
MASSACHUSETTS INSTITUE OF TECHNOLOGY

Media Laboratory

MAS.961 Quantum Information Science October 25, 2001

Problem Set #4
(due in class, 08-Nov-01)

Instructions: You will be graded only on the problems (second section, below). The exercises are for your
own enlightenment and practice.

Lecture Topics (10/30, 11/01, 11/06): quantum information theory, distributed QC

Recommended Reading: Nielsen and Chuang, Chapters 11-12

Exercises:

E1: (Simple calculations of entropy) What is the entropy associated with the toss of a fair coin? With
the roll of a fair die? How would the entropy behave if the coin or die were unfair?

E2: Prove that the binary entropy Hbin(p) attains its maximum value of one at p = 1/2.

E3: (Example calculations of entropy) Calculate S(ρ) for

ρ =

[
1 0
0 0

]
(1)

ρ =
1
2

[
1 1
1 1

]
(2)

ρ =
1
3

[
2 1
1 1

]
. (3)

E4: (Comparison of quantum and classical entropies) Suppose ρ = p|0〉〈0| + (1 − p) (|0〉+|1〉)(〈0|+〈1|)
2 .

Evaluate S(ρ). Compare the value of S(ρ) to H(p, 1− p).

E5: (Holevo to Shannon) Use the Holevo bound to argue that n qubits can not be used to transmit more
than n bits of classical information.

E6: (Data compression circuit) Outline the construction of a circuit to reliably compress a qubit source
with ρ = p|0〉〈0|+ (1− p)|1〉〈1| into nR qubits for any R > S(ρ) = H(p).

E7: The erasure channel has two inputs, 0 and 1, and three outputs, 0, 1 and e. With probability 1− p the
input is left alone. With probability p the input is ‘erased’, and replaced by e.

(a) Show that the capacity of the erasure channel is 1− p.

(b) Prove that the capacity of the erasure channel is greater than the capacity of the binary symmetric
channel. Why is this result intuitively plausible?
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Problems:

P1: (Holevo’s Theorem) Suppose Alice sends Bob an equal mixture of the four pure states

|X1〉 = |0〉 (4)

|X2〉 =

√
1
3

[
|0〉+

√
2|1〉

]
(5)

|X3〉 =

√
1
3

[
|0〉+

√
2e2πi/3|1〉

]
(6)

|X4〉 =

√
1
3

[
|0〉+

√
2e4πi/3|1〉

]
. (7)

(a) Compute the maximum mutual information between Bob’s measurement and Alice’s transmission;
this is less than one bit.

(b) (optional, for 5 bonus points) A POVM which achieves ≈ 0.415 bits is known. Construct this.

(c) (optional, for 15 bonus points) Construct a POVM which achieves the Holevo bound.

P2: (Teleporting a Fredkin gate) Fault-tolerant constructions for the Toffoli and π/8 gates were shown
in class. These constructions used a certain ancilla state |χ〉, together with Bell basis measurement
and single qubit Pauli operations. Using these resources alone, you can perform Toffoli and π/8 gates.

(a) What ancilla state |χ〉 do you need in order to be able to teleport a quantum Fredkin gate, which
performs the unitary transform

UF =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


, (8)

that is, |0xy〉 → |0xy〉 and |1xy〉 → |1yx〉?

(b) Assume you have, in addition to the Bell basis measurements and single qubit Pauli operations, the
ability to perform controlled-not gates. That is, you can perform any Clifford group operation.
Describe the protocol that is performed to implement UF using your |χ〉 state.

P3: (Entanglement and Werner states) The Werner state with parameter p is defined as

Wp = p|β11〉〈β11|+
1− p

3

[
|β00〉〈β00|+ |β01〉〈β01|+ |β10〉〈β10|

]
(9)

= p|Ψ−〉〈Ψ−|+ 1− p
3

[
|Ψ+〉〈Ψ+|+ |Φ−〉〈Φ−|+ |Φ+〉〈Φ+|

]
, (10)

where |βxy〉 =
[
|0y〉+ (−1)x|1ȳ〉

]
/
√

2 are the usual Bell states.
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(a) Re-express Wp as an ensemble of eight pure states,

|ψ±±±〉 =
√
p0|β00〉 ±

√
p1|β01〉 ±

√
p2|β10〉 ±

√
p3|β11〉 , (11)

each occuring with probability 1/8, that is

Wp =
1
8

∑
k

|ψk〉〈ψk| . (12)

Give values for pi in terms of p.

(b) Now suppose that none of the pi are larger than 1/2. Find φi such that an ensemble of eight pure
states

|ψ′±±±〉 =
√
p0e

iφ0 |β00〉 ±
√
p1e

iφ1 |β01〉 ±
√
p2e

iφ2 |β10〉 ±
√
p3e

iφ3 |β11〉 , (13)

each occuring with probability 1/8 also gives Wp, and furthermore each of the |ψ′±±±〉 are unentan-
gled. Conclude that Wp can be prepared with only local operations and classical communication
for p < 1/2.

P4: (Twirling) (optional, for 10 bonus points) Protocols for creating pure entanglement from mixed states
often assume that Alice and Bob begin by sharing Werner states, or at least mixed states that are
diagonal in the Bell basis. If Alice and Bob share an arbitrary joint two-qubit mixed state ρ, then
how can they use classical communication and local quantum operations to project ρ onto the space
of Werner states?

P5: (Entanglement distillation by quantum error correction) Codewords of an [n,m] qubit stabi-
lizer code can be constructed by measuring its generators g1, . . . , gn−m on an arbitrary n qubit quan-
tum state, then applying Pauli operations to change the result to be a simultaneous +1 eigenstate of
the generators. This idea can be used to perform entanglement distillation, as follows.

(a) Consider the n = 5 qubit perfect code, which has the stabilizer generators gk and the normalizer
operators Z̄ and X̄ given by

Name Operator

g1 X Z Z X I

g2 I X Z Z X

g3 X I X Z Z

g4 Z X I X Z

Z̄ Z Z Z Z Z

X̄ X X X X X

. (14)

Let us start out with n EPR pairs in the state (|00〉 + |11〉)/
√

2, where Alice and Bob have
one qubit of each pair. Show that if Alice and Bob each measure g1 through g4 then using the
results they can perform normalizer operations which leave them with the encoded Bell pair state
(|0L0L〉+ |1L1L〉)/

√
2, where |0L〉 and |1L〉 are the 5-qubit code codewords.

(b) Show that if any single qubit error occurs to either Alice’s or Bob’s qubits, then Alice and Bob
still obtain (|0L0L〉+ |1L1L〉)/

√
2 using the same procedure.
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