
MASSACHUSETTS INSTITUE OF TECHNOLOGY

Media Laboratory

MAS.961 Quantum Information Science November 8, 2001

Problem Set #5
(due in class, 27-Nov-01)

Instructions: You will be graded only on the problems (second section, below). The exercises are for your
own enlightenment and practice.

Lecture Topics (11/08, 11/13, 11/15, 11/20): entanglement, quantum cryptography

Recommended Reading: Nielsen and Chuang, Chapters 11-12; Preskill, Chapters 5 & 7

Exercises:

E1: (Concavity of entropy exchange) Show that the entropy exchange is concave in the quantum oper-
ation E .

E2: (Convexity of majorized set) Show that x ≺ y if and only if for all real t,
∑d
j=1 max(xj − t, 0) ≤∑d

j=1 max(yj− t, 0), and
∑d
j=1 xj =

∑d
j=1 yj . Use this result to show that the set of x such that x ≺ y

is convex.

E3: (Entanglement conversion without communication) Suppose Alice and Bob are trying to con-
vert a pure state |ψ〉 into a pure state |φ〉 using local operations only – no classical communication.
Show that this is possible if and only if λψ ∼= λφ ⊗ x, where x is some real vector with non-negative
entries summing to 1, and ‘∼=’ means that the vectors on the left and the right have identical non-zero
entries.

E4: (Affine cryptosystems) Alice holds a triplet of integers (n,m, s), and Bob (n,m−1,−m−1s), which
satisfy gcd(m,n) = 1. Alice encodes by applying the transformation x→ mx+s(mod n) to her original
message x (an integer less than n), and Bob decodes by applying x′ → (m−1x′−m−1s)(mod n) to the
encoded message x′ he receives from Alice.

(a) Give the conditions for this private key affine cryptosystem to be secure.

(b) Prove that there are nφ(n) distinct invertible affine encryption schemes on n letters.

E5: (Statistics of measurement results) Let {M1,M2, . . . ,Mn} be a set of measurement observables
which produce respective results Xi when an input state ρ is measured. Argue that the random
variables Xi obey classical probability arguments if [Mi,Mj ] = 0, that is, they commute with each
other.

E6: (CSS codes basis) Show that the states |ξvk,z,x〉 defined as

|ξvk,z,x〉 =
1√
|C2|

∑
w∈C2

(−1)z·w|vk + w + x〉 (1)
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form an orthonormal basis for a 2n-dimensional Hilbert space, that is,∑
vk,z,x

|ξvk,z,x〉〈ξvk,z,x| = I . (2)

Hint: for C1 an [n, k1] code, C2 an [n, k2] code, and m = k1−k2, note that there are 2m distinct values
of vk, 2n−k1 distinct x, and 2k2 distinct z.

Problems:

P1: (Properties of the Schmidt number) Suppose |ψ〉 is a pure state of a composite system with com-
ponents A and B.

(a) Prove that the Schmidt number of |ψ〉 is equal to the rank of the reduced density matrix ρA ≡
trB(|ψ〉〈ψ|). (Note that the rank of a Hermitian operator is equal to the dimension of its support.)

(b) Suppose |ψ〉 =
∑
j |αj〉|βj〉 is a representation for |ψ〉, where |αj〉 and |βj〉 are (un-normalized)

states for systems A and B, respectively. Prove that the number of terms in such a decomposition
is greater than or equal to the Schmidt number of |ψ〉, Sch(ψ).

(c) Suppose |ψ〉 = α|φ〉+ β|γ〉. Prove that

Sch(ψ) ≥ |Sch(φ)− Sch(γ)| . (3)

(d) Recall that the Schmidt number of a bi-partite pure state is the number of non-zero Schmidt
components. Prove that the Schmidt number of a pure quantum state cannot be increased by
local operations and classical communication. Use this result to argue that the number of Bell
states shared between Alice and Bob cannot be increased by local operations and classical com-
munication.

P2: (Entanglement catalysis) Suppose Alice and Bob share a pair of four level systems in the state
|ψ〉 =

√
0.4|00〉 +

√
0.4|11〉 +

√
0.1|22〉 +

√
0.1|33〉. Show that it is not possible for them to convert

this state by LOCC to the state |φ〉 =
√

0.5|00〉 +
√

0.25|11〉 +
√

0.25|22〉. Imagine, however, that a
friendly bank is willing to offer them the loan of a catalyst, an entangled pair of qubits in the state
|c〉 =

√
0.6|00〉 +

√
0.4|11〉. Show that it is possible for Alice and Bob to convert the state |ψ〉|c〉 to

|φ〉|c〉 by local operations and classical communication, returning the catalyst |c〉 to the bank after the
transformation is complete.

P3: (Entanglement and communication complexity) Alice is in Amsterdam and Bob is in Boston,
and they share an EPR pair in the state |QAQB〉 = |00〉 − |11〉 (suppressing normalization). Alice
chooses some uniformly random bit x and independently, Bob chooses y. Define the rotation operator

R(α) =

([
cosα − sinα
sinα cosα

])
(4)

If x = 1 Alice applies R(π/8) to her qubit QA; otherwise she does nothing. If y = 1, Bob applies
R(−3π/16) to his qubit QB ; otherwise he does nothing. Both Alice and Bob then measure their qubits
in the computational basis, obtaining bits a and b, respectively.
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(a) Show that prob[a⊕ b = x∧ y] = cos2(π/8) ≈ 0.853, where ⊕ denotes addition modulo two, and ∧
is the logical and operation. The probability distribution is taken over all values of a, b, x and y.

(b) Now suppose that Alice has a two bit number x = x1x0 and Bob has y = y1y0, and let z =
z2z1z0 = x+ y be their sum. Alice and Bob desire to obtain the middle bit of the sum, z1, with
high probability. Give a protocol using one EPR pair and only two bits of classical communication
between Alice and Bob which allows them to obtain z1 with probability better than 0.853. By
“two bits of communication,” we mean, both here and in the next part, that only two bits may
be transmitted total: Alice and Bob can each send one bit to each other, or one party can send
two bits to the other one.

(c) Show that classically, the best probability achievable with two bits of communication (and no
EPR pairs) is 0.75.

P4: (Random sampling tests) The random test of n of 2n check bits allows Alice and Bob to place an
upper bound on the number of errors in their untested bits, with high probability. Specifically, for any
δ > 0, the probability of obtaining less than δn errors on the check bits, and more than (δ+ ε)n errors
on the remaining n bits is asymptotically less than exp[−O(ε2n)], for large n. We prove this claim
here.

(a) Without loss of generality, you may assume that there are µn errors in the 2n bits, where 0 ≤ µ ≤
2. Now, if there are δn errors on the check bits, and (δ+ε)n errors on the rest, then δ = (µ−ε)/2.
The two conditional statements in the claim thus imply the following:

< δn errors on check bits ⇒ < δn errors on check bits (5)

> (δ + ε)n errors on rest ⇒ > (µ− δ)n errors on rest , (6)

and in fact, the top claim on the right implies the bottom one on the right. Using this, show that
the probability p which we would like to bound satisfies

p <

(
2n
n

)−1(
µn

δn

)(
(2− µ)n
(1− δ)n

)
δn . (7)

(b) Show that for large n, you can bound

1
an+ 1

2anH(b/a) ≤
(
an

bn

)
≤ 2anH(b/a) , (8)

where H(·) is the binary entropy function. Apply this to the above bound for p.

(c) Apply the bound H(x) < 1− 2(x− 1/2)2 to obtain the final result, p < exp[−O(ε2n)]. You may
replace µ by a constant which expresses the worst possible case.

(d) (optional, 5 bonus points) Compare the result with the Chernoff bound, Box 3.4 on p. 154 in
Nielsen and Chuang. Can you come up with a different way to derive an upper bound on p?

P5: (6-state quantum key distribution) Give a protocol using six states, the eigenstates of X, Y , and
Z, and argue why it is also secure. Discuss the sensitivity of this protocol to noise and eavesdropping,
in comparison with that of BB84 and B92.
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