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Computing commonsense

P Singh, M Minsky and I Eslick

How can we build systems with ‘commonsense’, the thinking skills that every ordinary person takes for granted? In this paper, we describe 
a multi-agent architecture for enabling commonsense reasoning which is in development at the Media Lab. The system reasons about the 
kinds of fundamental entities that show up in nearly all situations — such as people, objects, events, goals, plans and mistakes. The 
architecture supports multiple layers of reflective reasoning, mechanisms for coherent reasoning across multiple representations, and 
large-scale control structures called ‘ways to think’. We first describe the main features of our architecture and then discuss its application 
and evaluation to an artificial life scenario.

1. Introduction
Computing devices have become indispensable to modern life, 
but they remain largely ignorant about the people they serve 
and the world that they so deeply permeate. When machines 
fail — by crashing, allowing spam into our mailboxes, or failing 
to retrieve documents we seek — they demonstrate a 
profound lack of basic intelligence.

Modern computers lack the ability to innovate when presented 
with a new situation; more, they lack even the knowledge that 
we, or they, exist at all. We believe the next epoch in 
computing systems will arise when we can give machines the 
capacity for more self-awareness and ‘commonsense’ — the 
ability to think, learn, and act in the world with the 
resourcefulness and flexibility exhibited by people.

Over the years, many complex problems have been largely 
solved, from chess-playing programs to logistics and planning, 
but invariably these solutions employ domain-specific 
heuristics and representations developed by the programmer. 
When conditions fall outside the predefined parameters of 
their representations, the programs are unable to generate 
new heuristics or modify existing logic to achieve their goals. 
The failure of the field of artificial intelligence to make 
significant progress towards machines with human-level 
intelligence has resulted from this emphasis on domain-
specific problems and specific mathematical techniques.

We need to set our sights on problems where the solution 
cannot be accomplished with fixed heuristics or particular 
mathematical models.

Commonsense reasoning is one of the oldest and most 
difficult problems in artificial intelligence. McCarthy  [1] 
proposes that a program has commonsense ‘if it automatically 
deduces for itself a sufficiently wide class of immediate 
consequences of anything that it is told and what it already 
knows’. Commonsense inferencing involves many types of 
reasoning, including analogical, statistical, logical, and 
heuristic methods. Solving even a small set of commonsense 
scenarios provides an ideal anvil for the development of robust 
reasoning systems, because the scenarios require broad-based 
knowledge, many different reasoning procedures, multiple 
representations and the ability to generalise to new situations 
via analogy, rule induction and other kinds of model-learning 
processes.

At the Media Lab we are designing a system for ‘computing 
commonsense’, an AI operating system for the next 
generation of computing devices. This effort encompasses 
both large-scale knowledge acquisition, such as Singh’s Open 
Mind Common Sense project [2], and Lenat’s Cyc project [3], 
and work on the architecture for reasoning described here. 
This system will be applicable to a broad spectrum of 
applications, from high-end servers to consumer devices such 
as cell phones, cars and houses. We envision applications such 
as:

• telephones that understand the social relationships 
among participants,

• computers that see bugs and failures in their own 
processing and repair and update themselves,
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• houses that optimise energy usage while adjusting to the 
daily habits of their occupants,

• augmented interfaces based on rich modes of 
communication such as natural language,

• virtual actors that engage more naturally with a target 
audience.

And there are surely many important applications we cannot 
yet see. Widely deployed commonsense reasoning will alter 
how we think about what computing devices can be useful for.

Related papers describe the methods we are developing to 
engineer large commonsense knowledge bases [4], build tool-
kits for reasoning with this knowledge [5], and put these 
reasoning systems to use in practical applications [6]. This 
paper will focus on architectural aspects of large-scale 
commonsense systems — given large quantities of multiple-
represented commonsense knowledge and multiple methods 
for reasoning with this knowledge, how can we fuse these 
heterogeneous resources and techniques into an integrated 
system that is more flexible and resourceful than any 
individual technique?

We are developing an architecture for commonsense 
reasoning that supports this kind of cognitive diversity. Our 
architecture is a multi-agent system able to reason about the 
most basic and pervasive kinds of concerns, such as people, 
objects, events, goals, plans and mistakes. It can also engage 
in the kind of self-reflection needed to think about and 
improve its own abilities over time. In this paper, we 
emphasise the higher order and novel features of this 
architecture. These organisational techniques will imbue the 
architecture with robustness in the face of new and varying 
problems.

While we are inspired by human capabilities and experiences, 
we do not see this architecture as a sufficient performance 
model of human reasoning or human cognitive development. 
We also do not require that the model reproduce the entire 
range of human mental and linguistic feats. Rather, it will 
address the commonsense reasoning problem by 
demonstrating the utility of, and the strategy for, employing 
multiple representations in pursuit of automated reasoning.

In the subsequent sections, we will elaborate on the following 
features of the architecture.

• Agents

The architecture consists of a large collection of agents. 
Each is a specialised type of knowledge or a fragment of a 
cognitive process. At any time, only a subset of the 

agents is active, which produces a particular way of 
thinking.

• Thinking

Ways of thinking are selected by special, self-reflective 
agents called critics and selectors.

• Panalogies

When the current way of thinking fails to make progress, 
the architecture can switch to another, more effective 
way of thinking by making use of panalogies, which are 
connections between the representations used by 
different agents.

• Agent organisation

Agents can be organised along two main axes:

— vertically stacked layers provide for self-models and 
reflective reasoning, enabling debugging and repair of 
lower-level behaviours by upper-level processes,

— realms can cluster domain-related agents together 
such as physical reasoning, emotional knowledge, social 
scenarios, etc.

We will further discuss applications of the architecture to an 
artificial life scenario where simulated people face realistic 
physical and social problems, enabling quantitative evaluation 
and experimental reproduction of the architecture’s 
performance.

2. Ways of thinking
Our architecture consists of a vast diversity of agents, 
numbering perhaps in the millions. Our use of the word agent 
implies a fine degree of granularity; each agent is roughly on 
the scale of a small unit of knowledge such as a rule, a small 
semantic network, or a subroutine in a computer program. 
Agents can be regarded as types of programs that perform the 
kinds of functions specifically involved in mental activities, 
such as expecting, predicting, repairing, remembering, 
revising, debugging, acting, comparing, generalising, 
exemplifying, analogising and simplifying. Nothing about 
these agents needs to be common or uniform. We can base 
each agent on a different type of process with its own distinct 
kinds of purposes, languages for describing things, ways of 
representing knowledge, and methods for producing 
inferences. 

How can we organise this seemingly unmanageable diversity? 
The basic principle that we use is that at any time only a 
subset of these agents are active — and each of these states 
produces a specific ‘way to think’. This is illustrated in Fig 1.

In other words, the architecture is not a single kind of 
‘machine’, based on a single type of algorithm or method of 
reasoning. Instead, in different contexts it becomes a different 
machine by turning on different subsets of agents. Each such 
subset results in a fundamentally different way of thinking 
about things. Some examples of these ways to think include:

• solving problems by making analogies to past 
experiences (e.g. Carbonell [7]),

commonsense reasoning will 
alter how we think about 
what computing devices can 
be useful for
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• predicting what will happen next by rule-based mental 
simulations (e.g. Kuipers, [8]),

• constructing new ‘ways to think’ by building new 
collections of agents (e.g. Minsky, [9]),

• explaining unexpected events by diagnosing causal 
structures (e.g. Davis, [10]),

• learning from problem-solving episodes by debugging 
semantic networks (e.g. Winston [11], Sussman [12]),

• classifying types of situations using statistical inference 
(e.g. Pearl, [13]),

• getting unstuck by reformulating the problem situation 
(e.g. Amarel, [14]),

• inferring the state of other minds by reusing self-models 
(e.g. Minsky, [15]).

These ways to think are not fixed. Because each of these ways 
to think is the result of the activity of a set of agents, new ways 
to think can be assembled by forming new collections of 
agents. This idea originally evolved from the k-lines of 
Minsky’s Society of Mind theory [16] — k-lines are special 
agents that turn on other sets of agents, which is a simple but 
powerful mechanism for disposing a mind towards engaging 
relevant kinds of problem-solving strategies, retrieving 
particular fragments of knowledge, and selecting or 
prioritising sets of goals, memories of particular experiences, 
and the other mental resources that might help the 
architecture in coping with a situation.

Each such way to think is more or less self-contained, and the 
mind can be seen as a distributed collection of such ways of 
thinking with no ‘central control’ — the original vision of the 
mind presented in the Society of Mind.

3. Trains of thought
What controls which ways to think are active at any moment? 
When does the system switch to new ways to think? In our 
architecture, there are special agents concerned primarily with 
selecting ways to think. We call these agents critics and 
selectors. It is easiest to conceptualise them as chronic or 
persistent questions and concerns that direct cognitive 
activity. These critics and selectors act together to produce 
trains of thought, which are sequences of ways to think. The 
selection takes place against a background that incorporates 
the current scenario or event, the active goals, and any recent 
contextual state. Example traces include the following.

• What is going to happen next following this event? (Will 
my goals be influenced by this event?) (Have I ever 
experienced anything like this event before?)

• What would explain this event? (Is it surprising that this 
event was initiated by some particular person?) (Are there 
other potential explanations besides the most obvious 
one?)

• What is the best thing for me to do now? (What would my 
parents/wife/friends think of me if I did that?) (Would 
doing that thing benefit or hurt me in the long run?)

• What can I learn from this event? (Would that learning 
result in my becoming better at some goal G?) (Am I likely 
to remember this event in the future?)

• What can I learn from this failure? (Should I fail more in 
this manner to learn more things of this type?) (What 
could I have done to avoid this failure?)

• How long will it take to perform this action? (Can I 
complete it prior to some deadline?) (Have I spent too 
much time on this problem already?)

• What sorts of things might go wrong while performing 
this action? (Would any of those things damage me?) 
(Can I prepare for any of those failures?)

Each of these mental questions invokes a way of thinking that 
attempts to answer it. However, when a way of thinking 
begins to fail, the architecture can switch to another more 
appropriate way to think. This happens through the operation 
of critic agents that recognise general classes of failures and 
impasses during thinking, and as a result invoke selectors that 
choose alternative ways to think, as shown in Fig 2.

Critics are invoked collectively in the architecture while 
selectors are invoked individually. All critics triggered by the 
current state are turned on, attempting to pick a selector. The 
current way to think dictates which critic and associated 
selector is chosen. This may be done by a simple heuristic, 
such as invoking the highest valued selector indicated by the 
sum of all active critics that try to select it. A more 
sophisticated method involves training a learning device 
within each way to think that captures the aggregate historical 
summary of which critics or selectors were most useful in 
specific contexts. The system context and/or goal state will 
dictate how decisions are made — a learning goal may lead to 
trying new things, perhaps at random, while a problem-solving 
high-level goal will prefer the event most likely to succeed.

Fig 1 Each way to think results from the activity of a particular 
subset of mental agents.

anticipating what
might happen next learning from a

mistake

remembering an
event from long ago

feeling curious
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This model is central to our methodology for encapsulating 
high-level problem-solving heuristics like those in Polya’s [17] 
classic work on mathematical methods. At the moment many 
of our critics and ways to think are described in pre-formal 
English statements rather than in terms of more well-defined 
representations, although we are working on the latter 
problem (see Singh [18] for examples of how to represent 
reflective critics). Further, these catalogues of critics intuitively 
invoke expectations in the programmer, helping to guide 
implementation and debugging of the supporting agents. This 
is one powerful way to help human designers conceptualise 
abstractions about the massive meta-management issues 
inherent in the architecture's behaviour.

Reflecting on one’s own subjective experiences helps to form 
expectations about the behaviour of the architecture. As such, 
trains of thought are analogous to psychological notions of 
mental attention.  Yet, many people will experience a 
subjective impression of parallel activities taking place across 
different models of a situation or different relevant memories. 
The new ideas, memories or models seem to ‘pop out’ of the 
background and into our sphere of attention. The analogous 
phenomenon in our architecture is the unified action of 
multiple representations operating under a set of panalogies.

4. Multiple representations
As before, when a way to think becomes ineffective the 
architecture tries to switch to another. Normally, this would 
require a certain ‘start-up time’ during which the agents of the 
new way to think gather the information they need to do their 
jobs. However, our architecture performs transitions more 
efficiently by having special support for multiple 
representations, allowing agents that represent similar 
information to synchronise automatically what they know. 
When an agent writes to a representation, it also updates the 
representations of related agents in parallel, including the 
ones used by agents that are at the moment quiescent. Thus, 
when the architecture selects a new way to think, instead of 

having to start from scratch, it will find many of its agents 
already prepared for the situation. 

We do not use any single technique for synchronising 
representations across multiple agents, but instead make use 
of a family of processes for synchronising and sharing 
information. We refer to these together as a panalogy (a term 
that derives from ‘parallel analogy’). Here are some of the 
methods of panalogy we use.

• Event panalogy

Maintains the correspondences between the elements of 
event descriptions across multiple representations. For 
example, when we imagine the consequences of buying a 
fancy new car, we can rapidly switch between considering 
the effects of that purchase on our social status (which it 
may improve) and on our financial situation (which it may 
hurt).

• Model panalogy

Maintains descriptions of different models or 
interpretations of a situation, like seeing a door 
simultaneously as both a portal and as an obstacle. Each 
of these interpretations may suggest different inferences 
or courses of actions, and if we discover that in fact we 
have a key to the door, inferences based on that 
interpretation are already available for use.

• Theory panalogy

Maintains mappings between different theories of the 
same domain. For example, we may choose to describe a 
theory of time where events are treated as atomic points 
on a timeline, and another theory of time where events 
are treated as occurring over intervals on a timeline. 
When one theory is unable to answer a given question 
about, for example, the order in which some set of events 
occurred, we can try to switch to the other.

• Realm panalogy

Maintains analogies between different ‘mental realms’. 
Lakoff and Johnson [19] have argued that the knowledge 
and skills we use for reasoning about space and time are 
also used to help reason about social realms, and there 
are pervasive analogies between these seemingly very 
different domains.

• Abstraction panalogy

Maintains connections between different abstract 
descriptions. For example, one might approximate a 
human skeleton with just a dozen bones rather the actual 
206 bones of a normal adult, or as a set of sub-skeletal 
structures consisting of the bones of the head, neck, 
chest, etc. We can link each of these different 
abstractions to form a more realistic or complete model 
than any individual abstraction could form.

• Ambiguity panalogy

Maintain links between ambiguous senses of predicates. 
For example, the preposition ‘in’ can refer to a wide 
range of relations far more specific than any division 
provided by ordinary dictionary senses. Rather than 

Fig 2 When one way of thinking is beginning to fail, mental 
critics recognise the failure, and mental selectors invoke 

alternative ways to think.

to anticipate the
future, recall a
similar event

I’m having trouble
predicting what

might happen next

anticipating what
might happen next

remembering an
event from long ago

(1)

(2)

(3)

critics and selectors 
determine ‘ways to think’
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selecting any particular such relation when describing a 
situation, we can instead maintain the ambiguity 
between those relations. We can then draw on our 
understanding of all those related senses to answer 
questions about how one thing could be ‘in’ another.

There are two implementation choices implicit in the panalogy 
model. Firstly, we could use a late-binding model in which the 
final state of the failing agency updates the selected agencies 
of the next way to think. Secondly, we could update related 
representations as the source representation is modified, thus 
providing opportunities for critics and selectors to be activated 
as a consequence of local computations in related, but 
inactive, agents.

As an example, imagine a scenario where the architecture is 
embodied in a mobile robot. The current way to think is 
computing ‘get to physical location X’. The selected agency 
performs path planning through a spatial map of the current 
physical environment. One state in the path planning may 
take the robot near another robot, Robbie. An event panalogy 
would automatically propagate the adjacency information to 
other agencies. One such agency could be a logical rule- 
based system that computes social preferences based on 
logical rules such as ‘near(self, talkative world-agent) → 
potential(<current state>, delay, high)’. The panalogy would 
write an assertion to the agent’s current state such as 
‘near(self, Robbie)’ and a local update of the agency’s state 
would result in the conclusion that a delay would be 
experienced under that state.

In the lazy evaluation scenario, the critic would not be 
activated until the path was chosen, causing invalid paths to 
be explored. If the panalogy update were aggressive, then the 
critic would be activated earlier, causing a new way to think to 
be selected. In both cases the most likely next way to think 
would backtrack and retry the search (‘try to find a better 
path’) to avoid the unfavourable adjacency condition. One of 
the flexibilities of our architecture is that this implementation 
choice can be a parameter of the current way to think merely 
by inclusion or exclusion of the ‘lazy panalogy evaluation’ 
agent in the current way to think.

5. Multiple layers of reflection
An important feature of our architecture is that we designed it 
to be a highly self-aware system. In contrast, most 
architectural designs in recent years have focused mainly on 
ways to react or deliberate, giving agents no special ability to 
reflect upon their own behaviour or to improve the way they 
think. However, to achieve increased versatility, machines will 
need better ways to recognise and repair the obstacles, bugs 
and deficiencies that result from their activities. In our 
architecture, the agents are organised into six layers, as shown 
in Fig 3.

Reflection is important because in a system that regularly 
faces new situations, existing communities of agents will 
sooner or later find themselves to be deficient when faced with 
a new context or problem. Thus we need agents whose role is 
to debug and improve the behaviour of other agents in the 
mind.

We have been formulating [18] a catalogue of the kinds of 
agents involved in reflecting upon the behaviour of other 
agents — in other words, agents that bridge these layers. 
Mental critics are an important type of agent whose job is to 
notice problems in the agents in the layers beneath, and the 
architecture will be teeming with them. We have a catalogue 
of such mental critics.

• Reactive critics detect problems in the outside world and 
turn on ways to react to those problems. Much of the 
behaviour of animals can be described by networks of 
such critics and many modern robots have hand-coded 
heuristics that incorporate this knowledge. For example:

I hear a loud noise → move to a quieter place
I feel hungry → follow the smell of food
I am far from something I want → walk towards it
I feel scared → run quickly to a safe place

• Deliberative critics search for solutions. When faced 
with a problem without a directly applicable stimulus-
response rule, we build a model of the situation, for 
example, as a network of goals, actions, and their effects, 
in which we can search for a solution. But in the case of a 
machine, even the simplest problems may result in large 
search spaces, and the architecture needs to learn 
techniques to simplify the model or to search more 
effectively:

Action A did not quite achieve my goal → try harder, or 
try to find out why
Action A worked but had bad side effects → try some 
variant of that action
Achieving goal X made goal Y harder → try them in the 

Fig 3 The mind can be divided into layers, each managing and 
reflecting upon the layers beneath.

self-conscious thinking
concerned with relationship between this mind 

and others, including self-appraisal by comparing 
one’s abilities and goals with those of others

self-reflective thinking
concerned with larger scale models of ‘self’, 
including the extent and boundaries of one’s 

physical and cognitive abilities and knowledge

reflective thinking
reflects on and manages deliberative activity, 

including assigning credit to inference methods, 
selecting suitable representations, and so forth

deliberative thinking
reasons about the situations and events in the 
external world, e.g. prediction, explanation, 

planning, diagnosis, generalisation

learned reactions
learned reflexes, scripts, and otherwise 

automatic, non-deliberative processes acting 
both on the external world and within the mind

innate reactions
instinctive reflexes and responses to 

opportunities and emergencies that occur in the 
external world or in the mind itself
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opposite order
These events do not chain → change one of their end-
points to match

• Reflective critics — when faced with a very hard problem 
that we are not making much progress on, we may need 
to reflect on the techniques that we are using to solve 
that problem:

The search has become too extensive → find methods 
that yield fewer alternatives
You have tried the same thing several times → some 
manager agent is incompetent
You overlooked some critical feature → revise the way 
you described the problem
You cannot decide which strategy to use → formulate this 
as a new problem

• Self-reflective critics — when reflecting on why the 
methods we use fail to help, then we may criticise 
ourselves:

I missed an opportunity by not acting quickly enough → 
invoke a critic that warns me whenever I am about to do 
that
I can never get this exactly right → spend more time 
practicing that skill
I let my other interests take control → tell one of my 
friends to scold me when I get distracted
I do not seem to have the knowledge I need → quit this 
and go to graduate school.

With mental critics, we need not build architectures under the 
impossible constraint that all agents always produce the 
perfect inference or suggestion for course of action, because it 
is impossible to anticipate all of the conditions under which 
the architecture may be used. Instead, when there are failures 
in reasoning, the architecture examines recent activity and 
attempts to diagnose and resolve the problem.

6. Multiple realms of thinking
The range of problem types that people cope with is 
enormous, and at first glance seems to consist of a haphazard 
collection of commonsense knowledge and inference skills. As 
architects and designers of such a system, how does one 
organise and reason about all these agents?

While the range of things that an adult person knows about is 
vast, there is a more limited class of things that we expect all 
people to be able to think about. Based on this assumption, 
we have been enumerating a list of mental realms, those 
general commonsense domains that all people have at least 
some expertise in, even as children. In fact, a person who lacks 
the ability to reason about one of these mental realms would 
be considered cognitively deficient. Some of the important 
fundamental mental realms include:

• spatial — reasoning about the ways in which objects and 
the parts of objects are oriented and situated in relation 
to one another (are those objects close enough to 
reach?),

• physical — reasoning about the dynamic behaviour of 
real objects with masses and interacting surfaces (would 
this object break if it hit the ground?),

• bodily — reasoning about the capabilities of one's 
physical body (can I throw this object to them?),

• psychological — reasoning about one’s goals and beliefs 
and those of others (do they know that I am trying to give 
them this object?),

• social — reasoning about the relationships, shared goals 
and histories that exist between people (do they want this 
thing I am handing them?),

• reflective — reasoning about one’s own recent 
deliberations (what was I trying to do a moment ago?),

• dominion — reasoning about the objects and entities 
under one’s control (do I really want to transfer ownership 
of this object to them?).

This is of course only a subset of the major commonsense 
realms, and each of these realms contains many more 
specialised sub-realms for dealing with more specific types of 
problems. For example, in the ‘bodily’ realm, the knowledge 
we may have about manipulating objects with our hands may 
be separate from the knowledge we may have for using our 
legs to walk over complex terrains.

These realms are not entirely separate, and in fact are highly 
connected through the use of panalogies. One example of how 
multiple realms can be used when reasoning about a typical 
problem is shown in Fig 4.

Realms are distinguished not only by the knowledge they 
include, but also by the methods of reasoning they support. 
Problems within certain realms may use specialised 
representations and reasoning methods to improve efficiency. 
For example, in the spatial realm, a specialised planner 
designed for a three dimensional Euclidean space may be 
more suitable to solving spatial path-planning problems than a 
more general technique that can search an N-dimensional 
space. This specialised planner can also make assumptions; 
for example, it can partially discover the shape of the search 
space through the vision system.

7. A periodic table of commonsense agent 
types

How can we best organise these ideas of realms and layers? 
We find it useful to merge the previous two dimensions of 
reflective layers and realms into a kind of ‘periodic table’, as in 
Fig 5.

Here we have organised our architecture into a matrix in which 
each cell consists of populations of agents that think about 
certain mental realms at different levels of reflection.

Beginning with the social realm, a single vertical slice through 
all the agents (from the robot point of view) yields insight into 
the organisational utility of this scheme. At the reactive level, 
there are processes for recognising that someone is smiling at 
you, for smiling back at them, and so on. At the deliberative 
level, there may be models of how people react to different 
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sorts of social actions; for example someone who smiles at you 
has no malicious intent, or perhaps they recognise you. At the 
reflective level there may be processes for understanding why 
we made a mistake about classifying our relationship with 
someone else. For example, it is not always the case that 
someone who smiles at you knows you, but you may have 
jumped to that conclusion by mistake. At the self-reflective 
level, you may decide that you are no good at remembering 
people’s faces and need to do something about that problem. 
At the self-conscious level you may think that others think less 
of you for making that mistake. As a result, you experience 
mild embarrassment, which is a way of thinking that helps to 
form a new critic within the social realm.

This raises the general question of how learning occurs within 
the architecture. We do not provide a treatment here, but 
observe that the architecture is always undergoing change 
based on experience. The primary mechanisms of learning in 
the architecture are the formation of new critics and selectors 
and the evolution of k-lines into new ways to think. A given 
agent may learn local rules, such as a probabilistic critic agent 
that chooses a selector based on the current way-to-think or 
other source of context. The lower layers have the most 
plasticity; the learning rate decreases as you go up the layers. 
This has the important consequence of reducing the 

consequences of an incremental change on the rest of the 
system. A bad reflex might be fatal, but is rarely so. Faulty 
logic in the upper layers may result in a robot driving off a cliff 
because it is the fastest way to a destination. At the top levels, 
knowledge and operations must remain very stable to avoid 
rapid or damaging changes in the robots’ goals and 
behaviours.

8. An evaluation scenario
We are developing a concrete implementation of the 
architecture at the MIT Media Lab. To enable the exercise of 
the features described above, we are constructing an ‘artificial 
life’ scenario in which two robots, simulating the behaviour of 
people in a virtual world, work together to build structures 
using simple objects like sticks and blocks, as shown in Fig 6.

While this domain may seem simple, its sparseness obscures a 
wide range of issues. In particular, most of the mental realms 
we have discussed so far show up in some form in this domain. 
Because the world is physically realistic, the robots must 
reason about the effects of gravity on objects and the forces 
that must be applied to move them. Because the robots have 
synthetic vision systems, they must reason about whether 

Fig 4 When one way of looking at a problem does not work, we can quickly switch to another.
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Fig 5 We can divide the architecture into a matrix of cells. 
Examples include the physical-deliberative cell and the social-

reflective cell.
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Fig 6 A simulated world.
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objects that seem to have disappeared behind bigger ones are 
in fact really still there. Because there are two robots, they 
must reason about the social challenges that arise, such as 
various kinds of conflict, competition, and opportunities for 
co-operation. To solve problems in this world requires 
reasoning simultaneously in the physical, social, 
psychological, and other mental realms.

For our architectural work to provide a scientifically valuable 
contribution it must support a methodology to characterise its 
performance on a set of problems; specifically it must be 
subject to quantitative analysis, objective comparisons and be 
reproducible by other researchers. Our simulated world will 
run on all three major operating systems, have provisions for 
metering and statistics gathering, and support multiple 
language bindings. Our aim is to enable a larger body of 
researchers to engage problems in an experimental domain 
that is easily reproduced in different researchers’ laboratories. 
In this way, the community will accumulate a collection of 
scenarios wherein agents can be enabled and disabled to 
evaluate their impact on a wide range of commonsense tasks. 
Only when we can catalogue and characterise the questions a 
representation can answer, along with the performance and 
cost parameters required to use it, can we begin to have a 
science of commonsense computing.

Let us examine a simple scenario that hints at the range of 
commonsense reasoning that happens in even the simplest 
social exchange. Consider the storyboard in Fig 7, in which two 
robots named Blue and Pink work together to build a tower.

Consider the first two frames of this storyboard. Let’s examine 
Blue’s thoughts as it reaches for a block, fails, then realises 
that Pink may be able to help. Even this seemingly simple 
problem requires reasoning across multiple realms and 
multiple levels: reactive, deliberative, and reflective processes 
over the physical, bodily, spatial, perceptual, and social 
realms.

Blue wants to build a tower three blocks high. It tries and fails 
to reach the blue block:

• deliberative physical (goals) — I want to build a tower of 
blocks three high,

• deliberative physical (situation) — I have built a tower 
two blocks high,

• self-reflective physical (known methods) — what do I 
know about assembling structures?

• deliberative ownership (goals) — I need to obtain a new 
block to build a tower three high,

• reflective priorities (expectation) — if I am building a 
tower, then I will not be able to achieve my other goals,

• deliberative physical (situation) — there are three blocks 
in this room,

• deliberative resources (situation) — those three blocks 
are ingredients for the desired tower,

• reflective visual and spatial (question) — perhaps there is 
another hidden block,

• reflective procedural (memory) — I have never built a 
tower exactly three blocks high,

• reflective debugger (method) — abstracting my goal may 
result in finding a suitable method,

• reflective debugger (method) — replace ‘three’ by 
‘several’,

• deliberative spatial (expectation) — placing a block on 
top of a tower will make the tower higher,

• deliberative bodily (situation) — there is a blue block 
nearby that I can possibly reach,

• deliberative spatial (expectation) — I might not be able to 
reach that blue block,

• reactive bodily (action) — produce appropriate muscle 
actuations to produce desired hand trajectory,

• deliberative bodily (situation) — my arm is at full length 
and I do not have the blue block in hand,

• reflective bodily (critic) — the current method has 
completely failed,

• self-reflective bodily (method) — find another method.

Blue sees Pink and asks for help:

• self-reflective bodily (critic) — no method is available for 
easily reaching that block from here,

the architecture is designed 
to be highly self-aware

Fig 7 Building a tower together.

Blue: “Yes, but I cannot reach that 
blue block.”

Pink: “I can reach it. Let me get it 
for you.”

Pink: “I see you are building a 
tower.”
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• self-reflective social (selector) — switch to social way of 
thinking for obtaining help,

• deliberative spatial (situation) — Pink is nearby,

• deliberative social (situation) — Pink may be able to help 
me,

• deliberative spatial (inference) — Pink seems to be near 
enough to the block to reach it,

• deliberative communication (method) — ask Pink for 
help,

• deliberative psychological (goal) — Pink may have other 
things to do,

• deliberative social (situation) — Pink may want that block 
for itself,

• deliberative linguistic (situation) — Pink says it notices I 
am building a tower,

• deliberative social (inference) — Pink understands my 
larger goal,

• deliberative social (inference) — it would cost Pink very 
little to help me,

• reactive linguistic (action) — say ‘I cannot reach that blue 
block’,

• reactive gestural (action) — point at blue block.

So we see that even this simple seemingly trivial exchange 
exercises many of the cells in our periodic table of 
commonsense agents. The details here are greatly simplified; 
presumably every step involves many more agents than are 
listed, and many iterations of thought must be involved in 
producing and refining the solutions to the sub-problems 
encountered by those agents.

9. Conclusions
This paper elaborates on similar discussions in Singh and 
Minsky [20, 21]. There are many facets of the architecture not 
covered here that revolve around grounding the 
implementation — specific mechanisms for learning, the form 
and role of goals, managing a history of critics and selected 
ways to think, management of time and memory, etc. More 
details about our architectural design are available in Minsky’s 
forthcoming book The Emotion Machine [15], and in McCarthy 
et al [22] and Minsky et al [23]. 

One might question the need for this form of architectural 
description with its many lists, catalogues, and other 
accumulations of components. There may even be those who 
find such approaches inelegant, and would prefer something 
simpler, perhaps based on some new mathematical principle 
or universal method of learning or reasoning. We believe any 
approach seeking to build something with as many features as 
the human commonsense reasoning system will need to 
consist of a great accumulation of specific skills, for many of 
the same reasons that a typical modern computer requires 
many thousands of small programs and files to operate. Can 
we realistically expect something comparable to the human 
mind to be reduced to some simple algorithm or principle 
given the range of things it must be able do? Even man-made 

systems, such as a modern workstation with its hardware and 
operating system, cannot succumb to any kind of universal 
principle or mathematical analysis. 

We hope that our architectural design and virtual world 
experiments will help alter the way AI researchers picture what 
an AI system should look like, provide an environment for 
sharing and characterising techniques and convince 
researchers to value systems less according to some ethereal 
notion of elegance and more based on their speed, flexibility, 
and all-round resourcefulness.
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