
Augmenting a Window
System with Speech Input

Chris Schmandt, Mark S. Ackerman, and Debby Hindus

Massachusetts Institute of Technology

espite high expectations, there
have been few convincing demon-
strations of speech input in desk-

top computing environments. We have
focused on window systems, where speech
might provide an auxiliary channel to
support window navigation.

Xspeak, our speech interface to the X
Window System, associates words with
each window. Speaking a window's name
moves it to the front of the screen and
moves the cursor into it. Speech does not
provide a keyboard substitute, but it does
assume some of the functions currently
assigned to the mouse. Thus, a user can
manage a number of windows without
removing his or her hands from the key-
board.

We provided this interface to a group of
student programmers who used it for sev-
eral months. This pilot study was designed
to identify some initial considerations for
using speech recognition in workstations.
The manner in which our programmers
used voice pointed out its strengths and
weaknesses. Recognition accuracy was
critical, although some of our most enthu-
siastic users had some of the poorest recog-
nition scores. The most consistent users
started to use more windows and to allow
more overlapping of windows. Some users
had already developed their own tech-

With Xspeak, window
navigation tasks

usually performed
with a mouse can be
controlled by voice.

A new version,
Xspeak 11,

incorporates a
language for

translating spoken
commands.

niques, which our voice interface couldn't
help, for coping with multiple windows.
Speech proved to be neither faster nor
slower than the mouse, although the choice
of which medium to employ was in part
related to what else the user was doing with
his or her hands.

In a windowing environment, many
applications support a direct-manipulation
interface, where the user can click on but-
tons, pull scroll bars, and so on. Our stu-
dent users complained about lack of voice
access to these mouse functions. This led
us to develop a user interface specification
language so that voice commands could
interact with applications by generating a
series of mouse-motion, button-press, and
key-press events. To improve recognition,
vocabulary subsets specific to an applica-
tion can be enabled either by voice or by
mouse motion into a window.

The first part of this article gives some
necessary background in speech recogni-
tion and window systems, with an analysis
of how they might be combined. The sec-
ond part describes Xspeak, our first navi-
gation application, including its operation
and our field study of its use. The final
section introduces Xspeak 11, an improved
version that includes a user interface speci-
fication language, a rich tool for adding
voice input to applications.

Background

Speech is a difficult input medium. Al-
though speech recognition has received
considerable positive publicity that has

50 00 18-9 16z1~o108oo-oo~o$o I 00 Q 1990 IEEE COMPUTER

raised the expectations of interface design-
ers, the available devices leave much to be
desired, particularly in recognition accu-
racy. Many variables affect error rates,
including vocabulary size and composi-
tion, users' attitudes and speaking styles,
ambient noise, and microphone type and
placement.',' Many of the high recognition
rates reported are achieved by skilled users
reciting lists of words in acoustically stable
environments. This is very different from
actual use in office environments where
users may not be used to speech recogni-
tion.

Because of the difficulties in achieving
high recognition accuracy, most success-
ful applications use small vocabularies in
amenable environments. Examples in-
clude:

Inspections, such as noting defects of
major appliances on a factory floor or
testing circuit boards. The user's hands
remain on the target of inspection, and
voice is used to record results.
Sorting, of either baggage or pack-
ages, where the user's hands are busy
and voice is used to specify routing.
Visual monitoring, especially with
microscopes, for inspection in inte-
grated-circuit and biomedical applica-
tions. The user's eyes are accommo-
dated to the task, and the user's mouth
may be in a stable position for a micro-
phone.

These situations benefit from voice pri-
marily because the user's hands and eyes
are otherwise occupied.

The role of speech recognition in desk-
top computing is not so well established.
There is little conclusive evidence that
speech is superior to the keyboard for data
entry, much less for free-form typing and
editing. (For an excellent survey of the
literature, see M a r h 3) Much of the cur-
rent work in large-vocabulary speech rec-
ognition is biased toward development of
the so-called "listening typewriter," an
automatic transcription device for busi-
ness correspondence. Yet word processing
may comprise only a fraction of a user's
computer activities. And, although memo-
rized text can be spoken as much as 500
percent faster than it can be written, dicta-
tion is not necessarily faster. Because
composition requires the bulk of a writer's
time, dictation may increase speed by only
20 to 65 p e r ~ e n t . ~

When might speech input be useful in a
workstation? The evidence suggests that
voice input is more valuable in conjunction
with other input devices (such as keyboard

and mouse). Judging by the successful
industrial applications of speech recogni-
tion, in which the user performs an activity
in parallel, we surmised that allowing users
to remain focused on the screen and key-
board, instead of fumbling for the mouse,
would be beneficial in a workstation envi-
ronment.

To the extent that the tasks of navigation
and interaction with the applications are
separable, a performance improvement
might be expected by splitting the input.
Cognitive experiments have shown that a
person's ability to perform multiple tasks
is affected by whether those tasks use the
same or differing modes, for example,
spatial and verbal mode^.^.^ Such observa-
tions led Martin' to design an experiment
using speech recognition for an alternate
input channel in a CAD system employing
both keyboard and mouse. Her subjects
were indeed more productive with the
addition of voice. She attributed this in part
to the speed of speech recognition versus
typing long command names and in part to
the ability of users to split attention across
channels, that is, to remain visually fo-
cused on the screen while using spoken
commands.

Martin's second finding suggested the
expected utility of speech as an interface to
a visually complex window system. Mov-
ing between tasks, that is, between win-
dows, is normally accomplished by using
the mouse to move a cursor. This requires
both manual and visual attention. Apply-
ing the divided-attention hypothesis and
using different input channels for different
classes of tasks might enhance navigation
between windows.

Window systems. Windows are now
commonplace on bitmapped computer
workstations. Window systems allow the
screen to be divided into a number of re-
gions, with each region allocated to input
or output from a particular computer pro-
cess or program. Because windows are so
ubiquitous and are indeed the substrate on
which so much workstation use is based,
we felt that no research into speech and
user interfaces should ignore them. We
chose to work with the X Window System
because it is a de facto standard across
workstations.

The X Window System defines a stan-
dard way for application programs, or X
clients, to communicate with a separate
process, the X server, that controls screen
display and handles user input. Servers are
typically provided by a hardware manufac-
turer. X clients include applications such

as Xterm, a terminal emulator; Xclock, a
clock; and Emacs, a programming editor.

Window managers, a specialized type of
client, control the placement of application
windows on the screen, usually through
user control. They can vary a great deal in
X, and because window managers are just
applications in X, they can be used inter-
changeably. (For a taxonomy of window
managers, see Myers.')

Two characteristics of window rnanag-
ers are important for our purposes. First,
they may be tiling or overlapping. With an
overlapping window manager, windows
can partially obscure one another; with a
tiling window manager, they cannot. Sec-
ond, window managers differ according to
how they select which window receives
keystrokes. The mechanism for shifting
input focus may be click to focus (some-
times called "sticky"), requiring a mouse
button click within a window before key-
strokes are accepted. Or the window man-
ager may be real-estate based and auto-
matically shift the focus to the window
where the mouse pointer appears. The
window managers selected by our users
were all overlapping and real-estate based;
none were modified.

Window systems and speech recogni-
tion. Where, then, can speech be most
profitably employed in a window system?
And what functionality should it augment?

Before placing a speech interface within
a windowing system, we had to consider
how window systems are used. But there
has been surprisingly little study of this or
why users prefer a particular interface.
GaylinQiscusses frequency of use of some
window operations. Card, Pavel, and Far-
rel19 provide a loose taxonomy of how
windows are used in tasks. More important
for our purpose was Bly and Rosenberg'sIo
comparison of tiled and overlapped win-
dows in a task that involved searching for
information between windows. When the
amount of text to be searched was not
entirely visible, they found that overlap-
ping windows were more effective than
tiled windows, with an interesting bimo-
dality. For the most-experienced users,
overlapping windows were faster, but for
some less-experienced users, they were
significantly slower. Bly and Rosenberg
attributed this to the added navigational
tasks of manipulating the various win-
dows. However, despite this added cogni-
tive load, their users preferred overlapping
windows.

Window systems force use of a spatial
metaphor. Users organize their windows

August 1990

Application

Window manager

Window manager

Figure 1. Interaction between processes in Xspeak.

geometrically, perhaps stacking them in
layers. Visually, it is relatively simple to
recognize a window when there are few
windows and each is in a distinct geomet-
ric position. But, as the number of win-
dows increases, it becomes progressively
more difficult to find a window through
visual inspection. Moreover, the mouse, a
two-dimensional spatial input de'vice, is
not matched to the two-and-a-half dimen-
sions of overlapping windows. (Tiled
windows, if they are stacked in layers, may
also have planes.) As the number of win-
dows grows, using the mouse to interact
with a "buried" window becomes more
difficult. A window with no part exposed
may be inaccessible to the mouse until
other windows are moved out of the way.

Speech offers an alternative. Voice, not
being tied to a spatial metaphor, can inter-
act with windows directly, regardless of
their degree of visual exposure. Speech,
then, could let users employ many task-
specific windows. Furthermore, naviga-
tion is a good candidate for optimization
via the use of multiple input channels.

The above suggests that in a complex
window environment, especially with us-
ers who would like to create many win-
dows, an interface designed to improve
navigation would provide faster access to
various windows. Therefore, navigation
was our prime candidate for a speech inter-
face. Further, to the extent that navigation
could be differentiated as a separate task
from the activities occurring within each
window, multimodal input might lessen
the user's cognitive load. This could allow
successful use of a larger number of win-
dows dedicated to specific tasks.

Xspeak

Xspeak is an application, not a window
manager, that allows voice access to win-

dows in the X Window System. It runs on
Sun workstations (it should run with any X
Windows server), using a Texas Instru-
ments speech card in a PC-based audio
server." We did not modify the X server,
the user's window manager, or any other
application.

Xspeak associates windows with voice
templates, words trained and stored in the
recognizer and constituting its vocabulary.
Speaking a window's template pops the
window to the foreground and moves the
mouse pointer to the middle of the win-
dow. The window manager, which does
not distinguish this motion from mouse
motion, shifts the input focus to the appro-
priate window. At this point, keystrokes
are directed to the application running
within the window. Figure 1 shows this
interprocess communication.

Xspeak also allows users to fully lower
or raise the current window. Users can
move between windows and rearrange
them without removing their hands from
the keyboard. However, the mouse re-
mains the sole means for moving and re-
sizing windows. These operations, which
are much less frequent than navigational
 operation^,^ are cumbersome to perform
with voice commands.

Providing a speech interface to the win-
dow system was relatively straightfor-
ward. Because all applications are in sepa-
rate processes from the X Windows server,
moving a top-level window does not cor-
rupt any application's data structures.
Xspeak would have been much more diffi-
cult to implement in a window system that
does not separate server and client.

In Xspeak, a configuration file associ-
ates window titles with the template num-
bers in the recognizer. Xspeak associates
the window title (the window name prop-
erty set by the application on its top-level
window) with a particular window ID,
which is used to modify the window stack-

ing order. Xspeak also lets users name new
windows not found in the configuration
file. To do this, the user clicks on the
window being named so that Xspeak can
determine the window ID. The user then
speaks the new name, that is, he or she
trains a recognizer template. The configu-
ration file also lets users start applications.
If a window's name is spoken and no
matching window ID can be found, the rest
of the corresponding entry in the configu-
ration file is executed to create the new
window. For example, in a configuration
file, this line

emacs -f emacs

would make Xspeak create an Emacs win-
dow if one did not already exist.

Xspeak includes a graphical control
panel (see Figure 2) that serves several
functions. Its status display indicates to the
user that the recognizer is working. When
the user says a word, this panel displays the
word or a message indicating that no word
was recognized. This feedback is essential
when recognition accuracy is low due to
poor word training or increased back-
ground noise.

The control panel includes a button to
invoke window naming. The user can dis-
able or enable recognition, using another
button, to avoid spurious recognition while
conversing or answering the phone. From
the Xspeak control panel, users can select
the utility function ("util" in Figure 2) to
access less frequently used commands.
This panel contains commands to test,
calibrate, and retrain the recognizer. Users
attempting to improve recognition accu-
racy frequently chose to retrain individual
words.

Microphones. We were unwilling to
subject our users to head-mounted micro-
phones because these microphones are
uncomfortable and tend to slip. Also, if
users forget they are wearing the micro-
phone, they may be unpleasantly reminded
when they attempt to drink coffee or an-
swer the telephone. Instead we placed a
super-cardiod microphone (Sennheiser
ME-80) next to the workstation monitor.
Our choice of microphones contrasts sig-
nificantly with much other published work
on speech recognition and resulted in poor
recognition performance. It is more com-
mon to use a head-mounted, noise-cancel-
ing microphone to control microphone
acoustics and compensate for background
noise.

A more directional microphone might
have decreased background noise from

COMPUTER

sources such as fans and telephones, but it
would also have been more sensitive to the
speaker's position. To make our micro-
phone work well, we had to change a
number of internal parameters in the re-
cognizer to deal with the higher noise level.
(Although these internal parameters are
documented, a systems developer unfamil-
iar with the operation of speech recogniz-
ers probably couldn't decipher them, much
less optimize their values.)

Not using noise-canceling microphones
tends to cause insertion errors, that is,
picking up of background noise as speech.
Recognizers are generally poor at discrimi-
nating whether a particular word is within
their universe of templates. The conse-
quence of insertion errors is window re-
configuration; suddenly, user input goes to
the wrong window (especially annoying if
keyboard noise caused the error). Thus, we
set the rejection threshold on the recog-
nizer rather high, at the price of making the
rejection of correctly spoken words much
more likely.

User experiences. To better understand
how Xspeak would be used and what ef-
fects it would have on users, we conducted
a small pilot study. We wanted to know
under what circumstances users would
choose voice input for navigation, where
they would encounter difficulties, and how
Xspeak would affect their window use. By
observing real users, we could learn what
changes and enhancements were needed to
improve Xspeak. We were also curious
about how users would react to using the
less-than-perfect speech-recognition sys-
tem on a long-term basis. This last issue
has not received much attention; most
published studies of user reactions to
speech-recognition systems have used the
research technique of using a hidden
human to simulate a perfect recognizer.

Over a summer, four student program-
mers in the speech group, as well as two of
the authors, used Xspeak in their day-to-
day programming tasks. With one excep-
tion they were already familiar with the X
Window System. After an entry interview,
the users were trained to use Xspeak. We
tracked usage over a two-month period via
extensive automatic logging, periodic
videotaping, and frequent short inter-
views. We derived recognition accuracy
rates, and we collected timing data for
comparable mouse and speech actions over
a small set of navigation tasks. (A detailed
report on our methodology and results is
available.12)

From our analysis of these empirical and

Figure 2. Xspeak control and utility panels.

observational data, we reached the follow-
ing conclusions about our users' experi-
ences with Xspeak:

Recognition is not straightforward.
Although we used Xspeak in relatively
quiet offices, the microphone configura-
tion resulted in recognition errors.

Several steps were required to deal with
these errors. First, we changed a number of
the recognizer's internal parameters. Sec-
ond, we set a high recognition threshold.
Third, we placed the microphone on a stand
to one side of the monitor, carefully posi-
tioned to point toward the user; a better
solution might employ a microphone built
into the keyboard or monitor bezel. Fourth,
we provided our users with utility func-
tions to retrain, recalibrate, and reset the
speech recognizer; one user retrained 109
individual words in 79 sessions.

Despite these actions, low recognition
accuracy rates remained a problem. They
ranged from slightly less than 50 percent to
more than 80 percent (measured for the six
pilot users during a randomly selected
session and confirmed in a follow-on study
involving three of the six users). Poor rec-
ognition accuracy was the greatest impedi-
ment to acceptance of Xspeak. The users
who persisted had some of the highest
overall recognition rates but also devel-
oped successful strategies to overcome
errors.

Some programmers preferred using a
faster workstation without Xspeak to using

a slower workstation with the speech inter-
face. This might have been exacerbated by
relatively slow performance by the X
Windows server for programmers devel-
oping X Windows applications. In any
case, a somewhat improved user interface
is no substitute for a faster processor.

For simple change-of-focus tasks
(moving the mouse from one exposed
window to another exposed window),
speech was not faster than the mouse. In
fact, it was marginally slower. The speed
advantage shifted toward speech if the
destination window was partially or com-
pletely hidden. Exposing such a window
requires no additional time for a voice
interface but does require several addi-
tional mouse actions.

Navigation in a window system can be
handled with speech input. Users were
able to move among and restack windows
with ease. They learned the interface
quickly and needed little tutoring to use the
basic functions, although the control panel
required more training.

Some users were not helped much by
the voice interface. One of them, a very
experienced window-system user, had al-
ready developed techniques for coping
with many windows (by using many
icons). Another spent much of his time
thinking at the keyboard and had few inter-
actions with his windows; with this work
style, transitioning among windows may
be less critical.

August 1990

Verbs

create
recall
hide
return

configure
place

if-elseif-endif
wait-on

send

string

activate
name

Start an application, thus creating its windows.
Reposition a window to the top of the window stack.
Reposition a window to the bottom of the window stack.
Reposition a window to its previous position in the window
stack.
Move or resize a window.
Move the mouse to a specified position or named window
without restacking.
Conditionally execute a block of instructions.
Stop execution until some condition is achieved or a timeout
occurs.
Send a specified X Windows event to the named application
window.
Send a series of keyboard events to the named application
window.
Activate a recognizer subtemplate.
Rename a window from a specified set of names.

Conditions

process
iconified

m aP
xevent

timer

Determine whether the named process is executing.
Determine whether the named window is iconified.
Determine whether the named window is on the screen.
Determine whether the specified X Windows event has been
sent to a named window (used for handshaking with the server).
Determine whether a specified time has elapsed.

Figure 3. G-XL language.

Toward the end of the observation
period, we noticed that the users most
inclined to use voice increased the number
of overlapping windows or the degree of
overlap.

We found the use of voice in naviga-
tion an incomplete substitute for the
mouse. Our users did not rely on the speech
interface to the exclusion of the mouse.
They still had to use the pointer to interact
with the direct-manipulation interfaces
within applications. Having a hand already
on the mouse accounted for 59 percent of
the times users navigated with the mouse
rather than with Xspeak. Some users found
it awkward to use both interfaces simulta-
neously. Others wanted to use Xspeak to
handle direct-manipulation buttons or to
start programs.

Xspeak I1

User interfaces require iterative design
cycles. Hence, a key goal of our Xspeak
prototype was to learn what facilities
would be useful in a speech interface.
After considering Xspeak's usage, users'

requests, and our improved understanding
of the possibilities of a speech interface,
we redesigned Xspeak to fix bugs, correct
mistakes, and, most importantly, add
features.

We made two major changes. First, since
context-dependent recognition improves
recognition rates, we added the ability to
create subtemplates.

Second, Xspeak I1 includes a special-
ized language, G-XL, to facilitate general-
purpose handling of the window system.
Where Xspeak was limited in its use of the
pointer device, Xspeak I1 allows greater
flexibility in the speech interface. Users
can employ direct manipulation using
voice, interacting with an application in
addition to simply selecting it.

Application-sensitive recognition.
Increasing Xspeak's scope would require a
potentially much larger vocabulary. But a
larger vocabulary is apt to introduce more
recognition errors because more words
could be confusable. This standard speech-
recognition trade-off was critical in
Xspeak; its recognition accuracy was al-
ready barely acceptable.

To minimize the impact of this trade-off,
voice-input applications commonly break
the vocabulary into subsets. If the dialogue
can be structured so that the branching
factor remains small, then the number of
words active at any point can be mini-
mized. For Xspeak 11, we chose to create
vocabulary subsets according to applica-
tions. Grouping and enabling the templates
lets Xspeak I1 switch among applications
as they are invoked. Xspeak I1 also main-
tains cooperability with the mouse; when-
ever the mouse is used to enter a window,
the corresponding vocabulary subset is
enabled.

Xspeak I1 language, G-XL. The origi-
nal Xspeak was limited in its range of
operations. For instance, users could not
use voice to control direct-manipulation
objects such as scroll bars. Furthermore,
there was no way to group functionality
(such as having two windows pop to the
top of the window stack), to conditionally
invoke programs based on the user's cur-
rent environment, or to wait for a window
to become exposed before proceeding.

G-XL, Xspeak 11's language, addresses
many of these limitations. It also meets
three major requests of the pilot-study
users: macro capability for all X Windows
events, greater control over screen events
and process sequencing, and direct ma-
nipulation of objects. We have designed
and are implementing G-XL to provide a
flexible interface between speech and a
window system. With G-XL, users can
tailor their speech interface in a variety of
ways.

Figure 3 lists the G-XL language. The
verbs create, recall, and hide provide the
basic functionality of the original Xspeak.
To provide needed flexibility, G-XL con-
tains the if (condition)-elseif-endif con-
struction and the wait-on (condition) con-
struction. The conditions include map, to
test whether a window is present on the
screen; process, to test whether a process
exists; rimer, to test for an elapsed time;
iconified, to test whether the application
has been iconified; and xevent, to check
for most X Windows input events on a
window.

Figure 4 shows parts of a G-XL configu-
ration file. The section beginning with
emacs checks whether there is an Emacs
editor on the screen. If there is, whether or
not it is iconified, the full Emacs window is
popped above any other window. If there is
no Emacs window, one is created. The
inner ifblock shows how a user can control
the shape and position of the Emacs win-

COMPUTER

dow. In this case, if the debugger, dbx, is
already running, Emacs will appear in a
smaller window placed further to the right,
so as not to obscure the dbx window. The
configure verb can resize or move an X
window.

Additionally, Xspeak users wanted to
handle the direct-manipulation objects
(widgets) that are part of the Xt toolkit and
used extensively by X Windows applica-
tions. To do this, G-XL allows placing the
pointer within a specific window (to focus
input) and sending an artificial input event.
The place verb puts the pointer at a given
(x,y) location relative to the current win-
dow. The send verb takes most X Windows
input event types and artificially sends
them to the given window, usually the
current window. Applications do not dis-
tinguish between these artificial events and
user input, as shown in Figure 5. The string
verb represents a series of send keypress
commands and provides for keyboard
macros.

G-XL can send keystrokes direct to an
application, but it is more than a simple
keyboard macro package. First, G-XL
knows about anumber of X Windowsevent
types, including keystrokes, button
presses, and those events returned from the
server when, for example, a window is
created or resized. Second, as described
above, a number of its primitives are actu-
ally functions that allow sequencing of
operations in the multiprocess X Windows
environment, where requests must be
acted on by the server. For example, if a
window is obscured by another window,
the button-press event cannot be sent to the
application until the window has been
exposed.

Three additional features round out
G-XL. The activate verb activates a recog-
nizer subtemplate. While the general tem-
plate is always active, subtemplates are
swapped in and out as required; this also
provides local scoping. The return verb
restores the window stack and the pointer
location to their states before the current
subtemplate was activated. Finally, the
name verb allows greater flexibility in
dynamically creating windows. On a
create request, which sequentially could
produce several windows with the same X
title, the name verb renames those win-
dows from a set of given names.

G-XL configuration files are compiled
by the user and may be specified on the
Xspeak I1 command line. For example, a
user might have several different configu-
ration files corresponding to various win-
dow managers.

template general
mail

emacs
if (!map emacs)

if (!process dbx)
create emacs -rv -geometry 80x50+10+50

elseif
create emacs -rv -geometry 80x50+500+50

endif
wait (xevent MapNotify (window emacs))

elseif
recall emacs
if (process dbx)

configure emacs 80x50+500+50
endif

endif
activate emacs

messages

end template

L

Figure 4. Sample G-XL template.

User mouse and
keyboard input

Speech server Xspeak

Artificial ///
X Windows

vl// e.g., Emacs)

Window manager c v
Figure 5. Interaction between processes in Xspeak 11.

e intend to make Xspeak I1
available to a wider audience
and to closely monitor their

usage patterns and reactions. We also want
to gather data to evaluate how adding
a speech channel for navigation affects
users' number, placement, and use of
windows.

Even with the limited utility of our ini-
tial prototype, it is clear that at least some
users find a speech interface comfortable
and beneficial. As we discover how to in-
tegrate voice with window systems, we
will progress towards a deeper understand-
ing of the roles voice can play in desktop
computing environments.

August 1990

Acknowledgments
Sanjay Manandhar did much of the original Xspeak programming to

work out the basic interaction mechanisms. Gale Martin provided insight-
ful early discussions. Wendy Mackay provided invaluable assistance with
our use of video as an evaluation method. Ralph Swick helped us with the
more arcane aspects of the X Window System. The reviewers made many
pertinent comments and suggestions. This project was funded by the MIT
X Consortium and Sun Microsystems.

References
1. H.C. Nusbaum et al., "Testing the Performance of Isolated-Utterance

Speech Recognition Devices," Proc. 1986 Conf., American Voice
110 Society, pp. 393-408.

2. A.W. Biermann et al., "Natural Language with Discrete Speech as a
Mode for Human-to-Machine Communication," Comm. ACM, Vol.
28, No. 6, 1985, pp. 628-636.

3. G.L. Martin, "The Utility of Speech Input in User-Computer
Interfaces,"Int'lJ. Man-MachineStudies, Vol. 30, 1989, pp. 355-375.

4. J.D. Gould, "How Experts Dictate," J. Experimental Psychology:
Human Perception and Performance, Vol. 4 , No. 4, 1978, pp. 648-
661.

5 . D.A. Allport, B. Antonis, and P. Reynolds, "On the Division of
Attention: A Disproof of the Single-Channel Hypothesis," Quarterly
J. Experimental Psychology, Vol. 24, 1972, pp. 225-235.

6 . A. Treisman and A. Davies, "Divided Attention to Ear and Eye," in
Attention and Performance, Vol. IV, 1973, pp. 101-1 17.

7. B.A. Myers, "Window Interfaces: A Taxonomy of Window Manager
User Interfaces," IEEE Computer Graphics andilpplicarions, Vol. 8,
No. 5, Sept. 1988, pp. 65-84.

8. K.B. Gaylin, "How Are Windows Used? Some Notes on Creating an
Empirically Based Windowing Benchmark Task," Human Factors in
Computer Systems - CHI 86 Conf. Proc., ACM, 1986, pp. 96-101.

9. S.J. Card, M. Pavel, and J.E. Farrell, "Window-Based Computer
Dialogues," Proc. Interact 84, First IFIP Conf. Human-Computer
Interaction, IFIP, Geneva, Switzerland, 1984, pp. 239-243.

10. S.A. Bly and J.K. Rosenberg, "A Comparison of Tiled and Overlap-
ping Windows," Human Factors in Computer Systems - CHI 86
Conf. Proc., ACM, 1986, pp. 101-106.

11. C. Schmandt and M. McKenna, "An Audio and Telephone Server for
Multimedia Workstations." Proc. Second IEEE Conf. Comouter
Workstations, Computer Society Press, Order No. 810,1988, pp. 150-
159.

12. C. Schmandt et al., "Observations on Using Speech Input for Window
Navigation," tech. report, MIT Media Lab, Cambridge, Mass., 1990.

Chris Schmandt is a principal research scientist and the director of the
Speech Research Group at MIT's Media Laboratory. He has been at the
Media Laboratory since its creation five years ago and spent the previous
five years with its predecessor, the Architecture Machine Group.
Schmandt's research covers a broad range of conversational computer
systems, with current emphasis on voice and telephone interactions with
workstations. He holds BS and MS degrees from MIT.

Mark S. Ackerma
MIT. He works wit1
Coordination Scier

is a doctoral candidate in information technology at
the Coordination Technology Group at the Center for
e and with the Speech Research Group at the Media

n
h 1

LC

Laboratory. His current research interests include windowsystems, elec-
tronic reference systems, and human-computer interaction. He received a
BA in history from the University of Chicago and an MS in computer and
information science from Ohio State University.

Debby Hindus is a graduate student and research assistant in the Speech
Research Group at MIT's Media Laboratory. Her research interests are in
incorporating voice input and output into everyday computer use. Hindus
previously consulted on user interface and software development issues.
She received a BS degree in computer science from the University of
Michigan.

The authors' address is Media Laboratory, Massachusetts Institute of
Technology, E15-327, 20 Ames St., Cambridge, MA 02139.

56 Reader Service Number 5 COMPUTER

