
Xspeak: A Use for a Speech Interface i dowing Syste

Mark S. Ackerman, Sanjay Manandhar and Chris M. Schmandt

Media Laboratory, M.I.T.
Cambridge, MA 02139 USA

(612') 253-5156

We discuss an application to add speech recognition capabilities to a window
system in order t o navigate among the windows of most immediate lase t o
the user. Xspeak is a system designed to manipulate the windows in the X
Window System using voice input. We added speech not as a replacement
for the keyboard and mouse, but as a supplemental mode of communication
in order to make the user interface more convenient and intuitive. Speech
input not only controlled the layout and focus of the windows (tasks which
are normally relegated to a window manager), but it also enabled the user
to create and activate windows for particular tasks such as reading mail and
editing text.

Introduction

With the growing popularity of window systems on computer workstations, there is a need for a
suitable interface to window management. To cope with limited screen real-estate, many window
systems allow windows to overlap. Since overlapping windows may obscure other windows, a
mechanism to find and navigate among them is required. Normally the combination of mouse and
keyboard is used to manipulate windows.

The use of keyboard and mouse poses several problems, however. First, although the screen is two
dimensional, the overlap of the windows provides an additional dimensionality of depth. If many
windows exist, it may be difficult to find any particular window. Second, using the mouse requires
the user to move his hand from the keyboard. For example, depending on the window manager,
sometimes the desired action is executed by pressing a tiny visud button or by clicking on the
window's titlebar. Speech has neither of these drawbacks.

In order to make the user interface more convenient and intuitive, we added speech as a supple-
mental mode of communication in Xspeak. This added input channel eased the need for accurate
manipulation of mouse and keyboard to control the configuration of windows. Xspeak solved the
problem of finding stacked windows when they are buried.

Xspeak

Xspeak is a standard X Window System ("X") application and, as such, it is transparent to other
X applications. Since X is a client-server system, Xspeak interacts through the X server with the
various applications and with the window manager, a specialized X application that controls the
user interface for moving, restacking, and resizing windows. We did not modify the X Window
System, any window manager, or any application in order to accommodate Xspeak.

'There are many window managers available under X, and they can be interchanged by the user.

window manager

Figure 1: System diagram of Xspeak

One may think of Xspeak as logically consisting of two modules: a speech module to handle
recognition and a window system module to interact with the window system. (See Figure 1.)
Xspeak runs on the local workstation; Xspeak uses a Texas Instrument speech card for recognition.
The speech card resides in a PC which communicates with the X workstation over a serial line.
We used a Sennheiser M-80 super-cardioid microphone. Although most studies use head-mounted,
noise-cancelling microphones, we felt that they were not comfortable enough for everyday use.

Xspeak's speech module interacts with both the P C card and the user. Xspeak, for example,
needs to solicit status information on success or failure of recognition from the recognition card,
update the vocabulary List, and perform disk I /O on the PC hard disk. The speech module is also
responsible for the Xspeak control panel that provides the user with visual feedback on whether
the word was recognized, visual buttons to invoke the training of the vocabulary templates, and
to quit the program.

The window system module makes the right requests to the X server to effect the desired action.
Xspeak works by associating windows with voice names in the speech recognizer's vocabulary. The
result of the recognition (i.e., whether a word was recognized or not) is reported to Xspeak. When
any utterance matches the already trained set of vocabulary words (i.e., it is recognized), Xspeak
identifies the corresponding window and takes the appropriate action.

In most cases, Xspeak requests that the X Window System bring the window to the top of the
window stack. The window system module also moves the mouse pointer to the middle of the
raised window. If the window does not currently exist, a window with the appropriate application
is created as specified in a user-defined configuration file. In addition, the user can add a new
name for a window by clicking on it and training a new template in the speech recognizer. It is
also possible to completely lower or raise windows. Thus, users can navigate among windows and
rearrange them through speech.

Internally, there is a mapping between a vocabulary template and the window ID through the
window name resource, a property of the top-level window. A dynamically trained word is mapped

to its corresponding window through only the unique window ID that the X server provides.

To study the effectiveness of speech input, we gave Xspeak to four students and two of the authors
for periods ranging from two weeks to two months. All used Xspeak to navigate around in X while
developing software as part of their daily work. All these users were familiar with the X Window
System, and only one of the authors had used speech recognition. For the findings, see [I].

The study led to Xspeak 11, which is currently under development. Xspeak I1 will include a more
full-featured language to allow window navigation, conditional processing, and interaction with
direct manipulation controls. In addition, to increase recognition accuracy and alllow larger vocab-
ularies, application driven vocabulary subsetting will be employed. These features are described
in 121.

Use of Voice in a Windowing System

In general, users need to provide 4 different kinds of input in a windowing system.

1. Application data. This is the text input for a word processor or the numeric data in a
spreadsheet.

2. Control data. This input changes the application state. You might change the state of a
word processor, for example, by command sequences or by clicking on a direct manipulation
object, such as visual button or scrollbar.

3. Navigation. This input allows moving among applications or changing input focus. In a
windowing system, for example, you might move the mouse between two windows.

4. Layout. In a windowing system, the user often wishes to re-layout the visual appearance of
his screen by changing the size or the position of some windows.

Some systems are moving toward providing ways to layout not only windows, but groups of windows
into tasks; this could be considered a fifth type of input in the system. Note that these categories
in any given system are not necessarily distinct; we separate them here for analytical purposes.

The interesting question, then, is what the corresponding input methods for data might be in either
an auditory system or in a mixed media system. Having different input media available means that
the user can select the "style9' most appropriate to him and to the functionality.

Xspeak is an exploration in this mixed media space, having text and graphics output and speech
input. It explores the area defined by requirement 3, navigation, and requirement 1, application
data. Our continuing work with Xspeak I1 is addressing requirement 2, interaction with the direct
manipulation controls in the interface.

The current version of Xspeak directly addresses the question of inter-application navigation. By
allowing users to easily move among applications through voice, it is easy for the user to change his
current application. Through this mechanism, Xspeak can raise or lower the appropriate window;
the separation of client from server in X allows any client to control the windows of another client
through the server.

In a mixed media system, one would still want to use the keyboard for application input, primarily
for its speed. Under X, sharing the keyboard among applications is straightforward. As the user
navigates among his windows, most window managers in X automatically reassign keyboard focus
to the appropriate window to send application input to the proper application.

Interacting with the direct manipulation controls is less straightforward. Since the X Toolkit
(Xt) controls exist within the client, and because there are no "hooks" for sending messages to
the controls themselves, it is more awkward to interact with those controls. Xspeak 11 can send
artificial mouse events t o the control's window, but this requires knowing the window IDS for each
control. In a windowing system built for both voice and visual interaction, one would like either
the controls to be accessible via a toolkit server or some other way t o easily identify controls from
another application.

Allowing the user to change his mixed media layout is most challenging. In a visual environment,
a user moves around windows to allow different views of his visual (and therefore, task) space. In
a visual system, the user gains by having different windows, and he determines screen real-estate
for his windows to maximize important output. Xspeak HI will be able to address visual layout to
some extent.

In a mixed media environment, what layout entails is less clear. Ultimately, we would like the user
to be able to arrange different media differently, placing audio in an audio space, windows in a visual
space, and the interaction in some mutual space. It is clear that windows allow users to process
their tasks in parallel. Similarly, speech and audio are semantically rich, but computationally
difficult. In a sense, the audio equivalent of a visual window is required. One such possibility is to
fuse the visual windowing system with an audio system; each can reinforce the other. Explorations
are required to handle speech and audio in ways that support multiple, parallel outputs, with the
corresponding multiple input met hods.

Acknowledgments

Debby Hindus performed the majority of the user evaluation for Xspeak. The authors would also like to
thank Wendy Mackay, Gale Martin, Ralph Swick, and Dan Swinehart for their insightful comments and
suggestions. This project was funded by the MIT X Consortium and Sun Microsystems, Inc.

References

[I] Chris Schmandt, Mark S. Ackerman, and Debby Hindus. Augmenting a window manager with speech
input. IEEE Computer, August 1990. Forthcoming.

[2] Chris Schrnandt, Debby Rindus, Mark S. Ackerman and Sanjay Manandhar. Observations on using
speech input for window navigation. Proceedings of Interactgo, 3rd IFXP Conference on Human-Computer
Interaction, IFIP. Forthcoming.

