
MASSACHUSETTS INSTITUE OF TECHNOLOGY

Media Laboratory

MAS.961 Quantum Information Science October 11, 2001

Problem Set #3
(due in class, 25-Oct-01)

Instructions: You will be graded only on the problems (second section, below). The exercises are for your
own enlightenment and practice.

Lecture Topics (10/11, 10/16, 10/18, 10/23): distance measures; quantum error correction; q. codes

Recommended Reading: Nielsen and Chuang, Chapters 9-10

Exercises:

E1: What is the trace distance between the probability distribution (1, 0) and the probability distribution
(1/2, 1/2)? Between (1/2, 1/3, 1/6) and (3/4, 1/8, 1/8)?

E2: Show that the trace distance between probability distributions (p, 1− p) and (q, 1− q) is |p− q|.

E3: What is the fidelity of the probability distributions (1, 0) and (1/2, 1/2)? Of (1/2, 1/3, 1/6) and
(3/4, 1/8, 1/8)?

E4: (Existence of fixed points) Schauder’s fixed point theorem is a classic result from mathematics that
implies that any continuous map on a convex, compact subset of a Hilbert space has a fixed point. Use
Schauder’s fixed point theorem to prove that any trace-preserving quantum operation E has a fixed
point, that is, ρ such that E(ρ) = ρ.

E5: Suppose E is a trace-preserving quantum operation for which there exists a density operator ρ0 and a
trace-preserving quantum operation E ′ such that

E(ρ) = pρ0 + (1− p)E ′(ρ), (1)

for some p, 0 < p ≤ 1. Physically, this means that with probability p the input state is thrown out
and replaced with the fixed state ρ0, while with probability 1 − p the operation E ′ occurs. Use joint
convexity to show that E is a strictly contractive quantum operation, and thus has a unique fixed point.

E6: Consider the depolarizing channel, which has operation elements√
1− 3p

4
I ,

√
p

4
Y ,

√
p

4
X ,

√
p

4
Z (2)

This process gives E(ρ) = pI/2 + (1 − p)ρ. For arbitrary ρ and σ find D(E(ρ), E(σ)) using the Bloch
representation, and prove explicitly that the map E is strictly contractive, that is, D(E(ρ), E(σ)) <
D(ρ, σ).
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E7: (Concavity of fidelity) Prove that the fidelity is concave in the first entry,

F

(∑
i

piρi, σ

)
≥
∑
i

piF (ρi, σ). (3)

By symmetry the fidelity is also concave in the second entry.

E8: Show that the minimum fidelity F (|ψ〉, E(|ψ〉〈ψ|)) when E is the amplitude damping channel with
parameter γ, is

√
1− γ.

E9: Show that the syndrome measurement for detecting phase flip errors in the Shor code corresponds to
measuring the observables X1X2X3X4X5X6 and X4X5X6X7X8X9.

E10: Show that recovery from a phase flip on any of the first three qubits of the Shor code may be
accomplished by applying the operator Z1Z2Z3.

E11: Construct operation elements for a single qubit quantum operation E that upon input of any state
ρ replaces it with the completely randomized state I/2. It is amazing that even such noise models as
this may be corrected by codes such as the Shor code!

E12: Write an expression for a generator matrix encoding k bits using r repetitions for each bit. This is
an [rk, k] linear code, and should have an rk×k generator matrix.

E13: Explicitly verify that UX1U
† = X1X2, UX2U

† = X2, UZ1U
† = Z1, and UZ2U

† = Z1Z2, where U is
the controlled-not gate with qubit 1 as the control.

E14: Suppose U and V are unitary operators on two qubits which transform Z1, Z2, X1, and X2 by
conjugation in the same way. Show this implies that U = V .

E15: Show that the operations Z̄ = X1X2X3X4X5X6X7X8X9 and
X̄ = Z1Z2Z3Z4Z5Z6Z7Z8Z9 act as logical Z and X operations on a Shor-code encoded qubit. That
is, show that this Z̄ is independent of and commutes with the generators of the Shor code, and that
X̄ is independent of and commutes with the generators of the Shor code, and anti-commutes with Z̄.

E16: Give the check matrices for the five and nine qubit codes in standard form.

Problems:

P1: (Distance measures for single qubit operations) Recall the distance measure

E(U, V ) = max
|ψ〉
‖(U − V )|ψ〉‖ , (4)

where the maximum is over all pure states |ψ〉, and

D(U, V ) = tr
∣∣∣∣√(U − V )†(U − V )

∣∣∣∣ . (5)

Show that when U and V are single qubit rotations, U = Rm̂(θ), V = Rn̂(φ), D(U, V ) = 2E(U, V ).

P2: (Two-bit amplitude damping code) Amplitude damping is an important process in real physical
systems; it models spontaneous emission, inelastic scattering, thermalization of spins to the lattice, and
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many other microscopic processes where energy is exchanged between the system and environment. In
this problem and the next two, we study some quantum codes which correct for this error mechanism.

Let |0L〉 = |01〉 and |1L〉 = |10〉 be a quantum code encoding one logical qubit using two physical
qubits. Define |ψ〉 = a|0L〉+ b|1L〉.

(a) Compute the output state

ρ′ = E(|ψ〉) =
∑

j,k={0,1}

(Ej ⊗ Ek)|ψ〉〈ψ|(Ej ⊗ Ek)† (6)

which results when each physical qubit is subject to amplitude damping, described by the opera-
tion elements

E1 =

[
1 0
0
√

1− γ

]
(7)

E2 =

[
0
√
γ

0 0

]
. (8)

(b) Compute the fidelity F (|ψ〉, ρ′) =
√
〈ψ|ρ′|ψ〉 of ρ′ with respect to |ψ〉.

(c) Suppose we project the output state into the space orthogonal to |00〉 (say by performing a
measurement of Z ⊗Z to measure the total excitation number, and obtain 0), and keep only the
cases when we do not obtain |00〉. What is this state? What is its fidelity with respect to |ψ〉?

P3: (Amplitude damping and the Shor code) How well does the Shor 9-qubit code correct against
amplitude damping errors? Let the operation elements for this process be as above, applied to each
physical qubit. Calculate the fidelity of the decoded state as a function of γ. The interesting thing is
the power of γ that results; don’t worry about getting the pre-factor exactly. You may use Mathematica
(or some other computer math package) if you desire, but it is also not complicated to obtain the result
by hand.

P4: (3 qubit amplitude damping code) Let

Name Operator

g1 X X X X X X X

g2 Z Z Z Z I I I

g3 Z Z I I Z Z I

g4 Z I Z I Z I Z

(9)

be the stabilizer generators for a quantum code.

(a) Give the eight codewords determined by these generators.

(b) Show that this code encodes three qubits and can correct for up to one amplitude damping error
on any single qubit.
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