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Audio-pro with multiple DSPs and 
dynamic load distribution

B Vercoe

The latest professional Karaoke system released in Japan has no ASIC for sound synthesis and effects processing, but instead a small 
group of load-sharing DSPs that co-operatively handle the varied and dynamically varying tasks of complex high-quality audio 
performance. The software-only system is a first for the audio industry, heralding a new generation of downloadable and task-sensitive 
software that delivers time-critical performance from distributed general-purpose silicon. The tasks of emulating a 64-voice orchestra plus 
real-time MPEG decode, live voice tracking with pitch and tempo following, and a full range of audio effects processing are represented in 
a network of active objects which are just-in-time serviced by a co-operating array of SIMD DSPs.

1. Introduction
The domain of digital audio has lately become a battlefield of 
competing formats and representations (PCM, MP3, AAC, AC-
3, MPEG-4), each of them putting a stake in the ground to 
claim the ideal balance between compression ratios (affecting 
transmission and storage) and computational complexity 
(compute power required at the client end). The fickle public, 
always ready to trade up to the next fad, wants to keep pace 
with the fast-moving content creator/providers who are eager 
to take advantage of the latest audio effects and to distribute 
their wares in whichever format seems to have its stake solidly 
in the ground.

Audio hardware manufacturers are caught in the middle. They 
have a development period and time-to-market that lags 
behind the rest of the music industry. And because their 
solutions often take the form of application-specific devices 
(ASICs), they can find that pursuing quality and robustness can 
also flirt with obsolescence. The hardware industry must adopt 
technologies that are continually flexible and scalable, so that 
they can move with the outer ends of the industry that traffic 
in new content and new patterns of listening.

2. The multiple tasks of a comprehensive 
Karaoke system

A compelling challenge is found in the Karaoke industry, 
where impending market saturation has caused a search for 
new functionalities within established tradition.

One missing functionality is in fact not new, but was an 
integral part of Karaoke tradition in its earlier form. The first 

Karaoke bars were Piano Bars, where a musician skilled at 
playing the standards popular at the time (such as Enka, 
similar to the show tunes of the American 1940s) would 
provide sympathetic accompaniment for an amateur singer. 
This gave the singer an opportunity to bare his soul to his 
colleagues, to ‘ham it up’ or ‘hang on a note or word’, 
knowing that the pianist would lend full dramatic support. 
That functionality, carefully following the singer, disappeared 
entirely when technology got into the act and the pianist was 
replaced by a machine.

A new functionality has arrived in the form of Background 
Chorus. This is a prerecorded audio clip which periodically 
joins the singer-soloist at various points in the song. For 
storage reasons the audio clip is commonly encoded in MP2 or 
MP3 (i.e. MPEG 1 layers 2 or 3). This means the Karaoke 
system must include a real-time MPEG decoder to reconstruct 
the steady stream of pre-recorded PCM audio. Switching the 
decoder on and off at the right time with the right file is 
controlled by a special MIDI track, another ‘voice’ in the 
comprehensive MIDI file that drives the synthetic orchestra.

a Karaoke system requires 
flexible and downloadable 
functionality running on a 
scalable and load-sensitive 
architecture
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A few moments thought on what these two functionalities 
bring will reveal that they are basically incompatible. An MP3 
file decoded into PCM audio has a predetermined musical 
tempo, whereas a system following a singer does not, and 
rate-changing a PCM stream will result in unwanted pitch 
changes. The two functionalities cannot co-exist without 
additional heavy signal processing.

A fully comprehensive Karaoke system should be able to follow 
the singer’s tempo, be a 64-voice synthesiser, a reverb and 
audio-post-effects processor, a voice harmoniser, an equaliser 
(EQ), and a word-prompter for the song-text. It might need to 
be a melody prompter, a wrong-note corrector, or change the 
singer’s voice into that of a famous star. It might do a few of 
these in parallel well, or it might suddenly be asked to do all of 
them at once in the best way it can manage.

This is no longer a task for fixed hardware ASICs. This requires 
flexible and downloadable functionality running on an 
architecture that is scalable and load-sensitive. This is the new 
reality for the audio industry.

3. The Csound environment
Csound is a software audio processing system widely used by 
the computer music community. It allows a user-defined set of 
instruments (signal-processing networks of oscillators, 
spectral filters, time envelope shapers, effects processors) to 
be invoked by items in a score (a time-ordered event-list 
representing note-on and note-off commands plus effects 
processing controls).

An instrument is defined as a template from which the Csound 
monitor can construct any number of instantiations (i.e may 
be invoked multiple times in parallel) and comprises a 
threaded list of signal processing modules, each with a unique 
state space for every single instantiation.

A score is a collection of time-critical requests which can 
emanate from many different directions — an ascii event list, 
a pre-existing MIDI file, a real-time MIDI stream (electronic 

keyboard, controller, or streaming Ethernet), or a real-time 
event-generating program — or from any combination or all of 
these directions at the same time.

Additionally, Csound can accept and respond to audio from 
live microphone input, from a streaming file on disk, or from a 
streaming network source, or from any or all of these sources 
at the same time.

The nature of audio-processing in a Csound orchestra is 
defined by its instruments. Each instrument template can be a 
model of some audio-processing algorithm such as wave-table 
synthesis, additive synthesis, FM synthesis, linear prediction, 
phase vocoder, formant (FOF) synthesis, wave-shaping, 
physical modelling. Other instruments may perform analysis of 
live input such as pitch tracking [1—3], which can control the 
individual pitches of a vocal Harmoniser. Another may analyse 
the live input to perform tempo tracking [1—3], which in turn 
will influence the tempo of events performed in the current 
score. Yet others might add audio effects such as 
spatialisation and reverb. All of these instruments and their 
imbedded algorithms can be invoked at the same time, and 
there can be any number of instantiations of each instrument 
at any particular moment.

A simple Csound instrument and its activation are depicted in 
Fig 1. In the instrument definition the terms midinote, lineseg, 
oscil, reson, reverb and outs are opcodes, each of which 
operates on the input arguments to its right and places an 
output signal in the cell to its left. Output signals can then 
become inputs of other subsequent opcodes. For ease of 
reading, this instrument contains mnemonics (mapping, 
brkpts, amp, ftable, cf, bw, rvbtim) in place of less meaningful 
real input values, but the opcode linkages are clear. At run-
time, this instrument definition is only a template without any 
real memory space. It becomes instantiated when the Music 
Monitor receives a Note Event Request (from a score or MIDI 
device), at which time the instrument is allocated a block of 
state memory space in which its opcodes can perform. This 

 

instance 1
instance 2
-
-

instr 2
-
-
-
endin

      instr    1
inot  midinote mapping
kenv  lineseg  brkpts
asig   oscil    kenv*amp, cps(inot), ftable
asig2 reson    asig, cf, bw
asig3 reverb   asig2, rvbtim
      outs     asig2, asig3
      endin

run-time
event requests

active objects

(allocated state
memory)

Fig 1 When a Csound instrument definition receives a run-time request for performance, the template is allocated state memory that 
enables its opcodes to perform, and the memory block is inserted into a threaded list of active objects to be run until the note is 

eventually turned off.
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block is then inserted into a threaded list of active objects, to 
be performed until the note event is eventually turned off.

The independence of dozens of simultaneously performing 
instruments is guaranteed by the unique state space that 
defines each instantiation. When a single note is turned off, 
the state space of the sounding instrument may be returned to 
the memory pool and thus become available for instantiation 
of some other instrument type. This is equivalent to 
continuous garbage collection. In an implementation with 
limited memory (such as a real-time hardware synthesiser) 
there are numerous algorithms that can be invoked for 
streamlining this process.

All processing within Csound is done in floating-point 
arithmetic, and the conversion to and from fixed-point audio is 
done as the streams enter and leave the Csound environment. 
Csound normally processes audio at CD rates (44.1 khz) and 
proceeds through chronological time by block-processing the 
audio in control period blocks of usually 1 to 10 msec. Since 
each musical note will last for many such periods, this means 
that each score event and the instantiated instrument 
assigned to perform it can together be viewed as a continuous 
active object whose momentary deadline is the end of the 
current control period. In a dense part of a symphony 
orchestra simulation there may be hundreds of these objects 
alive at any one moment.

4. Spectral data types
While most opcodes in Csound are for signal generation, to 
promote constants and control-rate signals refreshed a few 
hundred times per second into audio-rate signals refreshed 
more than forty thousand times per second, the purpose of 
spectral data types is quite the opposite — to enable incoming 
audio signals to be analysed for their slower-moving control 
content. The data types are self-defining, containing in their 
structure the details of how often they have sampled the 
incoming source signal, and with what kind of frequency 
resolution.

Spectral information is not derived from a fast Fourier 
transform which has linearly spaced bins across its frequency 
range, but from exponentially spaced Fourier matchings in 
which a windowed segment of the incoming signal is 
multiplied by sinusoids of exponentially spaced frequencies. 
The resulting data is much closer to the information captured 
by the cochlear of the human auditory system, and the 
spectral data type thus more closely represents the 
information a human listener would perceive given the same 
source audio signal. Spectral data types are therefore ideal 
sources of information with which to do audio pitch tracking 
and musical rhythm detection.

A more complex Csound instrument that can pitch-track an 
incoming audio signal and turn that into a five-part harmony is 
shown in Fig 2. This first takes one channel of audio input and 
gives it some simple equalisation (EQ) to heighten the voice 
partials. The spectrum opcode then derives a spectral data 
type w1, collected every 0.02 sec, that has 24 frequency bins 
per octave and a bandwidth Q of 12 on each bin. The opcode 

is also requested to use a Hanning window on the input, and 
to emit root magnitude spectral data.

This can now send specptrk some favourable data, and its 
arguments request that it analyse the signal w1 across the 
octave range 6.5 to 8.9 (F below the piano bass staff to A 
above middle C) using an internal template of 7 harmonic 
partials with a roll-off of 0.7 per octave. They also request 3 
confirmations of any sudden octave leap, and ask that the 
pitch and amplitude outputs koct and kamp be control-rate 
interpolated between consecutive analyses. Finally it is asked 
to display the running cross-correlation spectrum so that we 
can observe its various internal pitch candidates in dynamic 
competition.

The harmon4 unit is similar to the harmoniser in normal 
Csound, but borrowed here from Extended Csound [4] (see 
section 5 below) because of its additional features. Using the 
koct pitch information it will take a2 (a time-synchronised 
version of the original audio) and pitch-shift it four ways into a 
four-part chord of frequency ratios 1.25, 0.75, 1.5 and 1.875 
(i.e. a dominant seventh chord), making five-part harmony, 
with all voices preserving the vocal formants and vowel quality 
of the original audio input. 

Some additional applications of Csound’s unique spectral data 
types can be found in Vercoe [2, 3]. The original Csound is now 
an Open Source standard used the world over [5]. A version of 
Csound called NetSound has become the core technology in 
MPEG-4 audio [6, 7].  

5. Extended Csound — enabling a DSP as 
an all-purpose real-time audio processor

Many aspects of Csound processing are not well suited to 
general-purpose serial processors, and some of these —
converting between time-domain and frequency-domain 
signals and invoking several iterations of small loops of code 
— will give an array processor with built-in butterfly hardware, 
SIMD processing power, and a non-trivial amount of on-chip 
memory a distinct advantage over serial processors. This is 
especially the case for a chip that specialises in high-speed 
floating point processing.

In 1995 Csound was ported to the Analog Devices ADSP-
21060, for which ADI developed a series of hosting PCI boards 
that included audio codecs and Uarts suitable for real-time 
MIDI I/O. The sudden propelling of Csound into real-time 
interactive mode engendered an explosion of its audio Opcode 
repertoire. Moreover, its ability to handle MIDI files and 
streams was greatly extended. This new version, now with over 
300 opcodes, became known as Extended Csound [4].

spectral data types are ideal 
sources of information for 
audio pitch tracking and 
musical rhythm detection
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Some advantages were immediate. The lightning response of 
this new system was evident when it was played as a keyboard 
synthesiser. The best keyboards in the industry have a 
keystroke-to-sound delay of less than 5 msec. The delay for 
Extended Csound is just two control periods — one for the 
active object processing described above, one-half for 
injecting the MIDI event into the active event list, and one-half 
for placing the resulting audio in the buffered output channel. 
When the control period is set to 1 msec, keyboard response is 
2 msec — a response unknown elsewhere in the industry.

One innovation was especially effective here. The MIDI 
Manager, a program that fields incoming commands and 
resends them to the synthesiser units, was not relegated to a 
host microprocessor as in systems that incorporate ASICs for 
their horsepower. Instead it is DSP-resident and interrupt 
driven, so that incoming events are immediately instantiated 
and inserted into the threaded list of active instruments. The 
MIDI Manager can thus be viewed as another object, sharing 
the resources alongside other instantiated objects.

Other advantages stem from the independent instantiation of 
all active objects (see above). Commercial synthesisers are 
typically built upon a single audio-processing method (DX-7 
FM, Roland LA synthesis, Kurzweil and Ensoniq wave-table, 
Korg physical model), and though the computational 
complexity of a single voice is different for each synthesiser, it 
is the same for each note the instrument plays, and the 
maximum number of simultaneous notes has a hard limit 
defined by the number of ‘voice slots’ in the hardware.

Csound is different. The maximum number of simultaneous 
notes has a soft limit depending on their complexity. While a 
software synthesis processor may reach its capacity in 
performing 20 or 30 simultaneous notes of great complexity, 
the same processor might easily perform 120 or 150 
simultaneous notes of lesser complexity. In practice, a typical 
orchestra will be made up of a variety of instrument algorithms 
of different complexity. And since the score might call on any 
or all of these algorithms simultaneously, with each of them to 
some arbitrary multiplicity depending on the number of notes 

INS

RESON

SPECTRUM

DELAY SPECPTRK

HARMON4

(a1) 0 3000 1

.066

(a1)

(w1)

(koct)

(a2)

(a3)

ch1 ch2

            instr     9                         ;PITCH TRACKING HARMONIZER
a1, a0      ins                                 ;GET MICROPHONE INPUT
a1          reson     a1, 0, 3000, 1            ;AND APPLY SOME EQ
w1          spectrum  a1, .02, 6, 24, 12, 1, 3  ;FORM A SPECTRAL DATA TYPE
                                                ;FIND THE PITCH
koct, kamp  specptrk   w1, 1, 6.5, 8.9, 7.5, 10, 7, .7, 0, 3, 1, .1
a2          delay     a1, .066                  ;TIME ALIGN PITCH & AUDIO
                                                ;ADD 4 NEW PARTS
a3          harmon4   a2, koct, 1.25, .75, 1.5, 1.875, 0, 6.5
            outs      a2, a3                    ;AND SEND ALL 5 TO OUTPUT
            endin

Fig 2 A Csound pitch tracker and harmoniser. Input signal a1 is pre-emphasised, then analysed to produce an exponentially spaced 
frequency spectrum w1, which is ideal input for the pitch tracker specptrk. The pitch koct is then used by harmoniser harmon4 to create 

four additional voices at specified pitch intervals, all with the same vowel quality as the original.
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of that kind requested in parallel, the processor’s theoretic 
capacity will change as often as there are calls for a new kind 
of note.

Extended Csound has a special way of dealing with this. Each 
instrument prototype contains built-in load-sensing code that 
can dynamically measure the computational cost of each of its 
instantiations. When the Csound monitor senses the system is 
falling behind (i.e. the output DAC buffer is emptying much 
faster than it is being filled) it can accurately and gently 
remove (i.e. envelope out) just the right number of inner 
overloading voices for stability to be regained. This is an 
adaptive soft-limit version of the harsher voice-stealing 
property of fixed-slot ASIC synthesisers.

Following considerable extensions and development, Extended 
Csound was shown in numerous live performance 
demonstrations, including at the 1996 International Computer 
Music Conference in Hong Kong [4], and the 1996 AES 
Convention in Los Angeles where it was awarded the EQ Blue 
Ribbon Award for the Best Product at that Convention.

However, the success of Extended Csound-ADSP combination 
in professional demonstrations soon led to requests that it be 
directed at tasks requiring even more compute power.

6. Multiprocessor Csound — dynamic load 
distribution among multiple resources 
that can handle unpredictable demands

The above successes were followed by a special challenge in 
1998 when Japan’s Taito Corporation sought the flexibility of 
Extended Csound in a high-end professional audio product. 
The goal was 64-voice MIDI synthesis, real-time tempo-
varying MPEG decode, tempo-following voice tracking, 
comprehensive audio-post effects processing (chorusing, 
flanging, and numerous prescribed reverb configurations in 2 
or 4 channels), in a software-only system that ran at 48 kHz. 
This required a small bank of tightly coupled DSPs, and a 
novel Multiprocessor Csound that could dynamically share the 
time-varying load across all available resources (see the 
realisation in Fig 3).

The ADI ADSP 21000 series of signal processors had been 
designed to run co-operatively over a dedicated external bus 
that could accommodate up to six processors in tight 
synchrony. The on-chip memory of each processor has a 
unique bus address, and DSP-to-DSP communication of 
semaphores and DMA blocks of data can be in either single-

target or broadcast mode. Also, any processor can reach 
inside the status registers of any other processor to find what 
is going on.

The standard applications that ADI had in mind for their ADSP 
21000 were compute intensive, either from breadth of data to 
be processed or the depth of processing required. In either 
case the task would typically be subset in advance, and the 
data sent by DMA from one processor to the next until the 
summary task is completed on schedule.

In Csound processing, the load is unpredictable and the 
network of dependencies is erratic. A keyboard player may put 
his whole forearm on the instrument, or a new MIDI file may 
suddenly request an entire change of voice models and audio 
effects, or a singer may suddenly slow down while also dialling 
a higher pitch transposition with full voice harmoniser effects.

The resulting task-list of varying and unpredictable length is 
easily accommodated by the threaded list of active objects 
described above. The challenge is to direct the compute 
power of six DSPs on to this dynamically varying task load. The 
solution lies in organising the DSPs in a Master-Slave 
relationship, modified to meet the interdependencies of 
certain tasks and the strict real-time deadlines of control-
period processing.

At the start of each control period, the Master processor fields 
all incoming MIDI commands and score events, and updates 
the list of instruments potentially active. Any new 
instantiations are initialised at this time, meaning that their 
new state-memory space will be allocated, any sampling 
oscillators will locate their samples and reset their phases, new 
filter coefficients will be determined, and reverberators will 
allocate and clear their internal space to zero. All of this 
happens in zero simulated time, since no output samples are 
being generated. And since there may be 20 or 40 new MIDI 
and score events at any one moment, this initialising task is 
efficiently shared (for every note-onset) among all the 
available processors.

Once initialisation is complete, the Master next divides the list 
of active instruments between all available processors as 
depicted in Fig 3. This is done with pre-knowledge of the load 
being placed on each one, since (as in the single DSP version) 
each active object template maintains an estimate of the load 
it will incur, calculated during the preceding control periods. 
This requires care, since some objects depend on others for 
data, and the most intensive tasks should ideally be 

DSP 0
master

DSP 1
slave 1

DSP 2
slave 2

audio
samples

threaded
instances

Fig 3 In Multiprocessor Csound up to six processors operate in a master/slave relationship to collectively service the needs of the 
active objects that represent the instantiated and currently active instruments. Each instrument template maintains a running estimate 

of the computational load that a single instantiation puts on a processor, so that the load of all instances of all instruments can be 
automatically redistributed each time a new note begins or an old note is removed from the threaded list.
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distributed first. The Master will try to assign itself the least 
work, since it must also field interrupts from MIDI event 
arrivals and completed DMA transfers. The set of DSPs can 
now begin its audio-generating performance.

If the dynamically balanced task list is found to place too much 
load on the multi-processor resources, causing the audio 
output buffer to drain faster than it is being replenished, the 
same technique used in voice-stealing for single-processor 
applications works equally well here. While the overloading 
voices are gradually being retired, the Master processor will 
continue to redistribute the currently active objects whenever 
the threaded task-list changes. Although this action is 
normally to handle notes being started and stopped by the 
MIDI stream and score file, a retiring note caused by voice-
stealing will also trigger a similar redistribution of resources.

A Csound active object list has a tree structure, in which the 
large bulk of generating objects will gradually combine their 
outputs and forward them to a lower network of effects 
objects (delays, reverbs, etc).  This incurs dependencies at 
some nodes of the tree, and this must be understood by the 
resource-conscious Master scheduler. Other dependencies will 
derive from the fact that a shared source of input signals (voice 
mic and incoming audio streams) must be broadcast to all 
dependent objects. Ultimately the path is towards a stereo 
pair of effects-enhanced audio outputs, arriving on time 
before the close of the current control period.

The passage of musical time results from a succession of 
control periods, each receiving the resources it needs to 
complete its tasks on time. A few moments thought will reveal 
that every active audio object may be assigned to a different 
DSP on successive control periods, and this is in fact true. 
Moreover, a single note of a melody may be successively 
generated by all six DSPs in just six control periods of a few 
milliseconds each, and yet the melody note must emerge 
clean and without blemish. This is achieved because 
Multiprocessor Csound is truly object-oriented, and the 
threaded tasklist is dynamically distributed between an 
arbitrary number (from 1 to 6) of parallel co-operating 
processors.

7. Time-smearing the task depth
Some refinements to this structure should be mentioned at 
this point. Firstly, merging several audio streams in a Csound 
tree requires that all contributing processors must first achieve 
sync. This is accomplished with the Csound sync opcode, 
which forces all denoted resources to quiesce before merging 
begins. Several levels of sync may be active at a single time, 
with several merges possible in parallel.

Secondly, shared use of a dedicated bus for interprocessor 
DMAs and for access to external blocks of data requires secure 
and fair arbitration. Since the tasks distributed to each 
processor at the start of a control period will also determine 
the order of DMAs in each, a threaded DMA list enables 
software chaining of DMAs in the order they are needed. 
Competing DSPs will then participate in a software token-
passing scheme that assures that bus-lock is distributed 
efficiently and without competitive thrashing.

Although graceful degradation of a large MIDI score is 
guaranteed by the voice-stealing described above, being able 
to keep all DSPs maximally busy is a concomitant goal. A 
typical Csound tree may have several hundred simultaneous 
objects near its top but only one or two large ones (reverbs) 
near its base, which can leave some processors idle while a 
smaller number work to complete the tree. Using tree-relevant 
directives in the orchestra template, compute-intensive 
effects objects can be folded back to run at the top of the next 
control period.

This overlapped processing of control-period audio slices is 
depicted in Fig 4.  While this complicates the tree, it enables 
maximum utilisation of resources, and its realisation fits neatly 
into the structures of dynamic load distribution on which 
Multiprocessor Csound is based.

Fig 4 Overlapped processing of control-period audio tasks. 
While the tail of one kprd of audio processing (typically audio-post 
effects) is being completed, the head of the next kprd of audio is 

being assigned and worked on by the other processors. This 
guarantees maximum utilisation of processing resources. 

8. A major first for the audio industry
The impetus for developing an efficient Multiprocessor 
Csound came from two Japanese companies, Denon (who first 
licensed the technology from Analog Devices) and Taito 
Corporation (the fourth largest Karaoke manufacturer in Japan 
and the first to introduce Communication Karaoke). 
Multiprocessor board design and software support was 
provided by Epigon Media Technologies of Bangalore, India. 
The goal of this initiative was to bring the flexibility of 
software-only audio processing into an otherwise rigid ASIC-
dominated industry.

The first result is a new Taito system called the Lavca, pictured 
in Fig 5. It uses 3 ADSP 21161 SIMD processors amassing 1.8 
Gigaflops (peak) of tightly coupled multiprocessing to deliver 
professional Karaoke performance including 64-voice MIDI 
synthesis, on-the-fly MPEG decodes, full audio-post effects 
processing, pitch and tempo modification, dynamic EQ, voice 
tracking and enhancements such as following tempo changes 
and correcting wrong pitches. The audio system is paired with 
a custom video system, and both are supported by an audio 
subsystem, various video monitoring and display devices, and 
a host interface that can access data streams via the Internet 
and over satellite. There are now 25 000 of these high-end 
commercial Lavca systems installed in the field. Each unit has 
an IP address, and the internal audio and video software is 
routinely updated by downloading over the Net [8].

The absence of audio-processing ASICs in a professional audio 
product is a first for the audio industry. Although the Lavca 
system is currently available only in Japan, its immediate 
success suggests that the idea will soon spread elsewhere. 
This practical use of multiprocessor audio with dynamic load 

kprd1 kprd2 kprd3
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distribution shows that the flexibility and power of 
comprehensive software-only audio processing will play a 
significant role in the compute-intensive digital audio industry 
of the future.
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