
BT Technology Journal • Vol 22 No 4 • October 2004180

Audio-pro with multiple DSPs and
dynamic load distribution

B Vercoe

The latest professional Karaoke system released in Japan has no ASIC for sound synthesis and effects processing, but instead a small
group of load-sharing DSPs that co-operatively handle the varied and dynamically varying tasks of complex high-quality audio
performance. The software-only system is a first for the audio industry, heralding a new generation of downloadable and task-sensitive
software that delivers time-critical performance from distributed general-purpose silicon. The tasks of emulating a 64-voice orchestra plus
real-time MPEG decode, live voice tracking with pitch and tempo following, and a full range of audio effects processing are represented in
a network of active objects which are just-in-time serviced by a co-operating array of SIMD DSPs.

1. Introduction
The domain of digital audio has lately become a battlefield of
competing formats and representations (PCM, MP3, AAC, AC-
3, MPEG-4), each of them putting a stake in the ground to
claim the ideal balance between compression ratios (affecting
transmission and storage) and computational complexity
(compute power required at the client end). The fickle public,
always ready to trade up to the next fad, wants to keep pace
with the fast-moving content creator/providers who are eager
to take advantage of the latest audio effects and to distribute
their wares in whichever format seems to have its stake solidly
in the ground.

Audio hardware manufacturers are caught in the middle. They
have a development period and time-to-market that lags
behind the rest of the music industry. And because their
solutions often take the form of application-specific devices
(ASICs), they can find that pursuing quality and robustness can
also flirt with obsolescence. The hardware industry must adopt
technologies that are continually flexible and scalable, so that
they can move with the outer ends of the industry that traffic
in new content and new patterns of listening.

2. The multiple tasks of a comprehensive
Karaoke system

A compelling challenge is found in the Karaoke industry,
where impending market saturation has caused a search for
new functionalities within established tradition.

One missing functionality is in fact not new, but was an
integral part of Karaoke tradition in its earlier form. The first

Karaoke bars were Piano Bars, where a musician skilled at
playing the standards popular at the time (such as Enka,
similar to the show tunes of the American 1940s) would
provide sympathetic accompaniment for an amateur singer.
This gave the singer an opportunity to bare his soul to his
colleagues, to ‘ham it up’ or ‘hang on a note or word’,
knowing that the pianist would lend full dramatic support.
That functionality, carefully following the singer, disappeared
entirely when technology got into the act and the pianist was
replaced by a machine.

A new functionality has arrived in the form of Background
Chorus. This is a prerecorded audio clip which periodically
joins the singer-soloist at various points in the song. For
storage reasons the audio clip is commonly encoded in MP2 or
MP3 (i.e. MPEG 1 layers 2 or 3). This means the Karaoke
system must include a real-time MPEG decoder to reconstruct
the steady stream of pre-recorded PCM audio. Switching the
decoder on and off at the right time with the right file is
controlled by a special MIDI track, another ‘voice’ in the
comprehensive MIDI file that drives the synthetic orchestra.

a Karaoke system requires
flexible and downloadable
functionality running on a
scalable and load-sensitive
architecture

Audio-pro with multiple DSPs and dynamic load distribution

BT Technology Journal • Vol 22 No 4 • October 2004 181

A few moments thought on what these two functionalities
bring will reveal that they are basically incompatible. An MP3
file decoded into PCM audio has a predetermined musical
tempo, whereas a system following a singer does not, and
rate-changing a PCM stream will result in unwanted pitch
changes. The two functionalities cannot co-exist without
additional heavy signal processing.

A fully comprehensive Karaoke system should be able to follow
the singer’s tempo, be a 64-voice synthesiser, a reverb and
audio-post-effects processor, a voice harmoniser, an equaliser
(EQ), and a word-prompter for the song-text. It might need to
be a melody prompter, a wrong-note corrector, or change the
singer’s voice into that of a famous star. It might do a few of
these in parallel well, or it might suddenly be asked to do all of
them at once in the best way it can manage.

This is no longer a task for fixed hardware ASICs. This requires
flexible and downloadable functionality running on an
architecture that is scalable and load-sensitive. This is the new
reality for the audio industry.

3. The Csound environment
Csound is a software audio processing system widely used by
the computer music community. It allows a user-defined set of
instruments (signal-processing networks of oscillators,
spectral filters, time envelope shapers, effects processors) to
be invoked by items in a score (a time-ordered event-list
representing note-on and note-off commands plus effects
processing controls).

An instrument is defined as a template from which the Csound
monitor can construct any number of instantiations (i.e may
be invoked multiple times in parallel) and comprises a
threaded list of signal processing modules, each with a unique
state space for every single instantiation.

A score is a collection of time-critical requests which can
emanate from many different directions — an ascii event list,
a pre-existing MIDI file, a real-time MIDI stream (electronic

keyboard, controller, or streaming Ethernet), or a real-time
event-generating program — or from any combination or all of
these directions at the same time.

Additionally, Csound can accept and respond to audio from
live microphone input, from a streaming file on disk, or from a
streaming network source, or from any or all of these sources
at the same time.

The nature of audio-processing in a Csound orchestra is
defined by its instruments. Each instrument template can be a
model of some audio-processing algorithm such as wave-table
synthesis, additive synthesis, FM synthesis, linear prediction,
phase vocoder, formant (FOF) synthesis, wave-shaping,
physical modelling. Other instruments may perform analysis of
live input such as pitch tracking [1—3], which can control the
individual pitches of a vocal Harmoniser. Another may analyse
the live input to perform tempo tracking [1—3], which in turn
will influence the tempo of events performed in the current
score. Yet others might add audio effects such as
spatialisation and reverb. All of these instruments and their
imbedded algorithms can be invoked at the same time, and
there can be any number of instantiations of each instrument
at any particular moment.

A simple Csound instrument and its activation are depicted in
Fig 1. In the instrument definition the terms midinote, lineseg,
oscil, reson, reverb and outs are opcodes, each of which
operates on the input arguments to its right and places an
output signal in the cell to its left. Output signals can then
become inputs of other subsequent opcodes. For ease of
reading, this instrument contains mnemonics (mapping,
brkpts, amp, ftable, cf, bw, rvbtim) in place of less meaningful
real input values, but the opcode linkages are clear. At run-
time, this instrument definition is only a template without any
real memory space. It becomes instantiated when the Music
Monitor receives a Note Event Request (from a score or MIDI
device), at which time the instrument is allocated a block of
state memory space in which its opcodes can perform. This

instance 1
instance 2
-
-

instr 2
-
-
-
endin

 instr 1
inot midinote mapping
kenv lineseg brkpts
asig oscil kenv*amp, cps(inot), ftable
asig2 reson asig, cf, bw
asig3 reverb asig2, rvbtim
 outs asig2, asig3
 endin

run-time
event requests

active objects

(allocated state
memory)

Fig 1 When a Csound instrument definition receives a run-time request for performance, the template is allocated state memory that
enables its opcodes to perform, and the memory block is inserted into a threaded list of active objects to be run until the note is

eventually turned off.

Audio-pro with multiple DSPs and dynamic load distribution

BT Technology Journal • Vol 22 No 4 • October 2004182

block is then inserted into a threaded list of active objects, to
be performed until the note event is eventually turned off.

The independence of dozens of simultaneously performing
instruments is guaranteed by the unique state space that
defines each instantiation. When a single note is turned off,
the state space of the sounding instrument may be returned to
the memory pool and thus become available for instantiation
of some other instrument type. This is equivalent to
continuous garbage collection. In an implementation with
limited memory (such as a real-time hardware synthesiser)
there are numerous algorithms that can be invoked for
streamlining this process.

All processing within Csound is done in floating-point
arithmetic, and the conversion to and from fixed-point audio is
done as the streams enter and leave the Csound environment.
Csound normally processes audio at CD rates (44.1 khz) and
proceeds through chronological time by block-processing the
audio in control period blocks of usually 1 to 10 msec. Since
each musical note will last for many such periods, this means
that each score event and the instantiated instrument
assigned to perform it can together be viewed as a continuous
active object whose momentary deadline is the end of the
current control period. In a dense part of a symphony
orchestra simulation there may be hundreds of these objects
alive at any one moment.

4. Spectral data types
While most opcodes in Csound are for signal generation, to
promote constants and control-rate signals refreshed a few
hundred times per second into audio-rate signals refreshed
more than forty thousand times per second, the purpose of
spectral data types is quite the opposite — to enable incoming
audio signals to be analysed for their slower-moving control
content. The data types are self-defining, containing in their
structure the details of how often they have sampled the
incoming source signal, and with what kind of frequency
resolution.

Spectral information is not derived from a fast Fourier
transform which has linearly spaced bins across its frequency
range, but from exponentially spaced Fourier matchings in
which a windowed segment of the incoming signal is
multiplied by sinusoids of exponentially spaced frequencies.
The resulting data is much closer to the information captured
by the cochlear of the human auditory system, and the
spectral data type thus more closely represents the
information a human listener would perceive given the same
source audio signal. Spectral data types are therefore ideal
sources of information with which to do audio pitch tracking
and musical rhythm detection.

A more complex Csound instrument that can pitch-track an
incoming audio signal and turn that into a five-part harmony is
shown in Fig 2. This first takes one channel of audio input and
gives it some simple equalisation (EQ) to heighten the voice
partials. The spectrum opcode then derives a spectral data
type w1, collected every 0.02 sec, that has 24 frequency bins
per octave and a bandwidth Q of 12 on each bin. The opcode

is also requested to use a Hanning window on the input, and
to emit root magnitude spectral data.

This can now send specptrk some favourable data, and its
arguments request that it analyse the signal w1 across the
octave range 6.5 to 8.9 (F below the piano bass staff to A
above middle C) using an internal template of 7 harmonic
partials with a roll-off of 0.7 per octave. They also request 3
confirmations of any sudden octave leap, and ask that the
pitch and amplitude outputs koct and kamp be control-rate
interpolated between consecutive analyses. Finally it is asked
to display the running cross-correlation spectrum so that we
can observe its various internal pitch candidates in dynamic
competition.

The harmon4 unit is similar to the harmoniser in normal
Csound, but borrowed here from Extended Csound [4] (see
section 5 below) because of its additional features. Using the
koct pitch information it will take a2 (a time-synchronised
version of the original audio) and pitch-shift it four ways into a
four-part chord of frequency ratios 1.25, 0.75, 1.5 and 1.875
(i.e. a dominant seventh chord), making five-part harmony,
with all voices preserving the vocal formants and vowel quality
of the original audio input.

Some additional applications of Csound’s unique spectral data
types can be found in Vercoe [2, 3]. The original Csound is now
an Open Source standard used the world over [5]. A version of
Csound called NetSound has become the core technology in
MPEG-4 audio [6, 7].

5. Extended Csound — enabling a DSP as
an all-purpose real-time audio processor

Many aspects of Csound processing are not well suited to
general-purpose serial processors, and some of these —
converting between time-domain and frequency-domain
signals and invoking several iterations of small loops of code
— will give an array processor with built-in butterfly hardware,
SIMD processing power, and a non-trivial amount of on-chip
memory a distinct advantage over serial processors. This is
especially the case for a chip that specialises in high-speed
floating point processing.

In 1995 Csound was ported to the Analog Devices ADSP-
21060, for which ADI developed a series of hosting PCI boards
that included audio codecs and Uarts suitable for real-time
MIDI I/O. The sudden propelling of Csound into real-time
interactive mode engendered an explosion of its audio Opcode
repertoire. Moreover, its ability to handle MIDI files and
streams was greatly extended. This new version, now with over
300 opcodes, became known as Extended Csound [4].

spectral data types are ideal
sources of information for
audio pitch tracking and
musical rhythm detection

Audio-pro with multiple DSPs and dynamic load distribution

BT Technology Journal • Vol 22 No 4 • October 2004 183

Some advantages were immediate. The lightning response of
this new system was evident when it was played as a keyboard
synthesiser. The best keyboards in the industry have a
keystroke-to-sound delay of less than 5 msec. The delay for
Extended Csound is just two control periods — one for the
active object processing described above, one-half for
injecting the MIDI event into the active event list, and one-half
for placing the resulting audio in the buffered output channel.
When the control period is set to 1 msec, keyboard response is
2 msec — a response unknown elsewhere in the industry.

One innovation was especially effective here. The MIDI
Manager, a program that fields incoming commands and
resends them to the synthesiser units, was not relegated to a
host microprocessor as in systems that incorporate ASICs for
their horsepower. Instead it is DSP-resident and interrupt
driven, so that incoming events are immediately instantiated
and inserted into the threaded list of active instruments. The
MIDI Manager can thus be viewed as another object, sharing
the resources alongside other instantiated objects.

Other advantages stem from the independent instantiation of
all active objects (see above). Commercial synthesisers are
typically built upon a single audio-processing method (DX-7
FM, Roland LA synthesis, Kurzweil and Ensoniq wave-table,
Korg physical model), and though the computational
complexity of a single voice is different for each synthesiser, it
is the same for each note the instrument plays, and the
maximum number of simultaneous notes has a hard limit
defined by the number of ‘voice slots’ in the hardware.

Csound is different. The maximum number of simultaneous
notes has a soft limit depending on their complexity. While a
software synthesis processor may reach its capacity in
performing 20 or 30 simultaneous notes of great complexity,
the same processor might easily perform 120 or 150
simultaneous notes of lesser complexity. In practice, a typical
orchestra will be made up of a variety of instrument algorithms
of different complexity. And since the score might call on any
or all of these algorithms simultaneously, with each of them to
some arbitrary multiplicity depending on the number of notes

INS

RESON

SPECTRUM

DELAY SPECPTRK

HARMON4

(a1) 0 3000 1

.066

(a1)

(w1)

(koct)

(a2)

(a3)

ch1 ch2

 instr 9 ;PITCH TRACKING HARMONIZER
a1, a0 ins ;GET MICROPHONE INPUT
a1 reson a1, 0, 3000, 1 ;AND APPLY SOME EQ
w1 spectrum a1, .02, 6, 24, 12, 1, 3 ;FORM A SPECTRAL DATA TYPE
 ;FIND THE PITCH
koct, kamp specptrk w1, 1, 6.5, 8.9, 7.5, 10, 7, .7, 0, 3, 1, .1
a2 delay a1, .066 ;TIME ALIGN PITCH & AUDIO
 ;ADD 4 NEW PARTS
a3 harmon4 a2, koct, 1.25, .75, 1.5, 1.875, 0, 6.5
 outs a2, a3 ;AND SEND ALL 5 TO OUTPUT
 endin

Fig 2 A Csound pitch tracker and harmoniser. Input signal a1 is pre-emphasised, then analysed to produce an exponentially spaced
frequency spectrum w1, which is ideal input for the pitch tracker specptrk. The pitch koct is then used by harmoniser harmon4 to create

four additional voices at specified pitch intervals, all with the same vowel quality as the original.

Audio-pro with multiple DSPs and dynamic load distribution

BT Technology Journal • Vol 22 No 4 • October 2004184

of that kind requested in parallel, the processor’s theoretic
capacity will change as often as there are calls for a new kind
of note.

Extended Csound has a special way of dealing with this. Each
instrument prototype contains built-in load-sensing code that
can dynamically measure the computational cost of each of its
instantiations. When the Csound monitor senses the system is
falling behind (i.e. the output DAC buffer is emptying much
faster than it is being filled) it can accurately and gently
remove (i.e. envelope out) just the right number of inner
overloading voices for stability to be regained. This is an
adaptive soft-limit version of the harsher voice-stealing
property of fixed-slot ASIC synthesisers.

Following considerable extensions and development, Extended
Csound was shown in numerous live performance
demonstrations, including at the 1996 International Computer
Music Conference in Hong Kong [4], and the 1996 AES
Convention in Los Angeles where it was awarded the EQ Blue
Ribbon Award for the Best Product at that Convention.

However, the success of Extended Csound-ADSP combination
in professional demonstrations soon led to requests that it be
directed at tasks requiring even more compute power.

6. Multiprocessor Csound — dynamic load
distribution among multiple resources
that can handle unpredictable demands

The above successes were followed by a special challenge in
1998 when Japan’s Taito Corporation sought the flexibility of
Extended Csound in a high-end professional audio product.
The goal was 64-voice MIDI synthesis, real-time tempo-
varying MPEG decode, tempo-following voice tracking,
comprehensive audio-post effects processing (chorusing,
flanging, and numerous prescribed reverb configurations in 2
or 4 channels), in a software-only system that ran at 48 kHz.
This required a small bank of tightly coupled DSPs, and a
novel Multiprocessor Csound that could dynamically share the
time-varying load across all available resources (see the
realisation in Fig 3).

The ADI ADSP 21000 series of signal processors had been
designed to run co-operatively over a dedicated external bus
that could accommodate up to six processors in tight
synchrony. The on-chip memory of each processor has a
unique bus address, and DSP-to-DSP communication of
semaphores and DMA blocks of data can be in either single-

target or broadcast mode. Also, any processor can reach
inside the status registers of any other processor to find what
is going on.

The standard applications that ADI had in mind for their ADSP
21000 were compute intensive, either from breadth of data to
be processed or the depth of processing required. In either
case the task would typically be subset in advance, and the
data sent by DMA from one processor to the next until the
summary task is completed on schedule.

In Csound processing, the load is unpredictable and the
network of dependencies is erratic. A keyboard player may put
his whole forearm on the instrument, or a new MIDI file may
suddenly request an entire change of voice models and audio
effects, or a singer may suddenly slow down while also dialling
a higher pitch transposition with full voice harmoniser effects.

The resulting task-list of varying and unpredictable length is
easily accommodated by the threaded list of active objects
described above. The challenge is to direct the compute
power of six DSPs on to this dynamically varying task load. The
solution lies in organising the DSPs in a Master-Slave
relationship, modified to meet the interdependencies of
certain tasks and the strict real-time deadlines of control-
period processing.

At the start of each control period, the Master processor fields
all incoming MIDI commands and score events, and updates
the list of instruments potentially active. Any new
instantiations are initialised at this time, meaning that their
new state-memory space will be allocated, any sampling
oscillators will locate their samples and reset their phases, new
filter coefficients will be determined, and reverberators will
allocate and clear their internal space to zero. All of this
happens in zero simulated time, since no output samples are
being generated. And since there may be 20 or 40 new MIDI
and score events at any one moment, this initialising task is
efficiently shared (for every note-onset) among all the
available processors.

Once initialisation is complete, the Master next divides the list
of active instruments between all available processors as
depicted in Fig 3. This is done with pre-knowledge of the load
being placed on each one, since (as in the single DSP version)
each active object template maintains an estimate of the load
it will incur, calculated during the preceding control periods.
This requires care, since some objects depend on others for
data, and the most intensive tasks should ideally be

DSP 0
master

DSP 1
slave 1

DSP 2
slave 2

audio
samples

threaded
instances

Fig 3 In Multiprocessor Csound up to six processors operate in a master/slave relationship to collectively service the needs of the
active objects that represent the instantiated and currently active instruments. Each instrument template maintains a running estimate

of the computational load that a single instantiation puts on a processor, so that the load of all instances of all instruments can be
automatically redistributed each time a new note begins or an old note is removed from the threaded list.

Audio-pro with multiple DSPs and dynamic load distribution

BT Technology Journal • Vol 22 No 4 • October 2004 185

distributed first. The Master will try to assign itself the least
work, since it must also field interrupts from MIDI event
arrivals and completed DMA transfers. The set of DSPs can
now begin its audio-generating performance.

If the dynamically balanced task list is found to place too much
load on the multi-processor resources, causing the audio
output buffer to drain faster than it is being replenished, the
same technique used in voice-stealing for single-processor
applications works equally well here. While the overloading
voices are gradually being retired, the Master processor will
continue to redistribute the currently active objects whenever
the threaded task-list changes. Although this action is
normally to handle notes being started and stopped by the
MIDI stream and score file, a retiring note caused by voice-
stealing will also trigger a similar redistribution of resources.

A Csound active object list has a tree structure, in which the
large bulk of generating objects will gradually combine their
outputs and forward them to a lower network of effects
objects (delays, reverbs, etc). This incurs dependencies at
some nodes of the tree, and this must be understood by the
resource-conscious Master scheduler. Other dependencies will
derive from the fact that a shared source of input signals (voice
mic and incoming audio streams) must be broadcast to all
dependent objects. Ultimately the path is towards a stereo
pair of effects-enhanced audio outputs, arriving on time
before the close of the current control period.

The passage of musical time results from a succession of
control periods, each receiving the resources it needs to
complete its tasks on time. A few moments thought will reveal
that every active audio object may be assigned to a different
DSP on successive control periods, and this is in fact true.
Moreover, a single note of a melody may be successively
generated by all six DSPs in just six control periods of a few
milliseconds each, and yet the melody note must emerge
clean and without blemish. This is achieved because
Multiprocessor Csound is truly object-oriented, and the
threaded tasklist is dynamically distributed between an
arbitrary number (from 1 to 6) of parallel co-operating
processors.

7. Time-smearing the task depth
Some refinements to this structure should be mentioned at
this point. Firstly, merging several audio streams in a Csound
tree requires that all contributing processors must first achieve
sync. This is accomplished with the Csound sync opcode,
which forces all denoted resources to quiesce before merging
begins. Several levels of sync may be active at a single time,
with several merges possible in parallel.

Secondly, shared use of a dedicated bus for interprocessor
DMAs and for access to external blocks of data requires secure
and fair arbitration. Since the tasks distributed to each
processor at the start of a control period will also determine
the order of DMAs in each, a threaded DMA list enables
software chaining of DMAs in the order they are needed.
Competing DSPs will then participate in a software token-
passing scheme that assures that bus-lock is distributed
efficiently and without competitive thrashing.

Although graceful degradation of a large MIDI score is
guaranteed by the voice-stealing described above, being able
to keep all DSPs maximally busy is a concomitant goal. A
typical Csound tree may have several hundred simultaneous
objects near its top but only one or two large ones (reverbs)
near its base, which can leave some processors idle while a
smaller number work to complete the tree. Using tree-relevant
directives in the orchestra template, compute-intensive
effects objects can be folded back to run at the top of the next
control period.

This overlapped processing of control-period audio slices is
depicted in Fig 4. While this complicates the tree, it enables
maximum utilisation of resources, and its realisation fits neatly
into the structures of dynamic load distribution on which
Multiprocessor Csound is based.

Fig 4 Overlapped processing of control-period audio tasks.
While the tail of one kprd of audio processing (typically audio-post
effects) is being completed, the head of the next kprd of audio is

being assigned and worked on by the other processors. This
guarantees maximum utilisation of processing resources.

8. A major first for the audio industry
The impetus for developing an efficient Multiprocessor
Csound came from two Japanese companies, Denon (who first
licensed the technology from Analog Devices) and Taito
Corporation (the fourth largest Karaoke manufacturer in Japan
and the first to introduce Communication Karaoke).
Multiprocessor board design and software support was
provided by Epigon Media Technologies of Bangalore, India.
The goal of this initiative was to bring the flexibility of
software-only audio processing into an otherwise rigid ASIC-
dominated industry.

The first result is a new Taito system called the Lavca, pictured
in Fig 5. It uses 3 ADSP 21161 SIMD processors amassing 1.8
Gigaflops (peak) of tightly coupled multiprocessing to deliver
professional Karaoke performance including 64-voice MIDI
synthesis, on-the-fly MPEG decodes, full audio-post effects
processing, pitch and tempo modification, dynamic EQ, voice
tracking and enhancements such as following tempo changes
and correcting wrong pitches. The audio system is paired with
a custom video system, and both are supported by an audio
subsystem, various video monitoring and display devices, and
a host interface that can access data streams via the Internet
and over satellite. There are now 25 000 of these high-end
commercial Lavca systems installed in the field. Each unit has
an IP address, and the internal audio and video software is
routinely updated by downloading over the Net [8].

The absence of audio-processing ASICs in a professional audio
product is a first for the audio industry. Although the Lavca
system is currently available only in Japan, its immediate
success suggests that the idea will soon spread elsewhere.
This practical use of multiprocessor audio with dynamic load

kprd1 kprd2 kprd3

Audio-pro with multiple DSPs and dynamic load distribution

BT Technology Journal • Vol 22 No 4 • October 2004186

distribution shows that the flexibility and power of
comprehensive software-only audio processing will play a
significant role in the compute-intensive digital audio industry
of the future.

References
1 Vercoe B L and Ellis D P W: ‘Real-time Csound: software synthesis

with sensing and control’, in Proceedings, ICMC, Glasgow, pp
209—211 (1990).

2 Vercoe B L: ‘Computational Auditory Pathways to Music
Understanding’, in Deliège I and Slobada J (Eds): ‘Perception and
cognition of music’, East Sussex, UK, Psychology Press, pp 307—
326 (1997).

3 Vercoe B L: ‘Understanding Csound’s spectral data types’, in
Boulanger R C (Ed): ‘The Csound book’, Cambridge, MA. The MIT
Press, pp 437—447 (2000).

4 Vercoe B L: ‘Extended Csound,’ in Proceedings, ICMC, Hong
Kong, pp 141—142 (1996).

5 Boulanger R C (Ed): ‘The Csound book’, Cambridge, MA, The MIT
Press (2000).

6 Vercoe B L, Gardner W G and Scheirer E D: ‘Structured audio:
creation, transmission, and rendering of parametric sound
representations’, in Proceedings of the IEEE, 86, No 5, pp 922—
940 (May 1998).

7 Scheirer E D and Vercoe B L: ‘SAOL: the MPEG-4 structured audio
orchestra language’, Computer Music Journal, 23, No 2, pp 31—
51 (Summer 1999).

8 Vercoe B L, Haidar M, Kitamura H and Jayakumar S:
‘Multiprocessor Csound: audio-pro with multiple DSPs and
dynamic load distribution’, in Proceedings of the Conference on
Parallel and Distributed Processing Techniques and Applications,
Las Vegas (2003).

Fig 5 Taito Corporation’s Lavca System, the audio industry’s
first professional audio product based entirely on software audio

processing. Using Multiprocessor Csound running on 3 SIMD
dual-core floating-point DSPs from Analog Devices, the system
delivers 64 voices of MIDI synthesis, real-time tempo-varying

MPEG decode, tempo-following voice-tracking, and
comprehensive audio-post-effects processing, all at 48 kHz in 2-
or 4-channel sound. Each system contains 40 000 songs, outputs
high-quality graphics and synchronised text, and has a unique IP

address for updating in the field. Barry Vercoe heads the Media Lab’s Music,
Mind and Machine group, which has
developed structured audio technology
capable of delivering the most complex,
high-quality digital sounds quickly and at
lower bandwidths, without losing quality.
This technology has recently been incor-
porated into MPEG-4, the world’s first
international standard for sound synthesis.
He is credited with training virtually an
entire generation of young composers in
computer sound manipulation.

He pioneered the creation of synthetic
music with the development of the Csound software-synthesis
language. Before coming to MIT, he taught at Oberlin College
Conservatory and Yale School of Music. He holds a PhD in music
composition, and was composer-in-residence for the Seattle-Tacoma
public school system.

