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Collaborative knowledge building by 
smart sensors

V M Bove Jr and J Mallett

In this paper we explore decentralised approaches for gathering knowledge from sensing devices. We contrast these with centralised 
processes like data mining, which assume that sensors, devices, or even people contributing information to a pool, do not have a sense of 
the ‘whole picture’ or the goal of the data collection. Thus it is necessary for a centralised mining process to create value by sorting, co-
ordinating, and distilling the raw information. We consider instead a situation in which the contributors are given a goal, and are given 
the ability to co-ordinate among themselves in such a way that each can maximise its contribution to the pool. We discuss advantages of 
this new approach such as scalability and communication efficiency, and explore how it may change the design of devices, 
communication infrastructures, and algorithms, using several projects from the Media Laboratory as illustrations.

1. Introduction
Data mining [1—3] is the process of pattern or model 
discovery or verification in large collections of information, the 
latter typically having been collected by more than one 
observer over some range of time and space1. The roots and 
typical approaches of this field originate in an era when 
processing was much more expensive than is now the case, 
hence an emphasis on centralised computation and ‘historical’ 
analysis rather than understanding phenomena in situ and in 
real time; nevertheless the basic idea of answering questions 
that no one observer could manage in isolation not only 
continues to be of interest, but grows in importance as the 
number of things that can collect data grows.

In this paper, we consider situations in which information is 
being observed by a relatively dense (relative to the 
information-theoretical sampling requirements of the 
underlying phenomena) ensemble of devices that contain a 
substantial amount of local computational power. Rather than 
blindly routing raw, undifferentiated information to a central 

location which performs knowledge discovery, the devices 
themselves have a sense of the goal (or goals) of the overall 
process2, and co-operate with one another in a collaborative 
knowledge building process. Our intent is to deploy 
knowledge-gathering and understanding devices in the world 
such that:

• the system answers questions no single device could 
answer,

• each contributor has a sense of its relationship with 
others and motivation to maximise its contribution (and a 
way of evaluating the value of its contribution),

• each additional contributor potentially adds detail/
precision/speed to the answer.

This decentralised, locally intelligent ‘ecosystem’ of devices is 
intended to solve problems that are too finely grained or too 
local for efficient solution3 by centralised or top-down 
architectures. The incremental, scalable nature of the system 
eliminates the need for large amounts of expensive, fixed 
infrastructure, and therefore enables getting useful answers 
with just a few units and a corresponding small cost of entry 
(though better answers might result from more units). 

1 Some authors treat the phrases ‘data mining’ and ‘knowledge 
discovery in databases’ (KDD) synonymously, while others regard the 
latter as the process of understanding of information uncovered by the 
former.
2 Centralised processing is often applied in situations where there is no 
clear-cut goal at the time of collection, and non-localised patterns are 
discovered only through analysis of complete data sets. Even in these 
cases, collaboration among sensing devices can be valuable in that it 
can reduce redundancy or identify regions of possible interest for later 
analysis (thus making communication and later processing more 
efficient).
3 Where efficiency might be measured in terms of, for example, time, 
hardware resources, power, or communications bandwidth.
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2. Sensor networks
With the prices of networkable sensing devices dropping, the 
volume of information being collected by networked sensors 
has increased dramatically in recent years, and data mining is 
increasingly being applied to the resulting databases [4]. A 
common architectural approach to these problems has been a 
more or less direct replication of traditional data mining 
systems, in which the sensor nodes collect and route 
information to a central site, where database analysis is 
performed. 

It is desirable when designing networked sensing systems to 
develop architectures that have certain general 
characteristics:

• power efficiency,

• communication bandwidth efficiency,

• minimal fixed infrastructure,

• incremental scalablility from a few units to a very large 
number,

• no potential single point of failure.

Clearly application specifics and budget constraints will adjust 
the relative importance of each of these as well as adding 
additional concerns.

When sensing devices contain more computation than needed 
just for data acquisition and communication, they can act as 
data analysers, not just sensors and routers. A strong 
motivation for doing the processing in the sensor network is 
that even if bandwidth were not an issue, long-range 
transmission of raw data would still cost several orders of 
magnitude more power than local processing of it [5] — 
bandwidth or communication-power concerns become 
particularly important for high-data-rate sensors such as video 
cameras. Ganesan et al [6] have argued recently that a 
centralised data-mining approach is inappropriate — 
particularly under communications bandwidth constraints — 
given that the sensor data is often spatially and temporally 
correlated such that transmission in its raw form unnecessarily 
consumes limited resources, and also given that many 
phenomena of interest are spatially and/or temporally local 
and could be uncovered efficiently by local analysis. The 
approach suggested by these authors involves distributed 
multiresolution wavelet analysis, and therefore is effective 
only for phenomena whose statistical properties are accessible 
to such analysis (mid- and high-level audio and video 
understanding problems, for instance, generally are not), but 
their optimisation strategies appear to be useful even beyond 
such situations. Work in distributed implementation of 
algorithms such as principal components analysis can be 
relevant here, too (see, for example, Kargupta et al [7]) 
though often the communication model assumed is that of a 
typical computing cluster rather than a smart sensor network.

Looking for local data correlations in a distributed sensor 
network in such a fashion is an example of collaborative signal 
and information processing (CSIP) [5], which is concerned with 
determining appropriate groups of smart sensors to co-
operate on a particular information gathering task.

A variety of approaches have been proposed that keep the 
data at or near the sensors, to avoid overwhelming the 
network’s communications bandwidth. In the IrisNet project 
[8], the outputs of sensors are regarded logically as a single 
XML database. Queries can be made using the standard 
XPATH query language, and the system routes queries to an 
appropriate level of a hierarchical data organisation. The TAG 
framework [9] supports SQL-like queries, and has been 
implemented in the TinyDB system on Berkeley motes; 
queries originate at an external ‘base-station’ and flood the 
network, whose sensors organise themselves into a routing 
tree which sends appropriate results back to the base-station. 

In mobile-agent systems, the data likewise remains at the 
sensors, while queries and processing tasks are sent as 
software to the sensing and computing nodes. In order for this 
to make sense, the agent code (and the inter-agent traffic) 
must be significantly smaller than the raw sensor data. Qi et al 
[10] have described an application of mobile agents to 
multiresolution data integration problems. Mobile agents may 
be applicable to some of the problems we shall discuss in the 
next section of this paper, though how to employ them on 
more complex sorts of multiple-observer processing tasks still 
remains to be investigated in depth.

3. Smart cameras
An increasingly important category of networked sensors is 
the networked camera. Since a fair amount of hardware is 
needed just to control a camera’s operation and conform to 
the requirements for membership on a network, it is a small 
step to the ‘smart’ camera, in which tasks of interest can be 
performed directly on the camera’s processor [11—14]. While 
the basic ideas discussed in the preceding section apply to 
smart cameras as well as to other sorts of sensors, networks of 
cameras have several important characteristics that will affect 
a system architecture:

• the sensors are generally very directional (though there 
are exceptions, see Huang and Trivedi [12]),

• the sensors typically do not blanket an area as densely as 
simpler sensing devices would,

• as a result of the preceding two points, the sensors may 
have the ability to pan, tilt, zoom, or even relocate,

• the raw data is of potentially overwhelming size,

• the desired algorithms are complex, multi-dimensional, 
and nonlinear, and often consist of a significant amount 
of independent (i.e. one frame from one camera) 
processing followed by integrative processing.

Much of the initial interest in smart cameras involved 
surveillance, particularly for security, military applications, and 
monitoring of traffic or industrial processes; in each case the 
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on-camera processing was intended to look for particular 
phenomena of interest, either increasing the productivity and 
accuracy of human observers of the resulting video or 
performing automated decision-making in the absence of 
human observers. Cameras with significant processing 
capabilities can also be used for applications such as scene 
modelling (inferring 3-D structure by integrating multiple 
spatial or temporal viewpoints), user interface (e.g. gesture 
interpretation or gaze tracking), or interpersonal 
communications (e.g. tracking people in a meeting room or 
segmenting them from known backgrounds for intelligent 
conferencing systems); these latter three categories of tasks 
are all of particular interest to the Object-Based Media Group 
at the MIT Media Laboratory.

In a smart camera system, the local processing performed on a 
camera will typically result in a significant reduction of the 
amount of data transmitted among collaborating cameras, 
likewise in the amount of data transmitted out of the system. 
Examples of how this might happen include:

• event-of-interest detection (transmit only if the event is 
happening),

• region-of-interest identification (transmit only a spatial 
region in which a sought-for feature is visible, e.g. a face 
or a vehicle),

• feature or metadata extraction (e.g. an edge map for 
stereopsis algorithms, or a feature vector associated with 
a detected face for person identification),

• independent data compression,

• compression conditioned upon knowledge of other 
sensors, e.g. if a neighbouring camera has already 
transmitted, use that view as a predictor and send only an 
efficient description of the differences (Bove and Butera 
[15] give an example of how to compute such 
descriptions, though not necessarily an algorithm directly 
applicable to the anticipated architecture),

• high-level model building, where the model is more 
compact than the set of individual 2-D views.

How should the cameras in such a system be organised for 
effective collaboration? In the example IrisNet application 
presented in Deshpande et al [8] (fixed cameras reporting 
open parking spaces), there was a clear geographically based 
hierarchy that made sense for the problem at hand. But such a 
fixed organisation might not generalise to all situations; if the 
cameras were collaborating to track a moving vehicle, at 
certain periods of time, the data sharing and collaboration 
would cross ‘zones’, and, if the cameras themselves were 
mobile (as in our Eye Society system — see section 4 below), 
the organisation would have to be more fluid. Also, if cameras 

can participate in more than one task at a time, the different 
tasks could require different logical organisations, and some 
cameras might also not be able to participate in a task even if 
they were ideally located for doing so, if they were already fully 
computationally engaged4. Marcenaro et al discuss a fixed 
hierarchical organisation of intelligent cameras, hubs and 
control rooms, but also acknowledge the limitations of such 
systems and point to the need for more flexible architectures 
[13]. Collins et al describe an architecture in which tasks are 
dispatched from a central location [14]; however, their 
strategy for co-ordination and hand-off of dynamic tasks, such 
as moving-object tracking, would apply to a decentralised 
architecture as well.

Remagnino et al describe how high-level agents can be 
employed on smart cameras for analysis tasks [16], though not 
how appropriate groups of cameras can organise themselves; 
our research is looking to solve this problem through a group 
co-ordination protocol for autonomous smart cameras.

4. Research projects
A current research project in our group seeks to enable smart 
cameras and other smart sensing devices to organise 
themselves into groups in response to the needs of a particular 
task and the knowledge and availability of a particular device, 
rather than according to a fixed hierarchy based on hardware 
or geography.

Distributing tasks among multiple nodes has been extensively 
researched, both from the perspective of using some form of 
centralised manager or managers responsible for breaking the 
task up to subordinate nodes, and from the emergent results 
of co-ordination arising from sophisticated local decision 
making [17, 18]. Bidding schemes for deciding task allocation 
among participating nodes have also been studied, and were 
proposed as an early solution to sensor network problems by 
Smith [19] as part of the contract net framework.

In this sort of computational context, a group is typically 
defined as a set of processes that can communicate with one 
another using a one-to-many protocol. We have chosen also to 
allow direct one-to-one communication where the processes 
determine that it would be appropriate. The philosophy of the 
group-forming protocol we have developed is to provide a 
simple method for potential group members to establish their 
suitability for a particular task group, without extensive 
negotiations and most importantly without a need for any 
predefined hierarchical control structure such as task 
managers. Members may use the protocol to set up such 
structures if they wish, but it is not imposed upon them at the 
start.

Among autonomous elements, group creation becomes the 
problem of providing all the information required for 
individuals to decide whether or not they can usefully 
contribute to the group. For many tasks it is reasonable to 
assume that this information will necessarily be incomplete, 
since the desirability of group membership may be partially 
dependent on other individuals’ decisions to participate. 
These criteria make group creation a more dynamic and 
continuous process than typically seen under other 

interest in smart cameras 
involved surveillance and 
monitoring of traffic or 
industrial processes

4 IrisNet can perform dynamic load balancing for queries under a 
single task; here, we are considering multitasking. 
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assumptions. Consider as a simple example the problem of 
getting the n nearest cameras to some location to perform 
some task such as panning so that they are all looking at the 
same point. If one of the cameras is performing another task 
with which this requirement conflicts (like observing an object 
in another direction), it may choose not to participate in the 
group, thereby extending potential group membership to the 
n + 1th closest camera and beyond.

The group protocol includes in the group creation 
announcement information on the task to be performed, and a 
set of task-specific joining requirements. Example 
requirements might be a distance from a fixed location, having 
observed a phenomenon of interest, or perhaps proximity to 
another camera that has observed an object of interest 
(consider hand-off of a tracking task as a moving object passes 
from the view zone of one camera and towards that of 
another, or performing triangulation to determine 3-D 
position). An individual device can then make a decision on 
whether to join the group based on whether it meets the 
criteria and whether it is available to help (which might mean 
not performing a conflicting task, or still having memory or 
computation to spare). 

The basic operations the protocol makes available to 
individuals include:

• creating a group and advertising its membership criteria,

• joining or leaving a group,

• sending and receiving messages within a group,

• modifying the membership criteria,

• re-evaluating whether to remain in the group (whenever 
another enters or leaves, or the criteria are modified, the 
group members are notified of the change and may need 
to re-evaluate their own membership),

• terminating a group.

These operations are available to an application through a 
relatively simple set of interface functions. A device may be a 
member of any number of groups simultaneously.

In principle, forming groups based on clear-cut criteria should 
be relatively straightforward; in practice, distributed and 
dynamic groups can exhibit unexpected behaviours, especially 
in the presence of large communication latencies or outright 
failures. Difficulties for group protocols include preventing 
circumstances where multiple separate groups are created 
where a single one was intended, avoiding oscillations or race 
conditions in group membership, and ensuring that groups 
shut down cleanly without leaving stray members (particularly 
troublesome if they attempt to relaunch the group when it is 
no longer needed). To test and verify group control and 
behaviour, we are developing a verification and simulation 
tool which can display the state of running groups, complete 
with task and membership information, and a log of group 
traffic. It is also capable of simulating group membership, and 
injecting group messages in order to verify group behaviour 
especially in the case of recovery from exceptions.

As an example of an application of the group-forming 
protocol, consider the case of a distributed face detection 
problem. A set of cameras looking into a room needs to 
determine the number of unique faces. Because of viewpoint 
differences, occlusions, and the like, none can see the whole 
room so this process requires integrating the observations of 
all cameras seeing a face. For simplicity, assume that the 
application is already installed in the cameras, and that they 
have already established some sense of where they are relative 
to other cameras; then the process can proceed essentially as 
follows:

• each camera runs a face detector independently, which 
for each face found returns a bounding box and feature 
vector,

• a camera seeing a face, and not already in a group 
matching it, creates a group with a membership criterion 
of seeing a face with a feature vector similar to its own — 
estimates of regions of the room viewable from a given 
camera can be added to the membership requirements to 
prune out impossible matches,

• a camera finding itself in two groups with similar criteria 
(meaning they are both discussing the same face) merges 
the groups into one. 

The result will be one group per unique face. Within the 
groups, the member cameras can use messaging to determine 
which has the best view of each face (where ‘best’ might be 
defined as largest bounding box) and transmit that view out of 
the system to a user. Other current research includes the use 
of the protocol to allow mobile smart cameras to perform 
group calibration, a task whose multiple levels include 
identifying cameras with overlapping view zones, determining 
commonly visible scene features within the overlap regions, 
using the latter as input data for the actual calibration 
calculations, and possibly taking advantage of egomotion to 
verify or refine the solution obtained.

We have built two hardware platforms for exploring such 
computational strategies for smart cameras; in one system the 
cameras are mobile, while the other combines smart cameras 
with other sensors and output devices.

The first platform on which we have implemented the group 
forming protocol is Eye Society (Fig 1) [20], a system of small 
wireless autonomous mobile cameras that operate as a group 
to solve machine vision tasks. Given sufficient on-board 
computing to do real-time scene analysis without external 
processing resources, these cameras enable us to investigate 
how scene understanding can be improved when each camera 
is independently capable of analysing its own sensor data, and 
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sharing information on what it sees with its fellow devices. The 
units travel on an overhead track, and the cameras are 
equipped with pan and tilt servos. Each camera in the project 
has IEEE802.11b wireless communication to other cameras 
and access to ‘offshore’ resources such as databases and file 
space as required. The current version of the controller centres 
on a commercial processor board containing a StrongARM SA-
1110 processor, 32 MB of flash memory, an SA-1111 
companion chip (which allows interfacing to USB devices), and 
additional analogue and digital inputs and outputs used to 
control locomotion and camera servos, and to accept input 
from sensors such as microphones. An add-on board of our 
design contains motor drivers.

Initial research investigates collaborative solutions to such 
problems as calibration and confirmation of observations. The 
ability of the cameras to move allows them to seek locations 
that minimise undesirable effects such as occlusion and 
specular reflections, maximise visibility of useful features such 
as edges and three-point perspective, verify hypotheses by 
such means as egomotion or stereopsis, and (particularly 
relevant to the topic of this paper) optimise their positions 
relative to those of other cameras.

Longer-term work includes increasing the processor power of 
the cameras to allow more sophisticated real-time processing, 
recasting traditional machine-vision algorithms for a 
distributed environment, incorporating additional sensors 
such as microphones, and enabling other sorts of devices 

(both stationary sensing devices of the sort described in the 
following discussion and unconstrained-motion floor robots) to 
become part of the acquisition-and-understanding ecosystem.

Another platform that shares software infrastructure with the 
preceding is the Smart Architectural Surfaces (SAS) project 
(Fig 2), a collaboration between the MIT Media Laboratory 
andb the Information and Communications University in 
Seoul, Korea, that examines the inclusion of sensory input/
output and computation into building materials such that 
‘smart rooms’ and other intelligent input/output spaces can 
be built from modular elements. SAS is a framework 
forexploring how intelligent devices that are part of the 
architectural fabric of a building can work together to 
understand and respond to people’s activities, and to provide 
rich connections to people in other similarly equipped spaces. 
The communications and computational approaches are 
related to those of Eye Society, though with non-mobile 
devices that include more sensing modalities, and information 
output as well as input. Key assumptions include 
reconfigurability, incremental upgrade to a very large scale, 
and minimal centralised infrastructure.

Two conference room walls built from these units are shown in 
Fig 2. The basic unit is a tile, which snaps into a grid which 
provides support and power. Each tile contains similar 
hardware (though with a more up-to-date PXA255 processor) 
and communication to the Eye Society cameras, along with 
input devices such as a camera, microphone, ultrasonic 

Fig 1 Two Eye Society cameras on an overhead track.
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proximity sensor, and a variety of other sensors. Output 
devices include a speaker and a display. 

Collaborative knowledge-building applications for the SAS 
tiles that we are investigating include:

• the use of multiple cameras to infer position, activity, and 
gaze direction of one or more users for interface 
purposes,

• collaborative processing of microphone inputs for source 
localisation, source unmixing, and signal-to-noise ratio 
improvement,

• group camera calibration,

• correlation among multiple sensing modalities (e.g. 
associating objects sensed by the cameras with 
observations by the microphones or proximity sensors).

 The group forming protocol is also appropriate for output 
applications such as finding a group of speakers or displays in 
a particular spatial relationship, and for allowing other devices 
such as personal digital assistants to join the group of tiles in 
order to provide additional input or output for the system.

5. Conclusions
Applying the same Viral Communications principles (such as 
incremental scalability and minimisation of centralised 
infrastructure) to the realm of networked sensing devices — in 
this particular case, cameras — yields the requirement for 
decentralised and self-organising architectures, the protocols 

to support them, and the redesign of processing algorithms 
for such an environment. The resulting collaborative approach 
not only offers advantages in scaling, cost-of-entry, and 
robustness, but also may make more efficient use of power 
and bandwidth.
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