performance should be calcat the p< .07 level, indicating a trend only. In this case,
lated by considering their contribution to user satisfac-an evaluation over a larger subset of the user population
tion. User satisfaction is typically calculated with sur- would probably show significant differences.

veys that ask users to specify the degree to which they

agree with one or more statements about the behavior .5 Application to Subdialogues

the performance of the system. A single user sa?isfactiorgince both: and; can be calculated over subdialogues,
measure can be calculated from a single question, or §Serformance can also be calculated at the subdialogue
the mean of a set of ratings. The hypothetical user satisg, g by using the values far and w; as solved for
faction ratings shown in Table 5 range from a high of 6 5,4y “This assumes that the factors that are predictive of

to alow of 1. _ _ _ . global performance, based on US, generalize as predic-
Given a set of dialogues for which user satisfaction, s of |ocal performance, i.e. within subdialogues de-

(US),  and the set of; have been collected experimen- gneq by subtasks, as defined by the attribute taghing.
tallyz the we|ght31. anduw; can b.e solved for using multi- Consider calculating the performance of the dialogue
ple linear regression. Multiple linear regression prOducesstrategies used by train timetable Agents A and B, over
a set of coefficients (weights) describing the relative CONthe subdialogues that repair the value of depart-city,. Seg-
tribution of each predictor factor in asonting for the .+ o3 (Figure 4) is an example of such a subdialogue
variance in a predicted factor. In this case, on the bass’\r/lith Agent A. As in the initial estimation of a perfor-

. . ri . .
?f the rrI:lodeI Ilr'] F'Q““'*-'fl’hus |séreate$| as the porledlcte ance function, our analysis requires experimental data,
actor. Normalization of the predictor factors gndc;) namely a set of values for andc;, and the application

to their Z scores guarantees that the relative magnitudgs e 7 score normalization function to this data. How-
of the coefficients directly indicates the relative contri- ever. the values for andc: are now calculated at the
bution of each factor. Regression on the Table 5 data foEubdiangue rather than the whole dialogue level. In ad-

both slets of dgsers tests which factarsutt, #rep most dition, only data from comparable strategies can be used
strongly predicts US. to calculate the mean and standard deviation for normal-

In thlf1 |Illlljftrat|ve.ex;':1r3pge, rt]he ref]ults r:lf thg;egres'ization. Informally, a comparable strategy is one which
sion with all factors included shows that oms\and #rep applies in the same state and has the same effects.

are significant (p< .02). In order to develop a perfor- For example, to calculate for Agent A over the sub-

mance function estimate that includes only Signiﬁcamdialogues that repair depart-city, P(A) and P(E) are com-
factors and eliminates redundancies, a second regressi%rclted using only the subpart of,TabIe 3 concerned with
including only significant factors must then be done. Indepart-city For Agent A, P(A) = .78, P(E) = .265, and

this case, a second regression yields the predictive equa-_ oo Then, this value of is normalized using data

tion: from comparable subdialogues with both Agent A and
Performance = .40\ (r) — .78\ (c2) Agent B. Based on the data in Tables 3 and 4, the mean
kis.515 andr is .261, so thatV(x) for Agent Ais .71.
i.e., a is .40 andws is .78. The results also showis To calculatec, for Agent A, assume that the average

significant at p< .0003, #rep significant at g .0001,  number of repair utterances for Agent A's subdialogues

and the combination of and #rep account for 92% of that repair depart-city is 6, that the mean over all compa-

the variance in US, the external validation criterion. Theraple repair subdialogues is 4, and the standard deviation

factor #utt was not a significant predictor of performance,js 2.79. ThenV(cp) is .72.

in part because #utt and #rep are highiguedant. (The Let Agent As repair dialogue strategy for subdia-

correlation between #utt and #rep is 0.91). logues repairing depart-city besRand Agent B’s repair
Given these predictions about the relative contributionstrategy for depart-city be ) Then using the perfor-

of different factors to performance, it is then possiblemance equation above, predicted performance foisR
to return to the problem first introduced in Section 1:
given potentially conflicting performance criteria such as
robustness and efficiency, how can the performance of
Agent A and Agent B be compared? Given values for For Agent B, using the appropriate subpart of Table
« andw;, performance can be calculated for both agen'[s4 to calculater, assuming that the average number of

using the equation above. The mean performance of Adepart-city repair utterances is 1.38, and using similar

is -.44 and the mean performance of B is .44, suggesting
that Agent B may perform better than Agent A overall. ~121pg assumption has a sound basis in theories of dialogue

The evaluator must then however test these perforsructure(Carberry, 1989; Grosz and Sidner, 1986; Litman and
mance differences for statistical significance. In thisAllen, 1990), but should be tested empirically.

Performance(Ra) = .40 % .71 — .78 % .72 = —0.28



calculations, yields of the predictor variables, as illustrated in the application
of PARADISE to subdialogues.
Performance(Rp) = .40 * —.71 — .78 % —.94 = 0.45 Given the current state of knowledge, it is important to

husth | . . emphasize that researchers should be cautious about gen-
Thus the results of these experiments predict that Wheg5i,ing a derived performance function to other agents

an agent needs to choose between the repair strategy tht 15515 performance function estimation should be

Agent B uses and the repair strategy that Agent A USe§e jteratively over many different tasks and dialogue
for repairing depart-city, it should use Agent B's strategy girategies to see which factors generalize. In this way,

Rp, since the performance(f} is predicted to be greater e fie|q can make progress on identifying the relation-

than the performance(B. ship between various factors and can move towards more

Note that the ability to calculate performance over , e ictive models of spoken dialogue agent performance.
subdialogues allows us to conduct experiments that si-

multaneously test multiple dialogue strate;gies. For ex3 Generality

ample, suppose Agents A and B had different strate-

gies for presenting the value of depart-time (in additionIn the previous section we used PARADISE to eval-

to different confirmation strategies). Without the abil- uate two confirmation strategies, using as examples
ity to calculate performance over subdialogues, it wouldfairly simple information access dijues in the train

be impossible to test the effect of the different presentimetable domain. In this section we demonstrate that
tation strategies independently of the different confirma-PARADISE is applicable to a range of tasks, domains,

tion strategies. and dialogues, by presenting AVMs for two tasks involv-
ing more than information access, and showing how ad-
2.6 Summary ditional dialogue phenomena can be tagged using AVM

We have presented the PARADISE framework, and havaittributes.
used it to evaluate two hypothetical dialogue agents in a

simplified train timetable task domain. We used PAR- [ attribute possible values information flow
. : : depart-city (DC) Milano, Roma, Torino, Trento to agent
AD_|SE T[O derive a performanpe functlon for this task, py arrival-city (AC) Milano, Roma, Torino, Trento| to agent
estimating the relative contribution of a set of potential | depart-range (DR)| morning,evening to agent
B : : _| depart-time (DT) | 6am,8am,6pm,8pm to user
predictors to user satisfaction. The PARADISE method-| oo i voe rT) | reserve, purchase o agent

ology consists of the following steps:
Table 6: Attribute value matrix, train timetable domain

o definition of a task and a set of scenarios; with requests
o specification of the AVM task representation;

« experiments with alternate dialogue agents for the First, consider an extension of the train timetable task,
where an agent can handle requests to reserve a seat or

task; purchase a ticket. This task could be represented using

e calculation of user satisfaction using surveys; the AVM in Table 6 (an extension of Table 1), where the
] . agent must now acquire the value of the attribute request-

o calculation of task success using type, in order to know what to do with the other informa-

e calculation of dialogue cost using efficiency and tionit has acquired.

qualitative measures;

Ul: | want to go from Torino to Roma DC,AC
e estimation of a performance function using linear Cl: Approximately what time of day would you like to travel? DR
. . . . U2:  What are the options? DR
regression and values for user satisfactioand di- C2:  Morning or evening. DR
a|0gue costs; U3:  Arethose departure times? DR
C3:  Yes. DR
. . . U4:  I'dlike to leave in the morning. DR
e comparison with other agents/tasks to determine c4.  Train 702 leaves Torino Porto at 8 a.m. DT
which factors generalize; U5:  Please reserve me a seat on that train. RT
o refinement of the performance model. Figure 5: Hypothetical Agent C dialogue interaction

Note that all of these steps are required to develop the
performance function. However once the weights in the Figure 5 presents a hypothetical dialogue in this ex-
performance function have been solved for, user satisfadended task domain, and illustrates user utterance types
tion ratings no longer need to be collected. Instead, preand an agent dialogue strategy that are very different
dictions about user satisfaction can be made on the basfsom those in Figures 2 and 3. First, Agent C in Figure 5



uses a “no confirmation” dialogue strategy, in contrast toferent dialogue strategies, and taggeath diabgue ac-
the explicit and implicit confirmation strategies used in cording to the following subtask structu'ﬁ:
Figures 2 and 3. Second, Figure 5 illustrates new types
of userutterances that do not directly further the infor-
mational goals of the task. In U2, the user asks the agent
a wh-question about the DR attribute itself, rather than
providing information about that attribute’s value. Since e
U2 satisfies a knowledge precondition related to answer-
ing C1, U2 contributes to the DR goal and is tagged as
such. In U3, the user similarly asks a yes-no question that ¢
addresses a subgoal related to answering C1. Finally, U5
illustrates a user request for an agent action, and is tagged o
with the RT attribute. The value of RT in the AVM in-
stantiation for the dia|ogue would be “reserve’” Our informational analysis of this task results in the
Second1 consider the very different domain and taskA\VM shown in Table 7. Note that the attributes are al-
of diagnosing a fault and repairing a circuit (Smith and most identical to Smith and Gordon’s list of subtasks.
Gordon, 1997). Figure 6 presents one dialogue from thi§ircuit-ID corresponds to Introduction, Correct-Circuit-

¢ Introduction (I)—establish the purpose of the task
Assessment (A)—establish the current behavior

Diagnosis (D)—establish the cause for the errant
behavior

Repair (R)—establish that the correction for the er-
rant behavior has been made

Test (T)—establish that the behavior is now correct

domain. Behavior and Current-Circuit-Behavior correspond to
Assessment, Fault-Type corresponds to Diagnosis, Fault-
1.C:  Thisis the circuitfix it shop. ipceRrefrrcT Correction corresponds to Repair, and Test corresponds
- l|40w mayf_l help you? IIDDgBBgs,FFTT,FFg,TT to Test. The attribute names emphasize information ex-
LU t t t. ,CB,RB,FT,FC, . . .
3G Whatis the 1D of the circuit? D change, while the subtask names emphasize function.
4. U: Rs111. ID
5.C: | am familiar with that circuit. CB
The LED is supposed to be displaying attribute possible values
alternately flashing one and seven. CB Circuit-1D (ID) RS111,RS112, ...
6.U:  ThelLEDis off. RB Correct-Circuit-Behavior (CB)| Flash-1-7, Flash-1, ...
7.C:  Whatis the switch at when the LED is off? RB Current-Circuit-Behavior (RB)| Flash-7
8.U:  The switch is down. RB Fault-Type (FT) MissingWire84-99, MissingWire88-99, ..
9.C:  Putthe switch up. RB Fault-Correction (FC) yes, no
10.U:  Okay. RB Test (T) yes, no
11. C: Put the knob to one zero. RB
12.U:  Okay. RB . . ) . .
13.C:  Whatis the LED displaying? RB Table 7: Attribute value matrix, circuit domain
14.U:  LED s displaying only a flashing seven. RB
15. C: Is there a wire between connector eight four
d 1 i ine? FT . . . .
16U N connectorninenine - Figure 6 is tagged with the attributes from Table 7.
17.C:  Addawire between connector eight four Smith and Gordon'’s tagging of this dialogaecording
and connector nine nine. FC . . .
18.U:  Done. FC to their subtask representation was as follows: turns 1-
;g- S: X\I/that isttlreﬂLEE,displayingd? TT 4 were |, turns 5-14 were A, turns 15-16 were D, turns
LUl n al .
21.C 1sthe onsonthe LED displaying for 17-18 were R, and turns 19-35 were T. Note that there
. ?“ longer period of time? TT are only two differences between the dialogue structures
23 C: |S°t'he seven on the LED displaying yiglded by the two tagging schemes. First, in our scheme
iU fsralonger period of time? TT (Figure 6), the greetings (turns 1 and 2) are tagged with
25 ¢ Pﬁithe knob to zero. T all the attributes. Second, Smith and Gordon’s single tag
26.U:  Okay. o T A corresponds to two attribute tags in Table 7, which in
27.C:  Whatis the LED displaying? T h fi | | of ithi
28.U-  Alternately displaying one and seven. T our scheme defines an extra level of structure within as-
29.C: Isthe oneonthe LED displaying sessment Subdia|ogues_
for a longer period of time? T
30.U:  Yes. T . .
31.C:  Putthe switch down. T 4 Discussion
32.U: The switch is down. T
S0 Naimone LED displaying? o This paper presented the PARADISE framework for
35.C:  Thecircuitis working correctly. Good-bye. T evaluating spoken dialogue agents. PARADISE is a gen-

eral framework for evaluating spoken dialogue agents

Figure 6: A circuit domain dialogue (Smith and Gordon, that integrates and enhances previous work. PARADISE
1997), with AVM tagging

Smith and Gordon collected 144 dialogues for this

supports comparisons among dialogue strategies with a
task representation that decouplesatan agent needs

3They report ax of .82 for reliability of their tagging

task, in which agent initiative was varied by using dif- scheme.



this task representation supports the calculatlon of perCarberry, 199'5), very few of these strategles have been
formance over subdialogues as well as whole dialoguesevaluated as tb whether they improve any measurable as-
In addition, because PARADISE’s success measure nopect of a dialogue interaction. As we have demonstrated
malizes for task complexity, it provides a bagis for com-here, any dialdgue strategy can be evaluated, so it should
paring agents performingdjfferenttasks. . be possible to,show that a cooperative response, or other
The PARADISE performance measure is g function ofcooperative strategy, actually improves task performance
both task success:) and dialogue costsc{), and has by reducing cbsts or increasing task success. We hope
a number of advantages. First, it allows us,to evaluatdhat this framework will be broadly applied in future di-
performance at any level of a dialogue, sint@andc; alogue research
can be calculated for any dialogue subtask, Since per-
formance can be measured over any subtask, and sinée Acknowledgments
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